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Recall: given a curve C over Q, or over a number field k, we want a
complete description of C (k). For genus ≥ 1, there is no known algorithm
for giving this! But there is a bag of tricks that can be used to show that
C (k) is empty, or determine C (k) if it is non-empty. These include:

1 Quotients (lecture 1);

2 Descent (lecture 2);

3 Chabauty (lecture 3);

4 Mordell–Weil sieve (today).

The purpose of these lectures is to get a feel for each of these methods
and see it applied to a particular example.
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Recap–Jacobians

Associated to a curve C/k of genus g ≥ 1 is a g -dimensional abelian
variety J/k.

(i) For k a number field, J(k) is a finitely generated abelian group
(Mordell–Weil Theorem).

(ii) If C (k) 6= ∅ then J(k) ∼= Pic0(C/k) (the group of degree 0 rational
divisors on C modulo principal divisors).

(iii) If P0 ∈ C (k), there is an embedding

ι : C ↪→ J, P 7→ [P − P0]

that is called the Abel–Jacobi map. We have ι(C (k)) ⊆ J(k).
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Recap–Chabauty
Let C be a curve over Qp (p is a finite prime). Then there is a pairing

〈 , 〉 : ΩC × JC (Qp)→ Qp,

The pairing has the following properties:
1 it is Qp-linear on the left;
2 it is Z-linear on the right;
3 the kernel on the right is J(Qp)tors (the torsion subgroup of J(Qp).

Lemma

Let C be a curve over Q of genus g . Write r for the rank of J(Q).
Suppose r ≤ g − 1. Let p be a prime. Then there is some non-zero
ω ∈ ΩC/Qp

such that

〈ω,D〉 = 0 for all D ∈ J(Q).

Proof.

dim(ΩC/Qp
) = g . Apply linear algebra.

We call such ω an annihilating differential. 4 / 33



If P ∈ C (Qp) we define the residue disk of P by

Bp(P) = {Q ∈ C (Qp) : Q ≡ P (mod p)}.

The number of residue disks is #C (Fp).
Suppose r < g − 1. Let ω be an annihilating differential, and P ∈ C (Q).
Chabauty’s method gives a bound Chabp(P) for the number of points of
rational points in the residue disc of P:

#C (Q) ∩ Bp(P) ≤ Chabp(P).

Let K be the known rational points. If #K ∩ Bp(P) = Chabp(P) then

C (Q) ∩ Bp(P) = K ∩ Bp(P).

I.e. we know all of the rational points in the residue disc of P.
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For Chabauty to succeed in finding C (Q), we need:

1 r ≤ g − 1;

2 we need explicit generators for J(Q) (or some subgroup of J(Q) of
finite index);

3 we want some prime p of good reduction so that the known rational
points surject onto C (Fp);

4 in each residue disc we want to find enough rational points to match
the Chabauty bound!

Even if we have (1) and (2), we find in most examples that (3) and (4) fail.
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Let
C : y2 = 2x6 − 3x2 − 2x + 1.

A short search reveals the following four points:

K = {(0, 1), (0,−1), (−2, 11), (−2,−11)}.

Then
J(Q) = Z · [(−2,−11)− (0, 1)] .

Annhilating differential for p = 3 is

ω = (66 + O(35))
dx

y
+

xdx

y
.

Applying Chabauty with p = 3 we have
P Chab3(P) K ∩ B3(P)

(0, 1) 2 {(0, 1)}
(0,−1) 2 {(0,−1)}

(−2, 11) 1 {(−2, 11)}
(−2,−11) 1 {(−2,−11)}
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P Chab3(P) K ∩ B3(P)

(0, 1) 2 {(0, 1)}
(0,−1) 2 {(0,−1)}

(−2, 11) 1 {(−2, 11)}
(−2,−11) 1 {(−2,−11)}

For P = (−2,−11) and (−2, 11) there are no other rational points in the
same residue disc. For P = (0, 1) and P = (0,−1) we don’t know.

Let
B9(P) = {Q ∈ C (Q3) : Q ≡ P (mod 9)}.

P Chab9(P) K ∩ B9(P)

(0, 1) 1 {(0, 1)}
(0,−1) 1 {(0,−1)}

For P = (0, 1) and (0,−1) there are no other rational points in the smaller
residue disc B9(P).
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Note
C (F3) = {(0̄, 1̄) , (0̄, 2̄) , (1̄, 1̄) , (1̄, 2̄)}

We know all the rational points in

B9(0, 1) ∪ B9(0,−1) ∪ B3(−2, 11) ∪ B3(−2,−11).

This does not fill up C (Q3).
To show that K = {(0, 1), (0,−1), (−2, 11), (−2,−11)} is all of the
rational points, we need to show that every rational point belongs to one
of these four neighbourhoods. This is what the Mordell–Weil sieve will
achieve.
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Mordell–Weil Sieve

Let P0 = (0, 1). Let

ι : C ↪→ J, Q 7→ [Q − P0]

be the associated Abel-Jacobi map. Recall

J(Q) = Z · D, D = [(−2,−11)− (0, 1)].

Note that

ι(0, 1) = 0, ι(0,−1) = −2D, ι(−2, 11) = −3D, ι(−2,−11) = D.

Suppose Q ∈ C (Q). Then ι(Q) = nD with n ∈ Z. We will use reduction
mod p for lots of primes p to ‘predict’n.
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Suppose Q ∈ C (Q). Then ι(Q) = nD with n ∈ Z. We will use reduction
mod p for lots of primes p to ‘predict’n.

Let p be a prime of of good reduction. Let

N = order of D̄ ∈ J(Fp).

Consider the commutative diagram

C (Q)
ι //

red
��

J(Q)

red
��

Zη
oo

��

C (Fp)
ι // J(Fp) Z/NZη

oo

Here η(m) = mD. By diagram chasing

nmodN ∈ {m ∈ Z/NZ : m · D̄ ∈ ι(C (Fp))}.
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Suppose Q ∈ C (Q). Then ι(Q) = nD with n ∈ Z. We will use reduction
mod p for lots of primes p to ‘predict’n.
For every prime p of good reduction, the Mordell–Weil sieve gives an
integer Np and a set Wp such that nmodNp ∈Wp.

p Np Wp

3 13 {0, 1, 10, 11}
5 21 {0, 1, 18, 19}
7 65 {0, 1, 13, 19, 27, 36, 44, 50, 62, 63}
23 16 {0, 1, 7, 13, 14}
61 208 {0, 1, 24, 53, 153, 182, 205, 206}

Note that 16 | 208.
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Suppose Q ∈ C (Q). Then ι(Q) = nD with n ∈ Z. We will use reduction
mod p for lots of primes p to ‘predict’n.
For every prime p of good reduction, the Mordell–Weil sieve gives an
integer Np and a set Wp such that nmodNp ∈Wp.

p Np Wp

3 13 {0, 1, 10, 11}
5 21 {0, 1, 18, 19}
7 65 {0, 1, 13, 19, 27, 36, 44, 50, 62, 63}
61 208 {0, 1, 24, 53, 153, 182, 205, 206}

Need more data.
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If Q ∈ C (Q) then ι(Q) = nD where n ≡ 0, 1,−3,−2 (mod 234).

But

ι(0, 1) = 0, ι(0,−1) = −2D, ι(−2, 11) = −3D, ι(−2,−11) = D.

Take n ≡ −3 (mod 234). So n = −3 + 234m. Then

[Q − P0] = ι(Q) = nD

= −3D + m(234 · D)

= ι(−2, 11) + m(234 · D)

= [(−2, 11)− P0] + m(234 · D).

Hence [Q − (−2, 11)] ∈ m(234 · D).

Conclusion: if Q ∈ C (Q) then ∃P ∈ K such that

[Q − P] = Z · (234 · D).
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p-adic Filtration

Let p be a prime of good reduction. Let

Jm(Qp) = {D ∈ J(Qp) : D ≡ 0 (mod pm)}.

We have
J(Qp) ⊃ J1(Qp) ⊃ J2(Qp) ⊃ J3(Qp) ⊃ · · ·

is a system of decreasing neighbourhoods of the origin. Also

J(Qp)/J1(Qp) ∼= J(Fp), Jm(Qp)/Jm+1(Qp) ∼= (Z/pZ)g for m ≥ 1.

For our example,

#J(F3) = 13, 234 = 2 · 32 · 13.

Hence 234D ∈ J3(Q3). I.e. 234D ≡ 0 (mod 33).
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End of Example
We have two important pieces of information:

1 If Q ∈ C (Q) then ∃P ∈ K such that

[Q − P] ∈ Z · (234 · D).

2 234D ≡ 0 (mod 33).

Thus

Q ≡ P (mod 33), P ∈ K = {(0, 1), (0,−1), (−2, 11), (−2,−11)}.

So Q belongs to

B27(0, 1) ∪ B27(0,−1) ∪ B27(−2, 11) ∪ B27(−2,−11)

⊂ B9(0, 1) ∪ B9(0,−1) ∪ B3(−2, 11) ∪ B3(−2,−11).

Thus (Chabauty and the Mordell–Weil sieve)

C (Q) = {(0, 1), (0,−1), (−2, 11), (−2,−11)}.
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The Mordell–Weil Sieve

Let C/Q be a curve, J its Jacobian. Fix P0 ∈ J(Q). Let

ι : C ↪→ J, P 7→ [P − P0]

be the Abel–Jacobi map. We assume that we know J(Q) (in other words,
we know a basis for J(Q)). The Mordell–Weil Sieve is a strategy for
producing a ‘small’ finite set W ⊂ J(Q), and a subgroup L ⊂ J(Q) of
‘huge’ index such that

ι(C (Q)) =
⋃

D∈W
D + L

=: W + L.
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Inductive Definition

Let C/Q be a curve, J its Jacobian. Fix P0 ∈ J(Q). Let

ι : C ↪→ J, P 7→ [P − P0]

be the Abel–Jacobi map. We define inductively subgroups of finite index
Li ⊂ J(Q), and finite subsets Wi ⊂ J(Q), such that

L0 ⊇ L1 ⊇ L2 ⊇ L3 ⊃ · · ·

and
ι(C (Q)) ⊂Wi + Li .

Start:
L0 := J(Q), W0 := 0.
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Inductive Step: choose a prime p of good reduction. Let

Li+1 = Ker (Li ↪→ J(Q)→ J(Fp)) .

Let
W ′

i+1 = Wi + (Li/Li+1) .

Clearly W ′
i+1 + Li+1 = Wi + Li . So ι(C (Q)) ⊂W ′

i+1 + Li+1.

Consider the commutative diagram

C (Q)
ι //

red
��

J(Q)

red
��

C (Fp)
ι // J(Fp)
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Choice of p:

1 [Li : Li+1] is small;

2 #J(Fp) is smooth.

In practice, we usually find, with a good strategy for choosing the p,

Wi = ι(K) (K ⊂ C (Q) are the known points)

for large, and the index [J(Q) : Li ] is growing slowly.

The Li are decreasing neighbourhoods of the origin in the profinite
topology. When the Mordell–Weil sieve works, it tells us that every
rational point on C is close, in the profinite topology on J(Q), to one of
the known ones.
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Example

C : y2 − y = x5 − x , ι : C ↪→ J, P 7→ [P −∞].

J(Q) = Z · D1 ⊕ Z · D2 ⊕ Z · D3,

D1 = [(0, 1)−∞], D2 = [(1, 1)−∞], D3 = [(−1, 1)−∞] .

The known rational points are

K = {∞, (−1, 0), (−1, 1), (0, 0), (0, 1), (1, 0), (1, 1), (2,−5),

(2, 6), (3,−15), (3, 16), (30,−4929), (30, 4930), (1/4, 15/32),

(1/4, 17/32), (−15/16,−185/1024), (−15/16, 1209/1024)}.

Using 922 prime p < 106 it can be shown that

ι(C (Q)) ⊂ ι(K) + L

where
[J(Q) : L] ∼ 3.32× 103240.
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C : y2 − y = x5 − x , ι : C ↪→ J, P 7→ [P −∞].

The known rational points are
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(1/4, 17/32), (−15/16,−185/1024), (−15/16, 1209/1024)}.

Using 922 prime p < 106 it can be shown that

ι(C (Q)) ⊂ ι(K) + L

where
[J(Q) : L] ∼ 3.32× 103240.

The shortest non-zero vector in L has length ∼ 1.156× 101080. So if
P ∈ C (Q)\K then

H(P) ≥ exp(102160).

31 / 33



Baker’s Bounds

Baker’s theory tells us that if P is an integral point then

H(P) ≤ exp(10565).

So we know all the integral points:

C (Z) = {(−1, 0), (−1, 1), (0, 0), (0, 1), (1, 0), (1, 1), (2,−5),

(2, 6), (3,−15), (3, 16), (30,−4929), (30, 4930)}.

How do you find the rational points on C?

Thank You!
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