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Assumptions

Prerequisites:

Galois Theory.

Algebraic Number Theory.

p-adic Numbers.

Algebraic Curves/Algebraic Geometry.

Elliptic Curves.

Warning: some of the mathematics will be only approximately correct.

“In mathematics you don’t understand things. You just get used to
them.”John von Neumann
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Basic Philosophy
A Basic Philosophy of Arithmetic Geometry: The geometry of an
algebraic variety governs its arithmetic.

A Central Question of Arithmetic Geometry: How does the geometry
govern the arithmetic?

Think of varieties as defined by systems of polynomial equations in affine
or projective space. An affine variety V ⊂ An defined over a field k is
given by a system of polynomial equations

V :


f1(x1, . . . , xn) = 0,

...
fm(x1, . . . , xn) = 0,

fi ∈ k[x1, . . . , xn].

For L ⊇ k, the set of L-points of V is

V (L) = {(a1, . . . , an) ∈ Ln : fi (a1, . . . , an) = 0 for i = 1, . . . ,m}.
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A projective variety V ⊆ Pn defined over k is given by a system of
polynomial equations

V :


f1(x0, . . . , xn) = 0,

...
fm(x0, . . . , xn) = 0,

fi ∈ k[x0, . . . , xn] are homogeneous.

For L ⊇ k, the set of L-points of V is

V (L) = {(a0, . . . , an) ∈ Ln+1\{0} : fi (a0, . . . , an) = 0 for i = 1, . . . ,m}/ ∼,

where (a0, . . . , an) ∼ (b0, . . . , an) if there is some λ ∈ L∗ such that
λai = bi for i = 0, . . . , n.

A variety V ⊂ Pn is covered by n + 1 affine patches:

V ∩ {xi = 1} i = 0, 1, . . . , n.
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Local Methods

We’re interested in understanding V (Q) for varieties defined over Q. More
generally, if k is a number field, we’re interested in V (k) for varieties
defined over k .
In particular, Q ⊂ R, and Q ⊂ Qp for all primes p. Think of R = Q∞.
Note V (Q) ⊆ V (Qp) for all p (including ∞). So,

V (Qp) = ∅ =⇒ V (Q) = ∅.

Example

V : x2 + y2 + z2 = 0, V ⊂ P2.

Note V (R) = ∅, so V (Q) = ∅. But also, V (Q2) = ∅.
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Local Methods

Definition

Let V be a variety defined over Q. We say that V has points
everywhere locally if V (Qp) 6= ∅ for all p (including ∞).

Trivial observation: V (Q) 6= ∅ =⇒ V has points everywhere locally.

Theorem (Hasse–Minkowski)

Let V ⊂ Pn be a quadric (n ≥ 3), defined over Q. Then the following are
equivalent:

V has points everywhere locally;

V (Q) 6= ∅ (V has global points).

We say, quadrics satisfy the Hasse principle.

Fact

For varieties V defined over Q (or a number field), there is an algorithm to
decide if V has points everywhere locally.
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Dimension

We classify varieties by dimension, a non-negative integer: 0, 1, 2, . . ..

Fact

A variety V ⊂ An or Pn, defined by a single polynomial equation
V : f = 0, where f is a non-constant polynomial, has dimension n − 1.

Example

V1 ⊂ A1, V1 : x3 + x + 1 = 0 has dimension 0.

V2 ⊂ A2, V2 : y2 = x6 + 1, has dimension 1.

V3 ⊂ P2, V3 : x3 + y3 + z3 = 0, has dimension 1.

V4 ⊂ P3, V4 : x3 + y3 + z3 + w4 = 0, has dimension 2.

Varieties of dimension 1, 2, 3, . . . are called curves, surfaces, threefolds,
etc.
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Smooth

Let V be an affine variety V ⊂ An of dimension d , defined over a field k,
and given by a system of polynomial equations

V :


f1(x1, . . . , xn) = 0,

...
fm(x1, . . . , xn) = 0,

fi ∈ k[x1, . . . , xn].

We say that P ∈ V (k) is smooth if the matrix

rank

(
∂fi
∂xj

(P)

)
i=1,...,m, j=1,...,n

= n − d .

We say that V is smooth or non-singular if it is smooth at all points
P ∈ V (k).

If V ⊂ Pn, we say that V is smooth if all the affine patches V ∩ {xi = 1}
are smooth.
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Example

Let
C : y2 = f (x)

where f is a non-constant polynomial. Then P = (a, b) ∈ C is singular iff

(2a − f ′(b)) = (0 0).

So
2a = 0, a2 = f (b), f ′(b) = 0.

If char(k) 6= 2, then f (b) = f ′(b) = 0. So C has a singular point if and
only if Disc(f ) = 0. So C is smooth iff Disc(f ) 6= 0.
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Example

Let V ⊂ Pn (defined over k) be given by

V : f (x0, . . . , xn) = 0,

where f 6= 0 is homogeneous. Then V is singular if and only if there is
P ∈ V (k) such that

∂f

∂x1
(P) = · · · =

∂f

∂xn
(P) = 0.
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Curves

We will restrict to curves.

Definition

By a curve C over a field k , we mean a smooth, projective, absolutely
irreducible (or geometrically irreducible), 1-dimensional k-variety.

Rational Points: Given C/Q, we want to understand C (Q).
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Example: Reducibility

Example

Consider the variety V ⊂ A2 given by the equation

V : x6 − 1 = y2 + 2y .

Can rewrite as
V : (y + 1− x3)(y + 1 + x3) = 0.

So
V = V1 ∪ V2

where
V1 : y + 1− x3 = 0, V2 : y + 1 + x3 = 0.

Note V is reducible, but V1 and V2 are irreducible. To understand V (Q)
enough to understand V1(Q) and V2(Q).
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Example: Absolute Reducibility

Example

V : 2x6 − 1 = y2 + 2y .

V is irreducible, but absolutely reducible since

VQ = {y + 1 +
√

2x3 = 0} ∪ {y + 1−
√

2x3 = 0}.

If (x , y) ∈ V (Q) then

y + 1 +
√

2x3 = y + 1−
√

2x3 = 0.

In other words
y = −1, x = 0.

So V (Q) = {(0,−1)}.

Moral: To understand rational points on varieties, it is enough to
understand rational on absolutely irreducible varieties.
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Genus
We classify curves by genus. This is a non-negative integer: 0, 1, 2, . . . .

Example

If
C/k : F (x , y , z) = 0, C ⊂ P2

is smooth, where F ∈ k[x , y , z ] is homogeneous of degree n, then C has
genus (n − 1)(n − 2)/2.

Example

Let

C/k : y2 = f (x), C ⊂ A2 (f ∈ k[x ] non-constant).

If C is smooth and deg(f ) = n then

genus(C ) =

{
(d − 1)/2 d odd

(d − 2)/2 d even.
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Curves of Genus 0

Theorem

Let C be a curve of genus 0 defined over k. Then C is isomorphic (over k)
to a smooth plane curve of degree 2 (i.e. a conic). Moreover, if C (k) 6= ∅
then C is isomorphic over k to P1.

Theorem

(The Hasse Principle) Let C/Q be a curve of genus 0. The following are
equivalent:

1 C (Q) 6= ∅;
2 C (R) 6= ∅ and C (Qp) 6= ∅ for all primes p.
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Theorem

(The Hasse Principle) Let C/Q be a curve of genus 0. The following are
equivalent:

1 C (Q) 6= ∅;
2 C (R) 6= ∅ and C (Qp) 6= ∅ for all primes p.

Theorem (Legendre, Hasse)

Let

C : ax2 + by2 + cz2 = 0, a, b, c non-zero, squarefree integers.

The following are equivalent:

1 C (Q) 6= ∅;
2 C (R) 6= ∅ and C (Qp) 6= ∅ for all primes p.

3 C (R) 6= ∅ and C (Qp) 6= ∅ for all primes p | 2abc.
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Genus 1

Theorem

If C is a curve of genus 1 over a field k and P0 ∈ C (k), then C is
isomorphic over k to a Weierstrass elliptic curve

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3 ⊂ P2,

where the isomorphism sends P0 to (0 : 1 : 0).
(Mordell–Weil) Moreover, if k = Q or a number field, then C (k) is a
finitely generated abelian group with P0 as the zero element.

1 There is no known algorithm for deciding if C (Q) 6= ∅.
2 There is no known algorithm for computing a Mordell–Weil basis for

C (Q) if it is non-empty.

But there is a descent strategy that usually works.
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Failure of the Hasse Principle in Genus 1

Example

Let

C : 3x3 + 4y3 + 5z3 = 0. (C is a curve of genus 1 in P2)

Then

1 C (R) 6= ∅ and C (Qp) 6= ∅ (C has points everywhere locally);

2 C (Q) = ∅ (C has no global points).

In other words, C is a counterexample to the Hasse principle.

Exercise

Show that X 4 − 17 = 2Y 2 (also a curve of genus 1) is a counterexample
to the Hasse principle.
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Genus ≥ 2

Theorem (Faltings)

Let C be a curve of genus ≥ 2 over a number field k . Then C (k) is finite.

1 There is no known algorithm for computing C (k).

2 There is no known algorithm for deciding if C (k) 6= ∅.

But there is a bag of tricks that can be used to show that C (k) is empty,
or determine C (k) if it is non-empty. These include:

1 Quotients;

2 Descent;

3 Chabauty;

4 Mordell–Weil sieve.

The purpose of these lectures is to get a feel for each of these methods
and see it applied to a particular example.
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Quotients

Let C be a curve over a field k. A quotient is curve D/k with a
non-constant morphism

φ : C → D

also defined over k .

Lemma (Trivial Observation)

φ(C (k)) ⊆ D(k). If we know D(k), we can compute C (k).
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Quotients

Example

Let
C : Y 2 = AX 6 + BX 4 + CX 2 + D, A,B,C ,D ∈ Z,

and suppose disc(AX 6 + BX 4 + CX 2 + D) 6= 0. So C has genus 2. Let

E1 : y2 = Ax3 +Bx2 +Cx +D, E2 : y2 = Dx3 +Cx2 +Bx +A.

Then E1, E2 are elliptic curves over Q. We have non-constant morphisms

φ1 : C → E1, (X ,Y ) 7→ (X 2,Y ),

and

φ2 : C → E2, (X ,Y ) 7→
(

1

X 2
,
Y

X 3

)
.

If the ranks of either Ei is 0 we can determine Ei (Q) (which is finite) and
so C (Q).
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Example

C : Y 2 = 13X 6 − 1.

Exercise: C has points everywhere locally.
Take E : y2 = x3 + 13 and φ : C → E to be given by
(X ,Y ) 7→ (−1/X 2,Y /X 3). Now E (Q) = {∞}. So
C (Q) ⊆ φ−1(∞) = {(0, i), (0,−i)}. So C (Q) = ∅.

Example

C : Y 2 = 11X 6 − 19.

Here:

C has points everywhere locally.

E1(Q) ∼= Z and E2(Q) ∼= Z.

Samir Siksek 22 / 24



Example

C : Y 2 = 11X 6 − 19.

Here:

C has points everywhere locally.

E1(Q) ∼= Z and E2(Q) ∼= Z.

Let p be a prime of good reduction. Note the commutative diagram:

C (Q)
φ

//

red
��

E1(Q)× E2(Q)

red
��

Z× Zη
oo

µ
uu

C (Fp)
φ

// E1(Fp)× E2(Fp)

φ = (φ1, φ2); red denotes reduction modulo p;

fix generators P1, P2 for E1(Q), E2(Q) respectively and let
η(m, n) = (mP1, nP2);

µ = red ◦η.
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Let p be a prime of good reduction. Note the commutative diagram:

C (Q)
φ

//

red
��

E1(Q)× E2(Q)

red
��

Z× Zη
oo

µ
uu

C (Fp)
φ

// E1(Fp)× E2(Fp)

Lemma

(red ◦φ)(C (Q)) ⊂ φ(C (Fp)) ∩ µ(Z× Z).

Exercise: Use this with p = 7 to show that C (Q) = ∅.
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