Rational Points on Curves

Samir Siksek

Prerequisites:

Prerequisites:

- Galois Theory.
- Algebraic Number Theory.
- p-adic Numbers.
- Algebraic Curves/Algebraic Geometry.
- Elliptic Curves.

Prerequisites:

- Galois Theory.
- Algebraic Number Theory.
- p-adic Numbers.
- Algebraic Curves/Algebraic Geometry.
- Elliptic Curves.

Warning: some of the mathematics will be only approximately correct.

Prerequisites:

- Galois Theory.
- Algebraic Number Theory.
- p-adic Numbers.
- Algebraic Curves/Algebraic Geometry.
- Elliptic Curves.

Warning: some of the mathematics will be only approximately correct.

"In mathematics you don't understand things. You just get used to them." *John von Neumann*

Basic Philosophy

A Basic Philosophy of Arithmetic Geometry: The geometry of an algebraic variety governs its arithmetic.

A Central Question of Arithmetic Geometry: How does the geometry govern the arithmetic?

Think of varieties as defined by systems of polynomial equations in affine or projective space. An **affine variety** $V \subset \mathbb{A}^n$ defined over a field k is given by a system of polynomial equations

$$V : \begin{cases} f_1(x_1,...,x_n) = 0, \\ \vdots \\ f_m(x_1,...,x_n) = 0, \end{cases} \quad f_i \in k[x_1,...,x_n].$$

For $L \supseteq k$, the set of *L*-points of *V* is

$$V(L) = \{(a_1, \ldots, a_n) \in L^n : f_i(a_1, \ldots, a_n) = 0 \text{ for } i = 1, \ldots, m\}.$$

A **projective variety** $V \subseteq \mathbb{P}^n$ defined over k is given by a system of polynomial equations

$$V : \begin{cases} f_1(x_0, \dots, x_n) = 0, \\ \vdots \\ f_m(x_0, \dots, x_n) = 0, \end{cases} \quad f_i \in k[x_0, \dots, x_n] \text{ are homogeneous.}$$

For $L \supseteq k$, the set of *L*-points of *V* is

$$V(L) = \{(a_0, \ldots, a_n) \in L^{n+1} \setminus \{0\} : f_i(a_0, \ldots, a_n) = 0 \text{ for } i = 1, \ldots, m\} / \sim,$$

where $(a_0, \ldots, a_n) \sim (b_0, \ldots, a_n)$ if there is some $\lambda \in L^*$ such that $\lambda a_i = b_i$ for $i = 0, \ldots, n$.

A variety $V \subset \mathbb{P}^n$ is covered by n+1 affine patches:

$$V \cap \{x_i = 1\} \qquad i = 0, 1, \ldots, n.$$

Local Methods

We're interested in understanding $V(\mathbb{Q})$ for varieties defined over \mathbb{Q} . More generally, if k is a number field, we're interested in V(k) for varieties defined over k.

In particular, $\mathbb{Q} \subset \mathbb{R}$, and $\mathbb{Q} \subset \mathbb{Q}_p$ for all primes p. Think of $\mathbb{R} = \mathbb{Q}_{\infty}$. Note $V(\mathbb{Q}) \subseteq V(\mathbb{Q}_p)$ for all p (including ∞). So,

$$V(\mathbb{Q}_p) = \emptyset \implies V(\mathbb{Q}) = \emptyset.$$

Example

$$V : x^2 + y^2 + z^2 = 0, \qquad V \subset \mathbb{P}^2.$$

Note $V(\mathbb{R}) = \emptyset$, so $V(\mathbb{Q}) = \emptyset$. But also, $V(\mathbb{Q}_2) = \emptyset$.

Local Methods

Definition

Let V be a variety defined over \mathbb{Q} . We say that V has points everywhere locally if $V(\mathbb{Q}_p) \neq \emptyset$ for all p (including ∞).

Trivial observation: $V(\mathbb{Q}) \neq \emptyset \implies V$ has points everywhere locally.

Theorem (Hasse–Minkowski)

Let $V \subset \mathbb{P}^n$ be a quadric $(n \ge 3)$, defined over \mathbb{Q} . Then the following are equivalent:

- V has points everywhere locally;
- $V(\mathbb{Q}) \neq \emptyset$ (V has global points).

We say, quadrics satisfy the Hasse principle.

Fact

For varieties V defined over \mathbb{Q} (or a number field), there is an algorithm to decide if V has points everywhere locally.

Dimension

We classify varieties by **dimension**, a non-negative integer: $0, 1, 2, \ldots$

Fact

A variety $V \subset \mathbb{A}^n$ or \mathbb{P}^n , defined by a single polynomial equation V : f = 0, where f is a non-constant polynomial, has dimension n - 1.

Example

 $\begin{array}{ll} V_1 \subset \mathbb{A}^1, & V_1 \ : \ x^3 + x + 1 = 0 & \text{has dimension 0.} \\ V_2 \subset \mathbb{A}^2, & V_2 \ : \ y^2 = x^6 + 1, & \text{has dimension 1.} \\ V_3 \subset \mathbb{P}^2, & V_3 \ : \ x^3 + y^3 + z^3 = 0, & \text{has dimension 1.} \\ V_4 \subset \mathbb{P}^3, & V_4 \ : \ x^3 + y^3 + z^3 + w^4 = 0, & \text{has dimension 2.} \end{array}$

Varieties of dimension $1, 2, 3, \ldots$ are called **curves**, surfaces, threefolds, etc.

Smooth

Let V be an affine variety $V \subset \mathbb{A}^n$ of dimension d, defined over a field k, and given by a system of polynomial equations

$$V : \begin{cases} f_1(x_1,...,x_n) = 0, \\ \vdots & f_i \in k[x_1,...,x_n]. \\ f_m(x_1,...,x_n) = 0, \end{cases}$$

We say that $P \in V(\overline{k})$ is smooth if the matrix

$$\operatorname{rank}\left(\frac{\partial f_i}{\partial x_j}(P)\right)_{i=1,\ldots,m,\ j=1,\ldots,n}=n-d.$$

We say that V is **smooth** or **non-singular** if it is smooth at all points $P \in V(\overline{k})$.

If $V \subset \mathbb{P}^n$, we say that V is **smooth** if all the affine patches $V \cap \{x_i = 1\}$ are smooth.

Example

Let

$$C : y^2 = f(x)$$

where f is a non-constant polynomial. Then $P = (a, b) \in C$ is singular iff

$$(2a - f'(b)) = (0 0).$$

So

$$2a = 0,$$
 $a^2 = f(b),$ $f'(b) = 0.$

If char(k) \neq 2, then f(b) = f'(b) = 0. So C has a singular point if and only if Disc(f) = 0. So C is smooth iff $\text{Disc}(f) \neq 0$.

Example

Let $V \subset \mathbb{P}^n$ (defined over k) be given by

$$V : f(x_0,\ldots,x_n) = 0,$$

where $f \neq 0$ is homogeneous. Then V is **singular** if and only if there is $P \in V(\overline{k})$ such that

$$\frac{\partial f}{\partial x_1}(P) = \cdots = \frac{\partial f}{\partial x_n}(P) = 0.$$

We will restrict to curves.

Definition

By a curve C over a field k, we mean a smooth, projective, absolutely irreducible (or geometrically irreducible), 1-dimensional k-variety.

Rational Points: Given C/\mathbb{Q} , we want to understand $C(\mathbb{Q})$.

Example: Reducibility

Example

Consider the variety $V\subset \mathbb{A}^2$ given by the equation

$$V : x^6 - 1 = y^2 + 2y.$$

Can rewrite as

$$V : (y+1-x^3)(y+1+x^3) = 0.$$

So

$$V=V_1\cup V_2$$

where

$$V_1$$
: $y + 1 - x^3 = 0$, V_2 : $y + 1 + x^3 = 0$.

Note V is *reducible*, but V_1 and V_2 are *irreducible*. To understand $V(\mathbb{Q})$ enough to understand $V_1(\mathbb{Q})$ and $V_2(\mathbb{Q})$.

Example: Absolute Reducibility

Example

$$V : 2x^6 - 1 = y^2 + 2y.$$

V is irreducible, but absolutely reducible since

$$V_{\overline{\mathbb{Q}}} = \{y + 1 + \sqrt{2}x^3 = 0\} \cup \{y + 1 - \sqrt{2}x^3 = 0\}.$$

If $(x, y) \in V(\mathbb{Q})$ then

$$y + 1 + \sqrt{2}x^3 = y + 1 - \sqrt{2}x^3 = 0.$$

In other words

$$y=-1, \qquad x=0.$$

So $V(\mathbb{Q}) = \{(0, -1)\}.$

Moral: To understand rational points on varieties, it is enough to understand rational on absolutely irreducible varieties.

Genus

We classify curves by genus. This is a non-negative integer: $0, 1, 2, \ldots$.

Example

lf

$$C/k$$
 : $F(x, y, z) = 0$, $C \subset \mathbb{P}^2$

is smooth, where $F \in k[x, y, z]$ is homogeneous of degree *n*, then *C* has genus (n-1)(n-2)/2.

Example

Let

$$C/k$$
 : $y^2 = f(x)$, $C \subset \mathbb{A}^2$ $(f \in k[x] \text{ non-constant})$.

If C is smooth and deg(f) = n then

genus(C) =
$$\begin{cases} (d-1)/2 & d \text{ odd} \\ (d-2)/2 & d \text{ even.} \end{cases}$$

Samir Siksek

Curves of Genus 0

Theorem

Let C be a curve of genus 0 defined over k. Then C is isomorphic (over k) to a smooth plane curve of degree 2 (i.e. a conic). Moreover, if $C(k) \neq \emptyset$ then C is isomorphic over k to \mathbb{P}^1 .

Theorem

(The Hasse Principle) Let C/\mathbb{Q} be a curve of genus 0. The following are equivalent:

•
$$C(\mathbb{Q}) \neq \emptyset;$$

2 $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ for all primes p.

Theorem

(The Hasse Principle) Let C/\mathbb{Q} be a curve of genus 0. The following are equivalent:

Theorem (Legendre, Hasse)

Let

$$C$$
 : $ax^2 + by^2 + cz^2 = 0$, *a*, *b*, *c* non-zero, squarefree integers.

The following are equivalent:

•
$$C(\mathbb{Q}) \neq \emptyset;$$

- **2** $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ for all primes p.
- **3** $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ for all primes $p \mid 2abc$.

Genus 1

Theorem

If C is a curve of genus 1 over a field k and $P_0 \in C(k)$, then C is isomorphic over k to a Weierstrass elliptic curve

$$y^{2}z + a_{1}xyz + a_{3}yz^{2} = x^{3} + a_{2}x^{2}z + a_{4}xz^{2} + a_{6}z^{3} \subset \mathbb{P}^{2}$$

where the isomorphism sends P_0 to (0:1:0). (Mordell–Weil) Moreover, if $k = \mathbb{Q}$ or a number field, then C(k) is a finitely generated abelian group with P_0 as the zero element.

- There is no known algorithm for deciding if $C(\mathbb{Q}) \neq \emptyset$.
- There is no known algorithm for computing a Mordell–Weil basis for C(Q) if it is non-empty.

But there is a descent strategy that usually works.

Failure of the Hasse Principle in Genus 1

Example Let C : $3x^3 + 4y^3 + 5z^3 = 0.$ (C is a curve of genus 1 in \mathbb{P}^2) Then • $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ (*C* has points everywhere locally);

2 $C(\mathbb{Q}) = \emptyset$ (*C* has no global points).

In other words, C is a counterexample to the Hasse principle.

Exercise

Show that $X^4 - 17 = 2Y^2$ (also a curve of genus 1) is a counterexample to the Hasse principle.

$\mathsf{Genus} \geq 2$

Theorem (Faltings)

Let C be a curve of genus ≥ 2 over a number field k. Then C(k) is finite.

- **1** There is no known algorithm for computing C(k).
- **2** There is no known algorithm for deciding if $C(k) \neq \emptyset$.

But there is a bag of tricks that can be used to show that C(k) is empty, or determine C(k) if it is non-empty. These include:

- Quotients;
- 2 Descent;
- Ohabauty;
- Mordell–Weil sieve.

The purpose of these lectures is to get a feel for each of these methods and see it applied to a particular example.

Quotients

Let C be a curve over a field k. A quotient is curve D/k with a non-constant morphism

$$\phi: C \to D$$

also defined over k.

Lemma (Trivial Observation) $\phi(C(k)) \subseteq D(k)$. If we know D(k), we can compute C(k).

Quotients

Example

Let

$$C : Y^2 = AX^6 + BX^4 + CX^2 + D, \qquad A, B, C, D \in \mathbb{Z},$$

and suppose disc $(AX^6 + BX^4 + CX^2 + D) \neq 0$. So C has genus 2. Let

 $E_1 : y^2 = Ax^3 + Bx^2 + Cx + D,$ $E_2 : y^2 = Dx^3 + Cx^2 + Bx + A.$

Then E_1 , E_2 are elliptic curves over \mathbb{Q} . We have non-constant morphisms

$$\phi_1: \mathcal{C} \to \mathcal{E}_1, \qquad (X, Y) \mapsto (X^2, Y),$$

and

$$\phi_2: \mathcal{C} \to \mathcal{E}_2, \qquad (X, Y) \mapsto \left(\frac{1}{X^2}, \frac{Y}{X^3}\right).$$

If the ranks of either E_i is 0 we can determine $E_i(\mathbb{Q})$ (which is finite) and so $C(\mathbb{Q})$.

Example

$$C : Y^2 = 13X^6 - 1.$$

Exercise: *C* has points everywhere locally. Take $E: y^2 = x^3 + 13$ and $\phi: C \to E$ to be given by $(X, Y) \mapsto (-1/X^2, Y/X^3)$. Now $E(\mathbb{Q}) = \{\infty\}$. So $C(\mathbb{Q}) \subseteq \phi^{-1}(\infty) = \{(0, i), (0, -i)\}$. So $C(\mathbb{Q}) = \emptyset$.

Example

$$C : Y^2 = 11X^6 - 19.$$

Here:

- C has points everywhere locally.
- $E_1(\mathbb{Q}) \cong \mathbb{Z}$ and $E_2(\mathbb{Q}) \cong \mathbb{Z}$.

Example

$$C : Y^2 = 11X^6 - 19.$$

Here:

- C has points everywhere locally.
- $E_1(\mathbb{Q}) \cong \mathbb{Z}$ and $E_2(\mathbb{Q}) \cong \mathbb{Z}$.

Let p be a prime of good reduction. Note the commutative diagram:

• $\phi = (\phi_1, \phi_2)$; red denotes reduction modulo *p*;

- fix generators P_1 , P_2 for $E_1(\mathbb{Q})$, $E_2(\mathbb{Q})$ respectively and let $\eta(m, n) = (mP_1, nP_2)$;
- $\mu = \operatorname{red} \circ \eta$.

Let p be a prime of good reduction. Note the commutative diagram:

Lemma

$$(\operatorname{\mathsf{red}}\circ\phi)(\mathcal{C}(\mathbb{Q}))\subset \phi(\mathcal{C}(\mathbb{F}_p))\cap\mu(\mathbb{Z}\times\mathbb{Z}).$$

Exercise: Use this with p = 7 to show that $C(\mathbb{Q}) = \emptyset$.