Rational Points on Curves

Samir Siksek

Recall: given a curve C over \mathbb{Q}, or over a number field k, we want a complete description of $C(k)$. For genus ≥ 1, there is no algorithm for giving this! But there is a bag of tricks that can be used to show that $C(k)$ is empty, or determine $C(k)$ if it is non-empty. These include:
(1) Quotients;
(2) Descent;
(3) Chabauty;
(9) Mordell-Weil sieve.

The purpose of these lectures is to get a feel for each of these methods and see it applied to a particular example.

Quotients

Let C be a curve over a field k. A quotient is curve D / k with a non-constant morphism

$$
\phi: C \rightarrow D
$$

also defined over k.
Lemma (Trivial Observation)
$\phi(C(k)) \subseteq D(k)$. If we know $D(k)$ and it is finite, we can compute $C(k)$.

Example

$$
C: Y^{2}=13 X^{6}-1
$$

Exercise: C has points everywhere locally.
Take $E: y^{2}=x^{3}+13$ and $\phi: C \rightarrow E$ to be given by $(X, Y) \mapsto\left(-1 / X^{2}, Y / X^{3}\right)$. Now $E(\mathbb{Q})=\{\infty\}$. So $C(\mathbb{Q}) \subseteq \phi^{-1}(\infty)=\{(0, i),(0,-i)\}$. So $C(\mathbb{Q})=\emptyset$.

Descent

Example

We will study the rational points on the genus 2 curve.

$$
\begin{equation*}
C: Y^{2}=\left(X^{2}+X+1\right)\left(X^{4}+7\right) \tag{1}
\end{equation*}
$$

(N.B. no obvious quotients.) Write

$$
X=\frac{x}{z}, \quad Y=\frac{y}{z^{3}}, \quad x, y, z \in \mathbb{Z}, \quad \operatorname{gcd}(x, z)=1
$$

So

$$
\begin{equation*}
y^{2}=\left(x^{2}+x z+z^{2}\right)\left(x^{4}+7 z^{4}\right) \tag{2}
\end{equation*}
$$

Note we have 2 extra points on this model $(x: y: z)=(1: \pm 1: 0)$ which we think of as points are infinity on (1). We think of (2) as an equation for C in $\mathbb{P}(1,3,1)$.
Does C have any other rational points?

Lemma

If x, y are coprime non-zero integers and $x y=z^{n}$ where z is also an integer, $n \geq 1$, then there exists $x_{1}, y_{1} \in \mathbb{Z}$ such that $x= \pm x_{1}^{n}$ and $y= \pm y_{1}^{n}$.

Lemma

Let S be a set of primes. If x, y are non-zero integers and $x y=z^{n}$ where z is also an integer, $n \geq 1$. If x, y are coprime outside S then there exists $x_{1}, y_{1} \in \mathbb{Z}$ such that $x=a x_{1}^{n}$ and $y=b y_{1}^{n}$, where all the prime factors of a, b belong to S.

Resultants

Lemma

Let $f, g \in \mathbb{Z}[x]$, coprime. Then there is a $R=R(f, g) \in \mathbb{Z}, R \neq 0(R$ is called the resultant), and polynomials $a, b \in \mathbb{Z}[x]$ such that

$$
a(x) f(x)+b(x) g(x)=R
$$

In particular, if $\alpha \in \mathbb{Z}$, then $\operatorname{gcd}(f(\alpha), g(\alpha)) \mid R$.

Lemma

Let $F(x, y), G(x, y)$ be coprime homogeneous polynomials $\in \mathbb{Z}[x, y]$. Let $f=F(x, 1)$ and $g=G(x, 1)$, and define $R=R(F, G)=R(f, g)$ (the resultant of F and $G)$. If $\alpha, \beta \in \mathbb{Z}$ are coprime, then

$$
\operatorname{gcd}(F(\alpha, \beta), G(\alpha, \beta)) \mid R .
$$

Proof.

We know that $a(x) f(x)+b(x) g(x)=R$. Substitute $x=\alpha / \beta$ and homogenize, to obtain

$$
A(\alpha, \beta) F(\alpha, \beta)+B(\alpha, \beta) G(\alpha, \beta)=R \beta^{m}
$$

for some m. It turns out that also,

$$
A^{\prime}(\alpha, \beta) F(\alpha, \beta)+B^{\prime}(\alpha, \beta) G(\alpha, \beta)=R \alpha^{n} .
$$

So

$$
\operatorname{gcd}(F(\alpha, \beta), G(\alpha, \beta)) \mid \operatorname{gcd}\left(R \beta^{m}, R \alpha^{n}\right)=R
$$

Example

We will study the rational points on the genus 2 curve.

$$
C: Y^{2}=\left(X^{2}+X+1\right)\left(X^{4}+7\right)
$$

Write

$$
X=\frac{x}{z}, \quad Y=\frac{y}{z^{3}}, \quad x, y, z \in \mathbb{Z}, \quad \operatorname{gcd}(x, z)=1
$$

So

$$
C: y^{2}=\left(x^{2}+x z+z^{2}\right)\left(x^{4}+7 z^{4}\right)
$$

The resultant of the two polynomials is 43 , so

$$
\operatorname{gcd}\left(x^{2}+x z+z^{2}, x^{4}+7 z^{4}\right)=1 \text { or } 43
$$

So the two factors are coprime outside $S=\{43\}$. Hence

$$
x^{2}+x z+z^{2}=a y_{1}^{2}, \quad x^{4}+7 z^{4}=a y_{2}^{2} \quad \text { where } a= \pm 1 \text { or } a= \pm 43 .
$$

$$
\begin{gathered}
C: Y^{2}=\left(X^{2}+X+1\right)\left(X^{4}+7\right) \\
x^{2}+x z+z^{2}=a y_{1}^{2}, \quad x^{4}+7 z^{4}=a y_{2}^{2} \quad \text { where } a= \pm 1 \text { or } a= \pm 43
\end{gathered}
$$

So we obtain four curves

$$
D_{a}:\left\{\begin{array}{l}
X^{2}+X+1=a Y_{1}^{2} \\
X^{4}+7=a Y_{2}^{2}
\end{array}\right.
$$

with $a= \pm 1, \pm 43$. Let $\phi_{a}: D_{a} \rightarrow C$ be given by $\phi_{a}\left(X, Y_{1}, Y_{2}\right)=\left(X, a Y_{1} Y_{2}\right)$. From the above argument,

$$
C(\mathbb{Q})=\bigcup_{a} \phi_{a}\left(D_{a}(\mathbb{Q})\right)
$$

Vague Definition Given a curve C over a number field k, a descent is some process which which yields a finite family $\phi_{a}: D_{a} \rightarrow C$ of covers such that

$$
C(k)=\bigcup_{a} \phi_{a}\left(D_{a}(k)\right)
$$

$$
\begin{gathered}
C: \quad Y^{2}=\left(X^{2}+X+1\right)\left(X^{4}+7\right) . \\
x^{2}+x z+z^{2}=a y_{1}^{2}, \quad x^{4}+7 z^{4}=a y_{2}^{2} \quad \text { where } a= \pm 1 \text { or } a= \pm 43 .
\end{gathered}
$$

So we obtain four curves

$$
D_{a}:\left\{\begin{array}{l}
X^{2}+X+1=a Y_{1}^{2} \\
X^{4}+7=a Y_{2}^{2}
\end{array}\right.
$$

with $a= \pm 1, \pm 43$. Let $\phi_{a}: D_{a} \rightarrow C$ be given by $\phi_{a}\left(X, Y_{1}, Y_{2}\right)=\left(X, a Y_{1} Y_{2}\right)$. From the above argument,

$$
C(\mathbb{Q})=\bigcup_{a} \phi_{a}\left(D_{a}(\mathbb{Q})\right) .
$$

- $D_{-1}(\mathbb{R})=\emptyset$, so $D_{-1}(\mathbb{Q})=\emptyset$.
- $D_{-43}(\mathbb{R})=\emptyset$, so $D_{-43}(\mathbb{Q})=\emptyset$.
- $D_{43}\left(\mathbb{Q}_{2}\right)=\emptyset$, so $D_{43}(\mathbb{Q})=\emptyset$.

$$
C: Y^{2}=\left(X^{2}+X+1\right)\left(X^{4}+7\right)
$$

After descent and local solvability checking, we have

$$
C(\mathbb{Q})=\phi(D(\mathbb{Q}))
$$

where

$$
D=D_{1}:\left\{\begin{array}{l}
X^{2}+X+1=Y_{1}^{2}, \\
X^{4}+7=Y_{2}^{2},
\end{array} \quad \phi\left(X, Y_{1}, Y_{2}\right)=\left(X, Y_{1} Y_{2}\right)\right.
$$

In fact D_{1} has four rational points are infinity. So $D_{1}(\mathbb{Q}) \neq \emptyset$.
Reduced finding all rational points on C (which has genus 2) to finding all rational points on D (which has genus 3).

The curve

$$
D:\left\{\begin{array}{l}
X^{2}+X+1=Y_{1}^{2} \\
X^{4}+7=Y_{2}^{2}
\end{array}\right.
$$

has a genus 1 quotient: $X^{4}+7=Y_{2}^{2}$. In fact, we have $\psi: D \rightarrow E$,

$$
E: y^{2}=x\left(x^{2}+7\right), \quad\left(X, Y_{1}, Y_{2}\right) \mapsto\left(X^{2}, X Y_{2}\right)
$$

But

$$
E(\mathbb{Q})=\{(0,0), \infty\}
$$

So

$$
D(\mathbb{Q})=\{(1: \pm 1: \pm 1: 0)\} .
$$

So

$$
C(\mathbb{Q})=\{(1: \pm 1: 0)\} .
$$

Note the following diagram

To find the rational points on C we constructed a cover D and used its quotient E.

Example

The curve

$$
C: X^{4}-17=2 Y^{2}
$$

has points everywhere locally. We will use descent to show that $C(\mathbb{Q})=\emptyset$. Write

$$
X=\frac{x}{z}, \quad Y=\frac{y}{z^{2}}, \quad x, y, z \in \mathbb{Z}, \quad \operatorname{gcd}(x, z)=1
$$

so

$$
x^{4}-17 z^{4}=2 y^{2} .
$$

Note y is even: write $y=2 y_{1}$. So

$$
x^{4}-17 z^{4}=8 y_{1}^{2}
$$

Obtain

$$
\left(x^{2}+z^{2} \sqrt{17}\right)\left(x^{2}-z^{2} \sqrt{17}\right)=8 y_{1}^{2}
$$

$$
x^{4}-17 z^{4}=8 y_{1}^{2} \quad \operatorname{gcd}(x, z)=1
$$

Obtain

$$
\left(x^{2}+z^{2} \sqrt{17}\right)\left(x^{2}-z^{2} \sqrt{17}\right)=8 y_{1}^{2} .
$$

Let $K=\mathbb{Q}(\sqrt{17})$, and \mathcal{O} its ring of integers. So

$$
\mathcal{O}=\mathbb{Z}+\mathbb{Z} \frac{(1+\sqrt{17})}{2}, \quad \mathcal{O}^{\times}=\left\{ \pm(4+\sqrt{17})^{n}: n \in \mathbb{Z}\right\}
$$

Also \mathcal{O} has class number 1 (i.e. it is a UFD)

$$
\left(\frac{x^{2}+z^{2} \sqrt{17}}{2}\right)\left(\frac{x^{2}-z^{2} \sqrt{17}}{2}\right)=2 y_{1}^{2}
$$

The gcd of the two factors divides x^{2} and $\sqrt{17} z^{2}$, so divides $\sqrt{17}$. But $17 \nmid y$. So $\operatorname{gcd}=1$.

$$
\begin{gathered}
\mathcal{O}^{\times}=\left\{ \pm(4+\sqrt{17})^{n}: n \in \mathbb{Z}\right\}, \quad 2=\left(\frac{5+\sqrt{17}}{2}\right)\left(\frac{5-\sqrt{17}}{2}\right) . \\
\left(\frac{x^{2}+z^{2} \sqrt{17}}{2}\right)\left(\frac{x^{2}-z^{2} \sqrt{17}}{2}\right)=2 y_{1}^{2} .
\end{gathered}
$$

So

$$
\frac{x^{2}+z^{2} \sqrt{17}}{2}=\alpha \mu^{2}, \quad \frac{x^{2}-z^{2} \sqrt{17}}{2}=\bar{\alpha} \bar{\mu}^{2}, \quad \mu \in \mathcal{O}
$$

and

$$
\alpha= \pm\left(\frac{5 \pm \sqrt{17}}{2}\right), \quad \pm\left(\frac{5 \pm \sqrt{17}}{2}\right)(4+\sqrt{17})
$$

Since $\alpha \bar{\alpha}=2$, and $\alpha>0$ we have

$$
\alpha=\left(\frac{5 \pm \sqrt{17}}{2}\right)
$$

So

$$
\frac{x^{2}+z^{2} \sqrt{17}}{2}=\left(\frac{5 \pm \sqrt{17}}{2}\right)(u+v \sqrt{17})^{2} \quad u, v \in \mathbb{Q}
$$

So

$$
x^{2}+z^{2} \sqrt{17}=\left(5 u^{2}+85 v^{2} \pm 34 u v\right)+\left(\pm\left(u^{2}+17 v^{2}\right)+10 u v\right) \sqrt{17}
$$

So get

$$
\left\{\begin{array}{l}
5 u^{2}+85 v^{2} \pm 34 u v=x^{2} \\
\pm\left(u^{2}+17 v^{2}\right)+10 u v=z^{2}
\end{array}\right.
$$

The important point is that these define curves over \mathbb{Q}, and $C(\mathbb{Q})=\cup \phi_{a}\left(D_{a}(\mathbb{Q})\right)$, even though the descent argument works over an extension.

Finally $D_{a}\left(\mathbb{Q}_{17}\right)=\emptyset$. So $C(\mathbb{Q})=\emptyset$.

A More General Example

Suppose that

$$
C: y^{2}=f(x)
$$

where $f \in \mathbb{Z}[x]$ is irreducible with even degree n. Homogenizing we have

$$
Y^{2}=F(X, Z)
$$

where F is homogeneous and $F(x, 1)=f(x)$. Let θ be a root of f and $K=\mathbb{Q}(\theta)$. Then we can factor

$$
Y^{2}=(X-\theta Z) G(X, Z)
$$

Using algebraic number theory

$$
X-\theta Z=\alpha \cdot \mu^{2}
$$

where α belongs to a finite computable set, and $\mu \in K$. Write $\mu=u_{0}+u_{1} \theta+\cdots+u_{n-1} \theta^{n-1}$. Then
$X-\theta Z=Q_{1}^{\alpha}\left(u_{0}, \ldots, u_{n}\right)+Q_{2}^{\alpha}\left(u_{0}, \ldots, u_{n}\right) \theta+\cdots+Q_{n}^{\alpha}\left(u_{0}, \ldots, u_{n}\right) \theta^{n-1}$.

$$
Y^{2}=(X-\theta Z) G(X, Z)
$$

Using algebraic number theory

$$
X-\theta Z=\alpha \cdot \mu^{2}
$$

where α belongs to a finite computable set, and $\mu \in K$. Write $\mu=u_{0}+u_{1} \theta+\cdots+u_{n-1} \theta^{n-1}$. Then
$X-\theta Z=Q_{1}^{\alpha}\left(u_{0}, \ldots, u_{n}\right)+Q_{2}^{\alpha}\left(u_{0}, \ldots, u_{n}\right) \theta+\cdots+Q_{n}^{\alpha}\left(u_{0}, \ldots, u_{n}\right) \theta^{n-1}$,
where Q_{i}^{α} are homogeneous degree 2 polynomials. Comparing coefficients we have obtain covers

$$
D_{\alpha}:\left\{\begin{array}{c}
Q_{3}^{\alpha}\left(u_{0}, \ldots, u_{n}\right)=0 \\
\vdots \\
Q_{n}^{\alpha}\left(u_{0}, \ldots, u_{n}\right)=0
\end{array}\right.
$$

