Index of /~maseap/progs/modularity

      Name                    Last modified       Size  Description

[DIR] Parent Directory 11-Mar-2016 15:56 - Parent [TXT] sieve.m 05-Oct-2013 18:52 15k [TXT] gl.m 05-Oct-2013 18:52 8k [TXT] Xs3s5.m 16-Jul-2014 11:17 13k [TXT] Xs3b5.m 16-Jul-2014 11:16 9k [TXT] Xe7.m 05-Oct-2013 18:52 6k [TXT] Xd7.m 05-Oct-2013 18:52 8k [TXT] Xb5b7.m 16-Jul-2014 11:10 5k [TXT] Xb3s5.m 05-Oct-2013 18:52 15k [TXT] Xb3b5.m 05-Oct-2013 18:52 4k [TXT] Qsqrt5.m 16-Jul-2014 11:22 5k



This directory contains MAGMA scripts for the verification of the
computations in the paper:

"Elliptic Curves over Real Quadratic Fields are Modular",
by Nuno Freitas, Bao Le Hung, Samir Siksek.

====================================================

gl.m      	For p=3,5,7, determines the odd irreducible subgroups
	  	of GL_2(F_p) having surjective determinant, and whose
		intersection with SL_2(F_p) is absolutely reducible.

====================================================

Xb3b5.m   	Checks the correctness of the model for X(b3,b5)=X_0(15) 
	 	 and j-map X(b3,b5) --> X(1) given by the MAGMA 
	  	"small curves database".

===================================================

Xs3b5.m   	Gives a model for X(s3,b5) and the j-map.

==================================================

Xd7.m     	Derives a model for X(d7) and the j-map, 
		and verifies that they are equivalent to 
		the model and j-map given by Elkies.

==================================================

Xe7.m     	Derives a model for X(e7) and the j-map.

==================================================

Xb5b7.m   	Computations on X(b5,b7)

==================================================

Xb3s5.m   	Computations on X(b3,s5)

=================================================

Xs3s5.m	  	Computations on X(s3,s5)

=================================================

Qsqrt5.m  	Computations for showing that elliptic curves 
		over $\Q(\sqrt{5})$ are modular.

=================================================

sieve.m        A sieve for quadratic points on
	       X(b3,b5,d7)
	       X(s3,b5,d7)
	       X(b3,b5,e7)
               X(s3,b5,e7)