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Recall: given a curve C over Q, or over a number field k, we want a
complete description of C (k). For genus ≥ 1, there is no algorithm for
giving this! But there is a bag of tricks that can be used to show that
C (k) is empty, or determine C (k) if it is non-empty. These include:

1 Quotients;

2 Descent;

3 Chabauty;

4 Mordell–Weil sieve.

The purpose of these lectures is to get a feel for each of these methods
and see it applied to a particular example.
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Quotients

Let C be a curve over a field k. A quotient is curve D/k with a
non-constant morphism

φ : C → D

also defined over k .

Lemma (Trivial Observation)

φ(C (k)) ⊆ D(k). If we know D(k) and it is finite, we can compute C (k).

Example

C : Y 2 = 13X 6 − 1.

Exercise: C has points everywhere locally.
Take E : y2 = x3 + 13 and φ : C → E to be given by
(X ,Y ) 7→ (−1/X 2,Y /X 3). Now E (Q) = {∞}. So
C (Q) ⊆ φ−1(∞) = {(0, i), (0,−i)}. So C (Q) = ∅.
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Descent

Example

We will study the rational points on the genus 2 curve.

C : Y 2 = (X 2 + X + 1)(X 4 + 7). (1)

(N.B. no obvious quotients.) Write

X =
x

z
, Y =

y

z3
, x , y , z ∈ Z, gcd(x , z) = 1.

So
y2 = (x2 + xz + z2)(x4 + 7z4). (2)

Note we have 2 extra points on this model (x : y : z) = (1 : ±1 : 0) which
we think of as points are infinity on (1). We think of (2) as an equation
for C in P(1, 3, 1).
Does C have any other rational points?
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Lemma

If x , y are coprime non-zero integers and xy = zn where z is also an
integer, n ≥ 1, then there exists x1, y1 ∈ Z such that x = ±xn1 and
y = ±yn1 .

Lemma

Let S be a set of primes. If x , y are non-zero integers and xy = zn where
z is also an integer, n ≥ 1. If x , y are coprime outside S then there exists
x1, y1 ∈ Z such that x = axn1 and y = byn1 , where all the prime factors of
a, b belong to S .
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Resultants

Lemma

Let f , g ∈ Z[x ], coprime. Then there is a R = R(f , g) ∈ Z, R 6= 0 (R is
called the resultant), and polynomials a, b ∈ Z[x ] such that

a(x)f (x) + b(x)g(x) = R.

In particular, if α ∈ Z, then gcd(f (α), g(α)) | R.
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Lemma

Let F (x , y), G (x , y) be coprime homogeneous polynomials ∈ Z[x , y ]. Let
f = F (x , 1) and g = G (x , 1), and define R = R(F ,G ) = R(f , g) (the
resultant of F and G ). If α, β ∈ Z are coprime, then

gcd(F (α, β),G (α, β)) | R.

Proof.

We know that a(x)f (x) + b(x)g(x) = R. Substitute x = α/β and
homogenize, to obtain

A(α, β)F (α, β) + B(α, β)G (α, β) = Rβm

for some m. It turns out that also,

A′(α, β)F (α, β) + B ′(α, β)G (α, β) = Rαn.

So
gcd(F (α, β),G (α, β)) | gcd(Rβm,Rαn) = R.
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Example

We will study the rational points on the genus 2 curve.

C : Y 2 = (X 2 + X + 1)(X 4 + 7).

Write

X =
x

z
, Y =

y

z3
, x , y , z ∈ Z, gcd(x , z) = 1.

So
C : y2 = (x2 + xz + z2)(x4 + 7z4).

The resultant of the two polynomials is 43, so

gcd(x2 + xz + z2, x4 + 7z4) = 1 or 43.

So the two factors are coprime outside S = {43}. Hence

x2 + xz + z2 = ay21 , x4 + 7z4 = ay22 where a = ±1 or a = ±43.
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C : Y 2 = (X 2 + X + 1)(X 4 + 7).

x2 + xz + z2 = ay21 , x4 + 7z4 = ay22 where a = ±1 or a = ±43.

So we obtain four curves

Da :

{
X 2 + X + 1 = aY 2

1 ,
X 4 + 7 = aY 2

2

with a = ±1, ±43. Let φa : Da → C be given by
φa(X ,Y1,Y2) = (X , aY1Y2). From the above argument,

C (Q) =
⋃
a

φa (Da(Q)) .

Vague Definition Given a curve C over a number field k , a descent is
some process which which yields a finite family φa : Da → C of covers
such that

C (k) =
⋃
a

φa (Da(k)) .
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C : Y 2 = (X 2 + X + 1)(X 4 + 7).

x2 + xz + z2 = ay21 , x4 + 7z4 = ay22 where a = ±1 or a = ±43.

So we obtain four curves

Da :

{
X 2 + X + 1 = aY 2

1 ,
X 4 + 7 = aY 2

2

with a = ±1, ±43. Let φa : Da → C be given by
φa(X ,Y1,Y2) = (X , aY1Y2). From the above argument,

C (Q) =
⋃
a

φa (Da(Q)) .

D−1(R) = ∅, so D−1(Q) = ∅.
D−43(R) = ∅, so D−43(Q) = ∅.
D43(Q2) = ∅, so D43(Q) = ∅.
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C : Y 2 = (X 2 + X + 1)(X 4 + 7).

After descent and local solvability checking, we have

C (Q) = φ(D(Q))

where

D = D1 :

{
X 2 + X + 1 = Y 2

1 ,
X 4 + 7 = Y 2

2 ,
φ(X ,Y1,Y2) = (X ,Y1Y2).

In fact D1 has four rational points are infinity. So D1(Q) 6= ∅.

Reduced finding all rational points on C (which has genus 2) to finding all
rational points on D (which has genus 3).
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The curve

D :

{
X 2 + X + 1 = Y 2

1 ,
X 4 + 7 = Y 2

2 ,

has a genus 1 quotient: X 4 + 7 = Y 2
2 . In fact, we have ψ : D → E ,

E : y2 = x(x2 + 7), (X ,Y1,Y2) 7→ (X 2,XY2).

But
E (Q) = {(0, 0),∞}.

So
D(Q) = {(1 : ±1 : ±1 : 0)}.

So
C (Q) = {(1 : ±1 : 0)}.
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Note the following diagram

D

φ
ww

ψ

''
C E

To find the rational points on C we constructed a cover D and used its
quotient E .
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Example

The curve
C : X 4 − 17 = 2Y 2

has points everywhere locally. We will use descent to show that C (Q) = ∅.
Write

X =
x

z
, Y =

y

z2
, x , y , z ∈ Z, gcd(x , z) = 1.

so
x4 − 17z4 = 2y2.

Note y is even: write y = 2y1. So

x4 − 17z4 = 8y21 .

Obtain
(x2 + z2

√
17)(x2 − z2

√
17) = 8y21 .
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x4 − 17z4 = 8y21 gcd(x , z) = 1.

Obtain
(x2 + z2

√
17)(x2 − z2

√
17) = 8y21 .

Let K = Q(
√

17), and O its ring of integers. So

O = Z + Z
(1 +

√
17)

2
, O× = {±(4 +

√
17)n : n ∈ Z}.

Also O has class number 1 (i.e. it is a UFD)(
x2 + z2

√
17

2

)(
x2 − z2

√
17

2

)
= 2y21 .

The gcd of the two factors divides x2 and
√

17z2, so divides
√

17. But
17 - y . So gcd = 1.
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O× = {±(4 +
√

17)n : n ∈ Z}, 2 =

(
5 +
√

17

2

)(
5−
√

17

2

)
.

(
x2 + z2

√
17

2

)(
x2 − z2

√
17

2

)
= 2y21 .

So
x2 + z2

√
17

2
= αµ2,

x2 − z2
√

17

2
= ᾱµ̄2, µ ∈ O

and

α = ±

(
5±
√

17

2

)
, ±

(
5±
√

17

2

)
(4 +

√
17)

Since αᾱ = 2, and α > 0 we have

α =

(
5±
√

17

2

)
.
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So
x2 + z2

√
17

2
=

(
5±
√

17

2

)
(u + v

√
17)2 u, v ∈ Q.

So

x2 + z2
√

17 =
(
5u2 + 85v2 ± 34uv

)
+
(
±(u2 + 17v2) + 10uv

)√
17.

So get {
5u2 + 85v2 ± 34uv = x2

±(u2 + 17v2) + 10uv = z2.

The important point is that these define curves over Q, and
C (Q) = ∪φa(Da(Q)), even though the descent argument works over an
extension.

Finally Da(Q17) = ∅. So C (Q) = ∅.
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A More General Example
Suppose that

C : y2 = f (x),

where f ∈ Z[x ] is irreducible with even degree n. Homogenizing we have

Y 2 = F (X ,Z )

where F is homogeneous and F (x , 1) = f (x). Let θ be a root of f and
K = Q(θ). Then we can factor

Y 2 = (X − θZ )G (X ,Z )

Using algebraic number theory

X − θZ = α · µ2

where α belongs to a finite computable set, and µ ∈ K . Write
µ = u0 + u1θ + · · ·+ un−1θ

n−1. Then

X − θZ = Qα
1 (u0, . . . , un) + Qα

2 (u0, . . . , un)θ + · · ·+ Qα
n (u0, . . . , un)θn−1.
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Y 2 = (X − θZ )G (X ,Z )

Using algebraic number theory

X − θZ = α · µ2

where α belongs to a finite computable set, and µ ∈ K . Write
µ = u0 + u1θ + · · ·+ un−1θ

n−1. Then

X − θZ = Qα
1 (u0, . . . , un) + Qα

2 (u0, . . . , un)θ + · · ·+ Qα
n (u0, . . . , un)θn−1,

where Qα
i are homogeneous degree 2 polynomials. Comparing coefficients

we have obtain covers

Dα :


Qα

3 (u0, . . . , un) = 0
...

Qα
n (u0, . . . , un) = 0,
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