Rational Points on Curves

Samir Siksek

Assumptions

Prerequisites:

Assumptions

Prerequisites:

- Galois Theory.
- Algebraic Number Theory.
- p-adic Numbers.
- Algebraic Curves/Algebraic Geometry.
- Elliptic Curves.

Assumptions

Prerequisites:

- Galois Theory.
- Algebraic Number Theory.
- p-adic Numbers.
- Algebraic Curves/Algebraic Geometry.
- Elliptic Curves.

Warning: some of the mathematics will be only approximately correct.

Assumptions

Prerequisites:

- Galois Theory.
- Algebraic Number Theory.
- p-adic Numbers.
- Algebraic Curves/Algebraic Geometry.
- Elliptic Curves.

Warning: some of the mathematics will be only approximately correct.
"In mathematics you don't understand things. You just get used to them." John von Neumann

Basic Philosophy

A Basic Philosophy of Arithmetic Geometry: The geometry of an algebraic variety governs its arithmetic.

A Central Question of Arithmetic Geometry: How does the geometry govern the arithmetic?

Think of varieties as defined by systems of polynomial equations in affine or projective space. An affine variety $V \subset \mathbb{A}^{n}$ defined over a field k is given by a system of polynomial equations

$$
V:\left\{\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=0,
\end{array} \quad f_{i} \in k\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

For $L \supseteq k$, the set of L-points of V is

$$
V(L)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in L^{n}: f_{i}\left(a_{1}, \ldots, a_{n}\right)=0 \text { for } i=1, \ldots, m\right\}
$$

A projective variety $V \subseteq \mathbb{P}^{n}$ defined over k is given by a system of polynomial equations

$$
V:\left\{\begin{array}{c}
f_{1}\left(x_{0}, \ldots, x_{n}\right)=0, \\
\vdots \\
f_{m}\left(x_{0}, \ldots, x_{n}\right)=0,
\end{array} \quad f_{i} \in k\left[x_{0}, \ldots, x_{n}\right]\right. \text { are homogeneous. }
$$

For $L \supseteq k$, the set of L-points of V is
$V(L)=\left\{\left(a_{0}, \ldots, a_{n}\right) \in L^{n+1} \backslash\{0\}: f_{i}\left(a_{0}, \ldots, a_{n}\right)=0\right.$ for $\left.i=1, \ldots, m\right\} / \sim$, where $\left(a_{0}, \ldots, a_{n}\right) \sim\left(b_{0}, \ldots, a_{n}\right)$ if there is some $\lambda \in L^{*}$ such that $\lambda a_{i}=b_{i}$ for $i=0, \ldots, n$.

A variety $V \subset \mathbb{P}^{n}$ is covered by $n+1$ affine patches:

$$
V \cap\left\{x_{i}=1\right\} \quad i=0,1, \ldots, n
$$

Local Methods

We're interested in understanding $V(\mathbb{Q})$ for varieties defined over \mathbb{Q}. More generally, if k is a number field, we're interested in $V(k)$ for varieties defined over k.
In particular, $\mathbb{Q} \subset \mathbb{R}$, and $\mathbb{Q} \subset \mathbb{Q}_{p}$ for all primes p. Think of $\mathbb{R}=\mathbb{Q}_{\infty}$. Note $V(\mathbb{Q}) \subseteq V\left(\mathbb{Q}_{p}\right)$ for all p (including ∞). So,

$$
V\left(\mathbb{Q}_{p}\right)=\emptyset \Longrightarrow V(\mathbb{Q})=\emptyset .
$$

Example

$$
V: x^{2}+y^{2}+z^{2}=0, \quad V \subset \mathbb{P}^{2}
$$

Note $V(\mathbb{R})=\emptyset$, so $V(\mathbb{Q})=\emptyset$. But also, $V\left(\mathbb{Q}_{2}\right)=\emptyset$.

Local Methods

Definition

Let V be a variety defined over \mathbb{Q}. We say that V has points everywhere locally if $V\left(\mathbb{Q}_{p}\right) \neq \emptyset$ for all p (including ∞).

Trivial observation: $V(\mathbb{Q}) \neq \emptyset \Longrightarrow V$ has points everywhere locally.

Theorem (Hasse-Minkowski)

Let $V \subset \mathbb{P}^{n}$ be a quadric $(n \geq 3)$, defined over \mathbb{Q}. Then the following are equivalent:

- V has points everywhere locally;
- $V(\mathbb{Q}) \neq \emptyset$ (V has global points).

We say, quadrics satisfy the Hasse principle.

Fact

For varieties V defined over \mathbb{Q} (or a number field), there is an algorithm to decide if V has points everywhere locally.

Dimension

We classify varieties by dimension, a non-negative integer: $0,1,2, \ldots$

Fact

A variety $V \subset \mathbb{A}^{n}$ or \mathbb{P}^{n}, defined by a single polynomial equation $V: f=0$, where f is a non-constant polynomial, has dimension $n-1$.

Example

$$
\begin{gathered}
V_{1} \subset \mathbb{A}^{1}, \quad V_{1}: x^{3}+x+1=0 \quad \text { has dimension } 0 . \\
V_{2} \subset \mathbb{A}^{2}, \quad V_{2}: y^{2}=x^{6}+1, \quad \text { has dimension } 1 . \\
V_{3} \subset \mathbb{P}^{2}, \quad V_{3}: x^{3}+y^{3}+z^{3}=0, \quad \text { has dimension } 1 . \\
V_{4} \subset \mathbb{P}^{3}, \quad V_{4}: x^{3}+y^{3}+z^{3}+w^{4}=0, \quad \text { has dimension } 2 .
\end{gathered}
$$

Varieties of dimension $1,2,3, \ldots$ are called curves, surfaces, threefolds, etc.

Smooth

Let V be an affine variety $V \subset \mathbb{A}^{n}$ of dimension d, defined over a field k, and given by a system of polynomial equations

$$
V:\left\{\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=0,
\end{array} \quad f_{i} \in k\left[x_{1}, \ldots, x_{n}\right]\right.
$$

We say that $P \in V(\bar{k})$ is smooth if the matrix

$$
\operatorname{rank}\left(\frac{\partial f_{i}}{\partial x_{j}}(P)\right)_{i=1, \ldots, m, j=1, \ldots, n}=n-d
$$

We say that V is smooth or non-singular if it is smooth at all points $P \in V(\bar{k})$.
If $V \subset \mathbb{P}^{n}$, we say that V is smooth if all the affine patches $V \cap\left\{x_{i}=1\right\}$ are smooth.

Example

Let

$$
C: y^{2}=f(x)
$$

where f is a non-constant polynomial. Then $P=(a, b) \in C$ is singular iff

$$
\left(2 a \quad-f^{\prime}(b)\right)=\left(\begin{array}{ll}
0 & 0
\end{array}\right)
$$

So

$$
2 a=0, \quad a^{2}=f(b), \quad f^{\prime}(b)=0
$$

If $\operatorname{char}(k) \neq 2$, then $f(b)=f^{\prime}(b)=0$. So C has a singular point if and only if $\operatorname{Disc}(f)=0$. So C is smooth iff $\operatorname{Disc}(f) \neq 0$.

Example

Let $V \subset \mathbb{P}^{n}$ (defined over k) be given by

$$
V: f\left(x_{0}, \ldots, x_{n}\right)=0,
$$

where $f \neq 0$ is homogeneous. Then V is singular if and only if there is $P \in V(\bar{k})$ such that

$$
\frac{\partial f}{\partial x_{1}}(P)=\cdots=\frac{\partial f}{\partial x_{n}}(P)=0 .
$$

Curves

We will restrict to curves.

Definition

By a curve C over a field k, we mean a smooth, projective, absolutely irreducible (or geometrically irreducible), 1-dimensional k-variety.

Rational Points: Given C / \mathbb{Q}, we want to understand $C(\mathbb{Q})$.

Example: Reducibility

Example

Consider the variety $V \subset \mathbb{A}^{2}$ given by the equation

$$
V: x^{6}-1=y^{2}+2 y
$$

Can rewrite as

$$
V:\left(y+1-x^{3}\right)\left(y+1+x^{3}\right)=0 .
$$

So

$$
V=V_{1} \cup V_{2}
$$

where

$$
V_{1}: y+1-x^{3}=0, \quad V_{2}: y+1+x^{3}=0
$$

Note V is reducible, but V_{1} and V_{2} are irreducible. To understand $V(\mathbb{Q})$ enough to understand $V_{1}(\mathbb{Q})$ and $V_{2}(\mathbb{Q})$.

Example: Absolute Reducibility

Example

$$
V: 2 x^{6}-1=y^{2}+2 y
$$

V is irreducible, but absolutely reducible since

$$
V_{\overline{\mathbb{Q}}}=\left\{y+1+\sqrt{2} x^{3}=0\right\} \cup\left\{y+1-\sqrt{2} x^{3}=0\right\} .
$$

If $(x, y) \in V(\mathbb{Q})$ then

$$
y+1+\sqrt{2} x^{3}=y+1-\sqrt{2} x^{3}=0
$$

In other words

$$
y=-1, \quad x=0
$$

So $V(\mathbb{Q})=\{(0,-1)\}$.
Moral: To understand rational points on varieties, it is enough to understand rational on absolutely irreducible varieties.

Genus

We classify curves by genus. This is a non-negative integer: $0,1,2, \ldots$

Example

If

$$
C / k: F(x, y, z)=0, \quad C \subset \mathbb{P}^{2}
$$

is smooth, where $F \in k[x, y, z]$ is homogeneous of degree n, then C has genus $(n-1)(n-2) / 2$.

Example

Let

$$
C / k: y^{2}=f(x), \quad C \subset \mathbb{A}^{2} \quad(f \in k[x] \text { non-constant }) .
$$

If C is smooth and $\operatorname{deg}(f)=n$ then

$$
\operatorname{genus}(C)= \begin{cases}(d-1) / 2 & d \text { odd } \\ (d-2) / 2 & d \text { even. }\end{cases}
$$

Curves of Genus 0

Theorem

Let C be a curve of genus 0 defined over k. Then C is isomorphic (over k) to a smooth plane curve of degree 2 (i.e. a conic). Moreover, if $C(k) \neq \emptyset$ then C is isomorphic over k to \mathbb{P}^{1}.

Theorem

(The Hasse Principle) Let C / \mathbb{Q} be a curve of genus 0 . The following are equivalent:

- $C(\mathbb{Q}) \neq \emptyset$;
(2) $C(\mathbb{R}) \neq \emptyset$ and $C\left(\mathbb{Q}_{p}\right) \neq \emptyset$ for all primes p.

Theorem

(The Hasse Principle) Let C / \mathbb{Q} be a curve of genus 0 . The following are equivalent:
(1) $C(\mathbb{Q}) \neq \emptyset$;
(2) $C(\mathbb{R}) \neq \emptyset$ and $C\left(\mathbb{Q}_{p}\right) \neq \emptyset$ for all primes p.

Theorem (Legendre, Hasse)
Let
$C: a x^{2}+b y^{2}+c z^{2}=0, \quad a, b, c$ non-zero, squarefree integers.
The following are equivalent:
(1) $C(\mathbb{Q}) \neq \emptyset$;
(2) $C(\mathbb{R}) \neq \emptyset$ and $C\left(\mathbb{Q}_{p}\right) \neq \emptyset$ for all primes p.

- $C(\mathbb{R}) \neq \emptyset$ and $C\left(\mathbb{Q}_{p}\right) \neq \emptyset$ for all primes $p \mid 2$ abc.

Genus 1

Theorem

If C is a curve of genus 1 over a field k and $P_{0} \in C(k)$, then C is isomorphic over k to a Weierstrass elliptic curve

$$
y^{2} z+a_{1} x y z+a_{3} y z^{2}=x^{3}+a_{2} x^{2} z+a_{4} x z^{2}+a_{6} z^{3} \quad \subset \mathbb{P}^{2}
$$

where the isomorphism sends P_{0} to $(0: 1: 0)$. (Mordell-Weil) Moreover, if $k=\mathbb{Q}$ or a number field, then $C(k)$ is a finitely generated abelian group with P_{0} as the zero element.
(1) There is no known algorithm for deciding if $C(\mathbb{Q}) \neq \emptyset$.
(2) There is no known algorithm for computing a Mordell-Weil basis for $C(\mathbb{Q})$ if it is non-empty.

But there is a descent strategy that usually works.

Failure of the Hasse Principle in Genus 1

Example

Let

$$
C: 3 x^{3}+4 y^{3}+5 z^{3}=0 . \quad\left(C \text { is a curve of genus } 1 \text { in } \mathbb{P}^{2}\right)
$$

Then
(1) $C(\mathbb{R}) \neq \emptyset$ and $C\left(\mathbb{Q}_{p}\right) \neq \emptyset(C$ has points everywhere locally);
(2) $C(\mathbb{Q})=\emptyset(C$ has no global points).

In other words, C is a counterexample to the Hasse principle.

Exercise

Show that $X^{4}-17=2 Y^{2}$ (also a curve of genus 1) is a counterexample to the Hasse principle.

Genus ≥ 2

Theorem (Faltings)

Let C be a curve of genus ≥ 2 over a number field k. Then $C(k)$ is finite.
(1) There is no known algorithm for computing $C(k)$.
(2) There is no known algorithm for deciding if $C(k) \neq \emptyset$.

But there is a bag of tricks that can be used to show that $C(k)$ is empty, or determine $C(k)$ if it is non-empty. These include:
(1) Quotients;
(2) Descent;
(3) Chabauty;
(9) Mordell-Weil sieve.

The purpose of these lectures is to get a feel for each of these methods and see it applied to a particular example.

Quotients

Let C be a curve over a field k. A quotient is curve D / k with a non-constant morphism

$$
\phi: C \rightarrow D
$$

also defined over k.
Lemma (Trivial Observation)
$\phi(C(k)) \subseteq D(k)$. If we know $D(k)$, we can compute $C(k)$.

Quotients

Example

Let

$$
C: Y^{2}=A X^{6}+B X^{4}+C X^{2}+D, \quad A, B, C, D \in \mathbb{Z}
$$

and suppose $\operatorname{disc}\left(A X^{6}+B X^{4}+C X^{2}+D\right) \neq 0$. So C has genus 2. Let
$E_{1}: y^{2}=A x^{3}+B x^{2}+C x+D$,

$$
E_{2}: y^{2}=D x^{3}+C x^{2}+B x+A
$$

Then E_{1}, E_{2} are elliptic curves over \mathbb{Q}. We have non-constant morphisms

$$
\phi_{1}: C \rightarrow E_{1}, \quad(X, Y) \mapsto\left(X^{2}, Y\right)
$$

and

$$
\phi_{2}: C \rightarrow E_{2}, \quad(X, Y) \mapsto\left(\frac{1}{X^{2}}, \frac{Y}{X^{3}}\right) .
$$

If the ranks of either E_{i} is 0 we can determine $E_{i}(\mathbb{Q})$ (which is finite) and so $C(\mathbb{Q})$.

Example

$$
C: Y^{2}=13 X^{6}-1
$$

Exercise: C has points everywhere locally.
Take $E: y^{2}=x^{3}+13$ and $\phi: C \rightarrow E$ to be given by $(X, Y) \mapsto\left(-1 / X^{2}, Y / X^{3}\right)$. Now $E(\mathbb{Q})=\{\infty\}$. So
$C(\mathbb{Q}) \subseteq \phi^{-1}(\infty)=\{(0, i),(0,-i)\}$. So $C(\mathbb{Q})=\emptyset$.

Example

$$
C: Y^{2}=11 X^{6}-19
$$

Here:

- C has points everywhere locally.
- $E_{1}(\mathbb{Q}) \cong \mathbb{Z}$ and $E_{2}(\mathbb{Q}) \cong \mathbb{Z}$.

Example

$$
C: Y^{2}=11 X^{6}-19 .
$$

Here:

- C has points everywhere locally.
- $E_{1}(\mathbb{Q}) \cong \mathbb{Z}$ and $E_{2}(\mathbb{Q}) \cong \mathbb{Z}$.

Let p be a prime of good reduction. Note the commutative diagram:

- $\phi=\left(\phi_{1}, \phi_{2}\right)$; red denotes reduction modulo p;
- fix generators P_{1}, P_{2} for $E_{1}(\mathbb{Q}), E_{2}(\mathbb{Q})$ respectively and let $\eta(m, n)=\left(m P_{1}, n P_{2}\right)$;
- $\mu=$ red $\circ \eta$.

Let p be a prime of good reduction. Note the commutative diagram:

Lemma

$$
(\operatorname{red} \circ \phi)(C(\mathbb{Q})) \subset \phi\left(C\left(\mathbb{F}_{p}\right)\right) \cap \mu(\mathbb{Z} \times \mathbb{Z}) .
$$

Exercise: Use this with $p=7$ to show that $C(\mathbb{Q})=\emptyset$.

