Rational Points on Curves

Samir Siksek

Recall: given a curve C over \mathbb{Q} , or over a number field k, we want a complete description of C(k). For genus ≥ 1 , there is no algorithm for giving this! But there is a bag of tricks that can be used to show that C(k) is empty, or determine C(k) if it is non-empty. These include:

- Quotients;
- 2 Descent;
- Ohabauty;
- Mordell–Weil sieve.

The purpose of these lectures is to get a feel for each of these methods and see it applied to a particular example.

Quotients

Let C be a curve over a field k. A quotient is curve D/k with a non-constant morphism

$$\phi: \mathcal{C} \to \mathcal{D}$$

also defined over k.

Lemma (Trivial Observation) $\phi(C(k)) \subseteq D(k)$. If we know D(k) and it is finite, we can compute C(k).

Example

$$C : Y^2 = 13X^6 - 1.$$

Exercise: *C* has points everywhere locally. Take $E: y^2 = x^3 + 13$ and $\phi: C \to E$ to be given by $(X, Y) \mapsto (-1/X^2, Y/X^3)$. Now $E(\mathbb{Q}) = \{\infty\}$. So $C(\mathbb{Q}) \subseteq \phi^{-1}(\infty) = \{(0, i), (0, -i)\}$. So $C(\mathbb{Q}) = \emptyset$.

Descent

Example

We will study the rational points on the genus 2 curve.

$$C : Y^{2} = (X^{2} + X + 1)(X^{4} + 7).$$
 (1)

(N.B. no obvious quotients.) Write

$$X = \frac{x}{z},$$
 $Y = \frac{y}{z^3},$ $x, y, z \in \mathbb{Z},$ $gcd(x, z) = 1.$

So

$$y^{2} = (x^{2} + xz + z^{2})(x^{4} + 7z^{4}).$$
 (2)

Note we have 2 extra points on this model $(x : y : z) = (1 : \pm 1 : 0)$ which we think of as points are infinity on (1). We think of (2) as an equation for C in $\mathbb{P}(1,3,1)$. Does C have any other rational points?

Lemma

If x, y are coprime non-zero integers and $xy = z^n$ where z is also an integer, $n \ge 1$, then there exists x_1 , $y_1 \in \mathbb{Z}$ such that $x = \pm x_1^n$ and $y = \pm y_1^n$.

Lemma

Let S be a set of primes. If x, y are non-zero integers and $xy = z^n$ where z is also an integer, $n \ge 1$. If x, y are coprime outside S then there exists $x_1, y_1 \in \mathbb{Z}$ such that $x = ax_1^n$ and $y = by_1^n$, where all the prime factors of a, b belong to S.

Resultants

Lemma

Let $f, g \in \mathbb{Z}[x]$, coprime. Then there is a $R = R(f,g) \in \mathbb{Z}$, $R \neq 0$ (R is called the **resultant**), and polynomials $a, b \in \mathbb{Z}[x]$ such that

a(x)f(x) + b(x)g(x) = R.

In particular, if $\alpha \in \mathbb{Z}$, then $gcd(f(\alpha), g(\alpha)) \mid R$.

Lemma

Let F(x, y), G(x, y) be coprime homogeneous polynomials $\in \mathbb{Z}[x, y]$. Let f = F(x, 1) and g = G(x, 1), and define R = R(F, G) = R(f, g) (the resultant of F and G). If $\alpha, \beta \in \mathbb{Z}$ are coprime, then

 $gcd(F(\alpha,\beta), G(\alpha,\beta)) \mid R.$

Proof.

We know that a(x)f(x) + b(x)g(x) = R. Substitute $x = \alpha/\beta$ and homogenize, to obtain

$$A(\alpha,\beta)F(\alpha,\beta) + B(\alpha,\beta)G(\alpha,\beta) = R\beta^{m}$$

for some m. It turns out that also,

$$A'(\alpha,\beta)F(\alpha,\beta)+B'(\alpha,\beta)G(\alpha,\beta)=R\alpha^n.$$

So

$$gcd(F(\alpha,\beta), G(\alpha,\beta)) \mid gcd(R\beta^m, R\alpha^n) = R.$$

Example

We will study the rational points on the genus 2 curve.

C :
$$Y^2 = (X^2 + X + 1)(X^4 + 7)$$
.

Write

So

$$X = rac{x}{z}, \qquad Y = rac{y}{z^3}, \qquad x, y, z \in \mathbb{Z}, \qquad \gcd(x, z) = 1.$$

 $C \ : \ y^2 = (x^2 + xz + z^2)(x^4 + 7z^4).$

The resultant of the two polynomials is 43, so

$$gcd(x^2 + xz + z^2, x^4 + 7z^4) = 1$$
 or 43.

So the two factors are coprime outside $S = \{43\}$. Hence

$$x^2 + xz + z^2 = ay_1^2$$
, $x^4 + 7z^4 = ay_2^2$ where $a = \pm 1$ or $a = \pm 43$.

$$C : Y^{2} = (X^{2} + X + 1)(X^{4} + 7).$$

$$x^{2} + xz + z^{2} = ay_{1}^{2}, \qquad x^{4} + 7z^{4} = ay_{2}^{2} \qquad \text{where } a = \pm 1 \text{ or } a = \pm 43.$$

So we obtain four curves

$$D_a : \begin{cases} X^2 + X + 1 = aY_1^2, \\ X^4 + 7 = aY_2^2 \end{cases}$$

with $a = \pm 1$, ± 43 . Let $\phi_a : D_a \to C$ be given by $\phi_a(X, Y_1, Y_2) = (X, aY_1Y_2)$. From the above argument,

$$C(\mathbb{Q}) = \bigcup_{a} \phi_{a} \left(D_{a}(\mathbb{Q}) \right).$$

Vague Definition Given a curve *C* over a number field *k*, a **descent** is some process which which yields a finite family $\phi_a : D_a \to C$ of **covers** such that

$$C(k) = \bigcup_{a} \phi_{a} \left(D_{a}(k) \right).$$

$$C : Y^{2} = (X^{2} + X + 1)(X^{4} + 7).$$
$$x^{2} + xz + z^{2} = ay_{1}^{2}, \qquad x^{4} + 7z^{4} = ay_{2}^{2} \qquad \text{where } a = \pm 1 \text{ or } a = \pm 43.$$

So we obtain four curves

$$D_a : \begin{cases} X^2 + X + 1 = aY_1^2, \\ X^4 + 7 = aY_2^2 \end{cases}$$

with $a = \pm 1$, ± 43 . Let $\phi_a : D_a \to C$ be given by $\phi_a(X, Y_1, Y_2) = (X, aY_1Y_2)$. From the above argument,

$$C(\mathbb{Q}) = \bigcup_{a} \phi_{a} \left(D_{a}(\mathbb{Q}) \right).$$

•
$$D_{-1}(\mathbb{R}) = \emptyset$$
, so $D_{-1}(\mathbb{Q}) = \emptyset$.

- $D_{-43}(\mathbb{R}) = \emptyset$, so $D_{-43}(\mathbb{Q}) = \emptyset$.
- $D_{43}(\mathbb{Q}_2) = \emptyset$, so $D_{43}(\mathbb{Q}) = \emptyset$.

C :
$$Y^2 = (X^2 + X + 1)(X^4 + 7)$$
.

After descent and local solvability checking, we have

 $C(\mathbb{Q}) = \phi(D(\mathbb{Q}))$

where

$$D = D_1 : \begin{cases} X^2 + X + 1 = Y_1^2, \\ X^4 + 7 = Y_2^2, \end{cases} \qquad \phi(X, Y_1, Y_2) = (X, Y_1 Y_2).$$

In fact D_1 has four rational points are infinity. So $D_1(\mathbb{Q}) \neq \emptyset$.

Reduced finding all rational points on C (which has genus 2) to finding all rational points on D (which has genus 3).

The curve

$$D : \begin{cases} X^2 + X + 1 = Y_1^2, \\ X^4 + 7 = Y_2^2, \end{cases}$$

has a genus 1 quotient: $X^4 + 7 = Y_2^2$. In fact, we have $\psi: D \to E$,

$$E : y^2 = x(x^2 + 7), \qquad (X, Y_1, Y_2) \mapsto (X^2, XY_2).$$

But

$$E(\mathbb{Q}) = \{(0,0),\infty\}.$$

So

$$D(\mathbb{Q}) = \{(1:\pm 1:\pm 1:0)\}.$$

So

$$C(\mathbb{Q}) = \{(1:\pm 1:0)\}.$$

Note the following diagram

To find the rational points on C we constructed a cover D and used its quotient E.

Example

The curve

$$C : X^4 - 17 = 2Y^2$$

has points everywhere locally. We will use descent to show that $C(\mathbb{Q}) = \emptyset$. Write

$$X=rac{x}{z}, \qquad Y=rac{y}{z^2}, \qquad x,y,z\in\mathbb{Z}, \qquad \gcd(x,z)=1.$$

SO

$$x^4 - 17z^4 = 2y^2.$$

Note y is even: write $y = 2y_1$. So

$$x^4 - 17z^4 = 8y_1^2.$$

Obtain

$$(x^2 + z^2\sqrt{17})(x^2 - z^2\sqrt{17}) = 8y_1^2.$$

$$x^4 - 17z^4 = 8y_1^2$$
 $gcd(x, z) = 1.$
 $(x^2 + z^2\sqrt{17})(x^2 - z^2\sqrt{17}) = 8y_1^2.$

Let $K = \mathbb{Q}(\sqrt{17})$, and \mathcal{O} its ring of integers. So

Obtain

$$\mathcal{O} = \mathbb{Z} + \mathbb{Z} \frac{(1+\sqrt{17})}{2}, \qquad \mathcal{O}^{\times} = \{\pm (4+\sqrt{17})^n : n \in \mathbb{Z}\}.$$

Also \mathcal{O} has class number 1 (i.e. it is a UFD)

$$\left(\frac{x^2 + z^2\sqrt{17}}{2}\right)\left(\frac{x^2 - z^2\sqrt{17}}{2}\right) = 2y_1^2.$$

The gcd of the two factors divides x^2 and $\sqrt{17}z^2$, so divides $\sqrt{17}$. But $17 \nmid y$. So gcd = 1.

$$\mathcal{O}^{\times} = \{\pm (4+\sqrt{17})^n : n \in \mathbb{Z}\}, \qquad 2 = \left(\frac{5+\sqrt{17}}{2}\right) \left(\frac{5-\sqrt{17}}{2}\right).$$

$$\left(\frac{x^2 + z^2\sqrt{17}}{2}\right)\left(\frac{x^2 - z^2\sqrt{17}}{2}\right) = 2y_1^2.$$

So

$$\frac{x^2 + z^2 \sqrt{17}}{2} = \alpha \mu^2, \qquad \frac{x^2 - z^2 \sqrt{17}}{2} = \bar{\alpha} \bar{\mu}^2, \qquad \mu \in \mathcal{O}$$

and

$$\alpha = \pm \left(\frac{5 \pm \sqrt{17}}{2}\right), \qquad \pm \left(\frac{5 \pm \sqrt{17}}{2}\right) (4 + \sqrt{17})$$

Since $\alpha \bar{\alpha} = 2$, and $\alpha > 0$ we have

$$\alpha = \left(\frac{5 \pm \sqrt{17}}{2}\right).$$

$$\frac{x^2+z^2\sqrt{17}}{2} = \left(\frac{5\pm\sqrt{17}}{2}\right)(u+v\sqrt{17})^2 \qquad u,v\in\mathbb{Q}$$

So

$$x^{2} + z^{2}\sqrt{17} = (5u^{2} + 85v^{2} \pm 34uv) + (\pm(u^{2} + 17v^{2}) + 10uv)\sqrt{17}.$$

So get

$$\begin{cases} 5u^2 + 85v^2 \pm 34uv = x^2 \\ \pm (u^2 + 17v^2) + 10uv = z^2. \end{cases}$$

The important point is that these define curves over \mathbb{Q} , and $C(\mathbb{Q}) = \bigcup \phi_a(D_a(\mathbb{Q}))$, even though the descent argument works over an extension.

Finally $D_a(\mathbb{Q}_{17}) = \emptyset$. So $C(\mathbb{Q}) = \emptyset$.

A More General Example

Suppose that

$$C : y^2 = f(x),$$

where $f \in \mathbb{Z}[x]$ is irreducible with even degree *n*. Homogenizing we have

$$Y^2 = F(X, Z)$$

where F is homogeneous and F(x, 1) = f(x). Let θ be a root of f and $K = \mathbb{Q}(\theta)$. Then we can factor

$$Y^2 = (X - \theta Z)G(X, Z)$$

Using algebraic number theory

$$X - \theta Z = \alpha \cdot \mu^2$$

where α belongs to a finite computable set, and $\mu \in K$. Write $\mu = u_0 + u_1\theta + \cdots + u_{n-1}\theta^{n-1}$. Then

 $X - \theta Z = Q_1^{\alpha}(u_0, \ldots, u_n) + Q_2^{\alpha}(u_0, \ldots, u_n)\theta + \cdots + Q_n^{\alpha}(u_0, \ldots, u_n)\theta^{n-1}$

$$Y^2 = (X - \theta Z)G(X, Z)$$

Using algebraic number theory

$$X - \theta Z = \alpha \cdot \mu^2$$

where α belongs to a finite computable set, and $\mu \in K$. Write $\mu = u_0 + u_1\theta + \cdots + u_{n-1}\theta^{n-1}$. Then

$$X-\theta Z=Q_1^{\alpha}(u_0,\ldots,u_n)+Q_2^{\alpha}(u_0,\ldots,u_n)\theta+\cdots+Q_n^{\alpha}(u_0,\ldots,u_n)\theta^{n-1},$$

where Q_i^{α} are homogeneous degree 2 polynomials. Comparing coefficients we have obtain covers

$$D_{\alpha} : \begin{cases} Q_3^{\alpha}(u_0,\ldots,u_n) = 0 \\ \vdots \\ Q_n^{\alpha}(u_0,\ldots,u_n) = 0, \end{cases}$$