Index of /~maseap/progs/modularity
Name Last modified Size Description
Parent Directory 11-Mar-2016 15:56 - Parent
sieve.m 05-Oct-2013 18:52 15k
gl.m 05-Oct-2013 18:52 8k
Xs3s5.m 16-Jul-2014 11:17 13k
Xs3b5.m 16-Jul-2014 11:16 9k
Xe7.m 05-Oct-2013 18:52 6k
Xd7.m 05-Oct-2013 18:52 8k
Xb5b7.m 16-Jul-2014 11:10 5k
Xb3s5.m 05-Oct-2013 18:52 15k
Xb3b5.m 05-Oct-2013 18:52 4k
Qsqrt5.m 16-Jul-2014 11:22 5k
This directory contains MAGMA scripts for the verification of the
computations in the paper:
"Elliptic Curves over Real Quadratic Fields are Modular",
by Nuno Freitas, Bao Le Hung, Samir Siksek.
====================================================
gl.m For p=3,5,7, determines the odd irreducible subgroups
of GL_2(F_p) having surjective determinant, and whose
intersection with SL_2(F_p) is absolutely reducible.
====================================================
Xb3b5.m Checks the correctness of the model for X(b3,b5)=X_0(15)
and j-map X(b3,b5) --> X(1) given by the MAGMA
"small curves database".
===================================================
Xs3b5.m Gives a model for X(s3,b5) and the j-map.
==================================================
Xd7.m Derives a model for X(d7) and the j-map,
and verifies that they are equivalent to
the model and j-map given by Elkies.
==================================================
Xe7.m Derives a model for X(e7) and the j-map.
==================================================
Xb5b7.m Computations on X(b5,b7)
==================================================
Xb3s5.m Computations on X(b3,s5)
=================================================
Xs3s5.m Computations on X(s3,s5)
=================================================
Qsqrt5.m Computations for showing that elliptic curves
over $\Q(\sqrt{5})$ are modular.
=================================================
sieve.m A sieve for quadratic points on
X(b3,b5,d7)
X(s3,b5,d7)
X(b3,b5,e7)
X(s3,b5,e7)