Rational Points on Curves

Samir Siksek

Recall: given a curve C over \mathbb{Q}, or over a number field k, we want a complete description of $C(k)$. For genus ≥ 1, there is no known algorithm for giving this! But there is a bag of tricks that can be used to show that $C(k)$ is empty, or determine $C(k)$ if it is non-empty. These include:
(1) Quotients (lecture 1);
(2) Descent (lecture 2);
(3) Chabauty (lecture 3);
(9) Mordell-Weil sieve (today).

The purpose of these lectures is to get a feel for each of these methods and see it applied to a particular example.

Recap-Jacobians

Associated to a curve C / k of genus $g \geq 1$ is a g-dimensional abelian variety J/k.
(i) For k a number field, $J(k)$ is a finitely generated abelian group (Mordell-Weil Theorem).
(ii) If $C(k) \neq \emptyset$ then $J(k) \cong \operatorname{Pic}^{0}(C / k)$ (the group of degree 0 rational divisors on C modulo principal divisors).
(iii) If $P_{0} \in C(k)$, there is an embedding

$$
\iota: C \hookrightarrow J, \quad P \mapsto\left[P-P_{0}\right]
$$

that is called the Abel-Jacobi map. We have $\iota(C(k)) \subseteq J(k)$.

Recap-Chabauty

Let C be a curve over \mathbb{Q}_{p} (p is a finite prime). Then there is a pairing

$$
\langle,\rangle: \Omega_{C} \times J_{C}\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p},
$$

The pairing has the following properties:
(1) it is \mathbb{Q}_{p}-linear on the left;
(2) it is \mathbb{Z}-linear on the right;
(3) the kernel on the right is $J\left(\mathbb{Q}_{p}\right)_{\text {tors }}$ (the torsion subgroup of $J\left(\mathbb{Q}_{p}\right)$.

Lemma

Let C be a curve over \mathbb{Q} of genus g. Write r for the rank of $J(\mathbb{Q})$.
Suppose $r \leq g-1$. Let p be a prime. Then there is some non-zero
$\omega \in \Omega_{C / \mathbb{Q}_{p}}$ such that

$$
\langle\omega, D\rangle=0 \text { for all } D \in J(\mathbb{Q}) .
$$

Proof.

$\operatorname{dim}\left(\Omega_{C / \mathbb{Q}_{p}}\right)=g$. Apply linear algebra.

If $P \in C\left(\mathbb{Q}_{p}\right)$ we define the residue disk of P by

$$
B_{p}(P)=\left\{Q \in C\left(\mathbb{Q}_{p}\right): Q \equiv P \quad(\bmod p)\right\}
$$

The number of residue disks is $\# C\left(\mathbb{F}_{p}\right)$.
Suppose $r<g-1$. Let ω be an annihilating differential, and $P \in C(\mathbb{Q})$.
Chabauty's method gives a bound $\mathrm{Chab}_{p}(P)$ for the number of points of rational points in the residue disc of P :

$$
\# C(\mathbb{Q}) \cap B_{p}(P) \leq \operatorname{Chab}_{p}(P)
$$

Let \mathcal{K} be the known rational points. If $\# \mathcal{K} \cap B_{p}(P)=\operatorname{Chab}_{p}(P)$ then

$$
C(\mathbb{Q}) \cap B_{p}(P)=\mathcal{K} \cap B_{p}(P) .
$$

l.e. we know all of the rational points in the residue disc of P.

For Chabauty to succeed in finding $C(\mathbb{Q})$, we need:
(1) $r \leq g-1$;
(2) we need explicit generators for $J(\mathbb{Q})$ (or some subgroup of $J(\mathbb{Q})$ of finite index);
(3) we want some prime p of good reduction so that the known rational points surject onto $C\left(\mathbb{F}_{p}\right)$;
(9) in each residue disc we want to find enough rational points to match the Chabauty bound!
Even if we have (1) and (2), we find in most examples that (3) and (4) fail.

Let

$$
C: y^{2}=2 x^{6}-3 x^{2}-2 x+1
$$

A short search reveals the following four points:

$$
\mathcal{K}=\{(0,1),(0,-1),(-2,11),(-2,-11)\}
$$

Then

$$
J(\mathbb{Q})=\mathbb{Z} \cdot[(-2,-11)-(0,1)] .
$$

Annhilating differential for $p=3$ is

$$
\omega=\left(66+O\left(3^{5}\right)\right) \frac{d x}{y}+\frac{x d x}{y}
$$

Applying Chabauty with $p=3$ we have

P	Chab $_{3}(P)$	$\mathcal{K} \cap B_{3}(P)$
$(0,1)$	2	$\{(0,1)\}$
$(0,-1)$	2	$\{(0,-1)\}$
$(-2,11)$	1	$\{(-2,11)\}$
$(-2,-11)$	1	$\{(-2,-11)\}$

P	$\mathrm{Chab}_{3}(P)$	$\mathcal{K} \cap B_{3}(P)$
$(0,1)$	2	$\{(0,1)\}$
$(0,-1)$	2	$\{(0,-1)\}$
$(-2,11)$	1	$\{(-2,11)\}$
$(-2,-11)$	1	$\{(-2,-11)\}$

For $P=(-2,-11)$ and $(-2,11)$ there are no other rational points in the same residue disc. For $P=(0,1)$ and $P=(0,-1)$ we don't know.

Let

$$
B_{9}(P)=\left\{Q \in C\left(\mathbb{Q}_{3}\right): Q \equiv P \quad(\bmod 9)\right\}
$$

P	$\mathrm{Chab}_{9}(P)$	$\mathcal{K} \cap B_{9}(P)$
$(0,1)$	1	$\{(0,1)\}$
$(0,-1)$	1	$\{(0,-1)\}$

For $P=(0,1)$ and $(0,-1)$ there are no other rational points in the smaller residue disc $B_{9}(P)$.

Note

$$
C\left(\mathbb{F}_{3}\right)=\{(\overline{0}, \overline{1}),(\overline{0}, \overline{2}),(\overline{1}, \overline{1}),(\overline{1}, \overline{2})\}
$$

We know all the rational points in

$$
B_{9}(0,1) \cup B_{9}(0,-1) \cup B_{3}(-2,11) \cup B_{3}(-2,-11) .
$$

This does not fill up $C\left(\mathbb{Q}_{3}\right)$.
To show that $\mathcal{K}=\{(0,1),(0,-1),(-2,11),(-2,-11)\}$ is all of the rational points, we need to show that every rational point belongs to one of these four neighbourhoods. This is what the Mordell-Weil sieve will achieve.

Mordell-Weil Sieve

Let $P_{0}=(0,1)$. Let

$$
\iota: C \hookrightarrow J, \quad Q \mapsto\left[Q-P_{0}\right]
$$

be the associated Abel-Jacobi map. Recall

$$
J(\mathbb{Q})=\mathbb{Z} \cdot D, \quad D=[(-2,-11)-(0,1)] .
$$

Note that

$$
\iota(0,1)=0, \quad \iota(0,-1)=-2 D, \quad \iota(-2,11)=-3 D, \quad \iota(-2,-11)=D .
$$

Suppose $Q \in C(\mathbb{Q})$. Then $\iota(Q)=n D$ with $n \in \mathbb{Z}$. We will use reduction $\bmod p$ for lots of primes p to 'predict' n.

Suppose $Q \in C(\mathbb{Q})$. Then $\iota(Q)=n D$ with $n \in \mathbb{Z}$. We will use reduction $\bmod p$ for lots of primes p to 'predict' n.

Let p be a prime of of good reduction. Let

$$
N=\text { order of } \bar{D} \in J\left(\mathbb{F}_{p}\right)
$$

Consider the commutative diagram

Here $\eta(m)=m D$. By diagram chasing

$$
n \bmod N \in\left\{m \in \mathbb{Z} / N \mathbb{Z}: m \cdot \bar{D} \in \iota\left(C\left(\mathbb{F}_{p}\right)\right)\right\}
$$

Suppose $Q \in C(\mathbb{Q})$. Then $\iota(Q)=n D$ with $n \in \mathbb{Z}$. We will use reduction $\bmod p$ for lots of primes p to 'predict' n.
For every prime p of good reduction, the Mordell-Weil sieve gives an integer N_{p} and a set W_{p} such that $n \bmod N_{p} \in W_{p}$.

p	N_{p}	W_{p}
3	13	$\{0,1,10,11\}$
5	21	$\{0,1,18,19\}$
7	65	$\{0,1,13,19,27,36,44,50,62,63\}$
23	16	$\{0,1,7,13,14\}$
61	208	$\{0,1,24,53,153,182,205,206\}$

Note that $16 \mid 208$.

Suppose $Q \in C(\mathbb{Q})$. Then $\iota(Q)=n D$ with $n \in \mathbb{Z}$. We will use reduction $\bmod p$ for lots of primes p to 'predict' n.
For every prime p of good reduction, the Mordell-Weil sieve gives an integer N_{p} and a set W_{p} such that $n \bmod N_{p} \in W_{p}$.

p	N_{p}	W_{p}
3	13	$\{0,1,10,11\}$
5	21	$\{0,1,18,19\}$
7	65	$\{0,1,13,19,27,36,44,50,62,63\}$
23	16	$\{0,1,7,13,14\}$
61	208	$\{0,1,24,53,153,182,205,206\}$

Note that $16 \mid 208$.

Suppose $Q \in C(\mathbb{Q})$. Then $\iota(Q)=n D$ with $n \in \mathbb{Z}$. We will use reduction $\bmod p$ for lots of primes p to 'predict' n.
For every prime p of good reduction, the Mordell-Weil sieve gives an integer N_{p} and a set W_{p} such that $n \bmod N_{p} \in W_{p}$.

p	N_{p}	W_{p}
3	13	$\{0,1,10,11\}$
5	21	$\{0,1,18,19\}$
7	65	$\{0,1,13,19,27,36,44,50,62,63\}$
23	16	$\{0,1,7,13,14\}$
61	208	$\{0,1,24,53,153,182,205,206\}$

Note that $13 \mid 65$.

Suppose $Q \in C(\mathbb{Q})$. Then $\iota(Q)=n D$ with $n \in \mathbb{Z}$. We will use reduction $\bmod p$ for lots of primes p to 'predict' n.
For every prime p of good reduction, the Mordell-Weil sieve gives an integer N_{p} and a set W_{p} such that $n \bmod N_{p} \in W_{p}$.

p	N_{p}	W_{p}
3	13	$\{0,1,10,11\}$
5	21	$\{0,1,18,19\}$
7	65	$\{0,1,13,19,27,36,44,50,62,63\}$
61	208	$\{0,1,24,53,153,182,205,206\}$

Need more data.

Suppose $Q \in C(\mathbb{Q})$. Then $\iota(Q)=n D$ with $n \in \mathbb{Z}$. We will use reduction $\bmod p$ for lots of primes p to 'predict' n.
For every prime p of good reduction, the Mordell-Weil sieve gives an integer N_{p} and a set W_{p} such that $n \bmod N_{p} \in W_{p}$.

p	N_{p}	W_{p}
3	13	$\{0,1,10,11\}$
5	21	$\{0,1,18,19\}$
7	65	$\{0,1,13,19,27,36,44,50,62,63\}$
17	39	$\{0,1,36,37\}$
19	234	$\{0,1,42,67,72,82,100,132,150,160,165,190,231,232\}$
61	208	$\{0,1,24,53,153,182,205,206\}$

Note that $39 \mid 234$.

Suppose $Q \in C(\mathbb{Q})$. Then $\iota(Q)=n D$ with $n \in \mathbb{Z}$. We will use reduction $\bmod p$ for lots of primes p to 'predict' n.
For every prime p of good reduction, the Mordell-Weil sieve gives an integer N_{p} and a set W_{p} such that $n \bmod N_{p} \in W_{p}$.

p	N_{p}	W_{p}
3	13	$\{0,1,10,11\}$
5	21	$\{0,1,18,19\}$
7	65	$\{0,1,13,19,27,36,44,50,62,63\}$
17	39	$\{0,1,36,37\}$
19	234	$\{0,1,42,67,72,82,100,132,150,160,165,190,231,232\}$
61	208	$\{0,1,24,53,153,182,205,206\}$

Note that $39 \mid 234$.

If $Q \in C(\mathbb{Q})$ then $\iota(Q)=n D$ where $n \equiv 0,1,-3,-2(\bmod 234)$.
But

$$
\iota(0,1)=0, \quad \iota(0,-1)=-2 D, \quad \iota(-2,11)=-3 D, \quad \iota(-2,-11)=D .
$$

Take $n \equiv-3(\bmod 234)$. So $n=-3+234 m$. Then

$$
\begin{aligned}
{\left[Q-P_{0}\right] } & =\iota(Q)=n D \\
& =-3 D+m(234 \cdot D) \\
& =\iota(-2,11)+m(234 \cdot D) \\
& =\left[(-2,11)-P_{0}\right]+m(234 \cdot D)
\end{aligned}
$$

Hence $[Q-(-2,11)] \in m(234 \cdot D)$.
Conclusion: if $Q \in C(\mathbb{Q})$ then $\exists P \in \mathcal{K}$ such that

$$
[Q-P]=\mathbb{Z} \cdot(234 \cdot D) .
$$

p-adic Filtration

Let p be a prime of good reduction. Let

$$
J^{m}\left(\mathbb{Q}_{p}\right)=\left\{D \in J\left(\mathbb{Q}_{p}\right): D \equiv 0 \quad\left(\bmod p^{m}\right)\right\}
$$

We have

$$
J\left(\mathbb{Q}_{p}\right) \supset J^{1}\left(\mathbb{Q}_{p}\right) \supset J^{2}\left(\mathbb{Q}_{p}\right) \supset J^{3}\left(\mathbb{Q}_{p}\right) \supset \cdots
$$

is a system of decreasing neighbourhoods of the origin. Also

$$
J\left(\mathbb{Q}_{p}\right) / J^{1}\left(\mathbb{Q}_{p}\right) \cong J\left(\mathbb{F}_{p}\right), \quad J^{m}\left(\mathbb{Q}_{p}\right) / J^{m+1}\left(\mathbb{Q}_{p}\right) \cong(\mathbb{Z} / p \mathbb{Z})^{g} \text { for } m \geq 1
$$

For our example,

$$
\# J\left(\mathbb{F}_{3}\right)=13, \quad 234=2 \cdot 3^{2} \cdot 13
$$

Hence $234 D \in J^{3}\left(\mathbb{Q}_{3}\right)$. I.e. $234 D \equiv 0\left(\bmod 3^{3}\right)$.

End of Example

We have two important pieces of information:
(1) If $Q \in C(\mathbb{Q})$ then $\exists P \in \mathcal{K}$ such that

$$
[Q-P] \in \mathbb{Z} \cdot(234 \cdot D)
$$

(2) $234 D \equiv 0\left(\bmod 3^{3}\right)$.

Thus

$$
Q \equiv P \quad\left(\bmod 3^{3}\right), \quad P \in \mathcal{K}=\{(0,1),(0,-1),(-2,11),(-2,-11)\}
$$

So Q belongs to

$$
\begin{aligned}
& B_{27}(0,1) \cup B_{27}(0,-1) \cup B_{27}(-2,11) \cup B_{27}(-2,-11) \\
& \quad \subset B_{9}(0,1) \cup B_{9}(0,-1) \cup B_{3}(-2,11) \cup B_{3}(-2,-11) .
\end{aligned}
$$

End of Example

We have two important pieces of information:
(1) If $Q \in C(\mathbb{Q})$ then $\exists P \in \mathcal{K}$ such that

$$
[Q-P] \in \mathbb{Z} \cdot(234 \cdot D)
$$

(2) $234 D \equiv 0\left(\bmod 3^{3}\right)$.

Thus

$$
Q \equiv P \quad\left(\bmod 3^{3}\right), \quad P \in \mathcal{K}=\{(0,1),(0,-1),(-2,11),(-2,-11)\}
$$

So Q belongs to

$$
\begin{aligned}
& B_{27}(0,1) \cup B_{27}(0,-1) \cup B_{27}(-2,11) \cup B_{27}(-2,-11) \\
& \\
& \subset B_{9}(0,1) \cup B_{9}(0,-1) \cup B_{3}(-2,11) \cup B_{3}(-2,-11) .
\end{aligned}
$$

Thus (Chabauty and the Mordell-Weil sieve)

$$
C(\mathbb{Q})=\{(0,1),(0,-1),(-2,11),(-2,-11)\}
$$

The Mordell-Weil Sieve

Let C / \mathbb{Q} be a curve, J its Jacobian. Fix $P_{0} \in J(\mathbb{Q})$. Let

$$
\iota: C \hookrightarrow J, \quad P \mapsto\left[P-P_{0}\right]
$$

be the Abel-Jacobi map. We assume that we know $J(\mathbb{Q})$ (in other words, we know a basis for $J(\mathbb{Q})$). The Mordell-Weil Sieve is a strategy for producing a 'small' finite set $W \subset J(\mathbb{Q})$, and a subgroup $L \subset J(\mathbb{Q})$ of 'huge' index such that

$$
\iota(C(\mathbb{Q}))=\bigcup_{D \in W} D+L
$$

The Mordell-Weil Sieve

Let C / \mathbb{Q} be a curve, J its Jacobian. Fix $P_{0} \in J(\mathbb{Q})$. Let

$$
\iota: C \hookrightarrow J, \quad P \mapsto\left[P-P_{0}\right]
$$

be the Abel-Jacobi map. We assume that we know $J(\mathbb{Q})$ (in other words, we know a basis for $J(\mathbb{Q})$). The Mordell-Weil Sieve is a strategy for producing a 'small' finite set $W \subset J(\mathbb{Q})$, and a subgroup $L \subset J(\mathbb{Q})$ of 'huge' index such that

$$
\iota(C(\mathbb{Q}))=\bigcup_{D \in W} D+L=: W+L
$$

Inductive Definition

Let C / \mathbb{Q} be a curve, J its Jacobian. Fix $P_{0} \in J(\mathbb{Q})$. Let

$$
\iota: C \hookrightarrow J, \quad P \mapsto\left[P-P_{0}\right]
$$

be the Abel-Jacobi map. We define inductively subgroups of finite index $L_{i} \subset J(\mathbb{Q})$, and finite subsets $W_{i} \subset J(\mathbb{Q})$, such that

$$
L_{0} \supseteq L_{1} \supseteq L_{2} \supseteq L_{3} \supset \cdots
$$

and

$$
\iota(C(\mathbb{Q})) \subset W_{i}+L_{i}
$$

Start:

$$
L_{0}:=J(\mathbb{Q}), \quad W_{0}:=0
$$

Inductive Step: choose a prime p of good reduction. Let

$$
L_{i+1}=\operatorname{Ker}\left(L_{i} \hookrightarrow J(\mathbb{Q}) \rightarrow J\left(\mathbb{F}_{p}\right)\right) .
$$

Let

$$
W_{i+1}^{\prime}=W_{i}+\left(L_{i} / L_{i+1}\right)
$$

Clearly $W_{i+1}^{\prime}+L_{i+1}=W_{i}+L_{i}$. So $\iota(C(\mathbb{Q})) \subset W_{i+1}^{\prime}+L_{i+1}$.
Consider the commutative diagram

Inductive Step: choose a prime p of good reduction. Let

$$
L_{i+1}=\operatorname{Ker}\left(L_{i} \hookrightarrow J(\mathbb{Q}) \rightarrow J\left(\mathbb{F}_{p}\right)\right)
$$

Let

$$
W_{i+1}^{\prime}=W_{i}+\left(L_{i} / L_{i+1}\right)
$$

Clearly $W_{i+1}^{\prime}+L_{i+1}=W_{i}+L_{i}$. So $\iota(C(\mathbb{Q})) \subset W_{i+1}^{\prime}+L_{i+1}$.
Consider the commutative diagram

Inductive Step: choose a prime p of good reduction. Let

$$
L_{i+1}=\operatorname{Ker}\left(L_{i} \hookrightarrow J(\mathbb{Q}) \rightarrow J\left(\mathbb{F}_{p}\right)\right)
$$

Let

$$
W_{i+1}^{\prime}=W_{i}+\left(L_{i} / L_{i+1}\right)
$$

Clearly $W_{i+1}^{\prime}+L_{i+1}=W_{i}+L_{i}$. So $\iota(C(\mathbb{Q})) \subset W_{i+1}^{\prime}+L_{i+1}$.
Consider the commutative diagram

Inductive Step: choose a prime p of good reduction. Let

$$
L_{i+1}=\operatorname{Ker}\left(L_{i} \hookrightarrow J(\mathbb{Q}) \rightarrow J\left(\mathbb{F}_{p}\right)\right) .
$$

Let

$$
W_{i+1}^{\prime}=W_{i}+\left(L_{i} / L_{i+1}\right)
$$

Clearly $W_{i+1}^{\prime}+L_{i+1}=W_{i}+L_{i}$. So $\iota(C(\mathbb{Q})) \subset W_{i+1}^{\prime}+L_{i+1}$.
Consider the commutative diagram

Let

$$
W_{i+1}=\left\{w \in W_{i+1}^{\prime}: \operatorname{red}(w) \in \iota\left(C\left(\mathbb{F}_{p}\right)\right)\right\}
$$

Then $\iota(C(\mathbb{Q})) \subset W_{i+1}+L_{i+1}$.

Choice of p :
(1) $\left[L_{i}: L_{i+1}\right]$ is small;
(2) $\# J\left(\mathbb{F}_{p}\right)$ is smooth.

In practice, we usually find, with a good strategy for choosing the p,

$$
W_{i}=\iota(\mathcal{K}) \quad(\mathcal{K} \subset C(\mathbb{Q}) \text { are the known points })
$$

for large, and the index $\left[J(\mathbb{Q})\right.$: $\left.L_{i}\right]$ is growing slowly.
The L_{i} are decreasing neighbourhoods of the origin in the profinite topology. When the Mordell-Weil sieve works, it tells us that every rational point on C is close, in the profinite topology on $J(\mathbb{Q})$, to one of the known ones.

Example

$$
\begin{gathered}
C: y^{2}-y=x^{5}-x, \quad \iota: C \hookrightarrow J, P \mapsto[P-\infty] . \\
J(\mathbb{Q})=\mathbb{Z} \cdot D_{1} \oplus \mathbb{Z} \cdot D_{2} \oplus \mathbb{Z} \cdot D_{3}, \\
D_{1}=[(0,1)-\infty], \quad D_{2}=[(1,1)-\infty], \quad D_{3}=[(-1,1)-\infty] .
\end{gathered}
$$

The known rational points are

$$
\begin{aligned}
& \mathcal{K}=\{\infty,(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1),(2,-5), \\
& (2,6),(3,-15),(3,16),(30,-4929),(30,4930),(1 / 4,15 / 32), \\
& (1 / 4,17 / 32),(-15 / 16,-185 / 1024),(-15 / 16,1209 / 1024)\} .
\end{aligned}
$$

Using 922 prime $p<10^{6}$ it can be shown that

$$
\iota(C(\mathbb{Q})) \subset \iota(\mathcal{K})+L
$$

where

$$
[J(\mathbb{Q}): L] \sim 3.32 \times 10^{3240} .
$$

Example

$$
C: y^{2}-y=x^{5}-x, \quad \iota: C \hookrightarrow J, P \mapsto[P-\infty] .
$$

The known rational points are

$$
\begin{aligned}
& \mathcal{K}=\{\infty,(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1),(2,-5), \\
& (2,6),(3,-15),(3,16),(30,-4929),(30,4930),(1 / 4,15 / 32), \\
& (1 / 4,17 / 32),(-15 / 16,-185 / 1024),(-15 / 16,1209 / 1024)\}
\end{aligned}
$$

Using 922 prime $p<10^{6}$ it can be shown that

$$
\iota(C(\mathbb{Q})) \subset \iota(\mathcal{K})+L
$$

where

$$
[J(\mathbb{Q}): L] \sim 3.32 \times 10^{3240}
$$

The shortest non-zero vector in L has length $\sim 1.156 \times 10^{1080}$. So if $P \in C(\mathbb{Q}) \backslash \mathcal{K}$ then

$$
H(P) \geq \exp \left(10^{2160}\right)
$$

Baker's Bounds

Baker's theory tells us that if P is an integral point then

$$
H(P) \leq \exp \left(10^{565}\right)
$$

So we know all the integral points:

$$
\begin{aligned}
& C(\mathbb{Z})=\{(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1),(2,-5), \\
& (2,6),(3,-15),(3,16),(30,-4929),(30,4930)\}
\end{aligned}
$$

How do you find the rational points on C ?

Baker's Bounds

Baker's theory tells us that if P is an integral point then

$$
H(P) \leq \exp \left(10^{565}\right)
$$

So we know all the integral points:

$$
\begin{aligned}
& C(\mathbb{Z})=\{(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1),(2,-5), \\
& (2,6),(3,-15),(3,16),(30,-4929),(30,4930)\}
\end{aligned}
$$

How do you find the rational points on C ?

Thank You!

