
THE MODULAR APPROACH TO DIOPHANTINE EQUATIONS

SAMIR SIKSEK

Abstract. The aim of these notes is to communicate Ribet’s Level–Lowering
Theorem and related ideas in an explicit and simplified (but hopefully still
precise) way, and to explain how these ideas are used to derive information
about solutions to Diophantine equations.
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1. Introduction

These notes are intended as a self-contained tutorial for those who would like
to solve Diophantine equations using the modular approach. They were originally
written to accompany a short course I gave during the trimester on Explicit Meth-
ods in Number Theory, held at the Institut Henri Poincaré (September–December
2004). I have since given similar short courses at the Max Planck Institute in Bonn
(February 2007) and at the Lorentz Centre in Leiden (May 2007), and these have
given me the opportunity to test and revise the notes.

Date: October 3, 2007.
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The reader is asked to take some deep results on trust. We do not assume
familiarity with modular forms. We do assume familiarity with elliptic curves, but
no more than what is contained in, for example, Silverman’s book [32], or any
undergraduate course on elliptic curves.

To be able to verify the proofs, and to solve his/her own equations, the reader
will need the computer package MAGMA [5] though this is not essential for under-
standing the notes. The reader wishing to try MAGMA but who does not have access
to a machine having MAGMA can try using the online MAGMA calculator:
http://magma.maths.usyd.edu.au/calc/
The package MAGMA is needed to compute newforms. An alternative is to use the
William Stein’s Modular Forms Database [34], and do the programming in any avail-
able computer package (GP [1] is highly recommended). It is hoped that eventually
it will also be possible to use the computer package SAGE [35] for the computation
of newforms.

I am grateful to Henri Cohen, Tom Fisher and Maurice Mignotte for many
corrections to these notes, and to William Stein for useful conversations. I am
indebted to the organisers of the trimester on Explicit Methods in Number Theory
for inviting me to give these lectures, to CNRS/Paris XI for financial support, and
the Institut Henri Poincaré for its hospitality.

2. Facts about newforms

Think about newforms 1 in terms of their q-expansions

(1) f = q +
∑
n≥2

cnqn.

Here are some facts about newforms:

(a) Associated to our newforms will be two integers: a weight k and a level
N (positive integer). If we fix k and N then there are only finitely many
newforms of weight k and level N . In these notes the weight k will
always be 2.

(b) If f is a newform with coefficients ci as in (1) and K = Q(c2, c3, . . .) then
K is a totally real finite extension of Q.

(c) The coefficients ci in fact belong to the ring of integers OK of the number
field K.

(d) If l is a prime then

|cσ
l | ≤ 2

√
l for all embeddings σ : K ↪→ R.

We shall only be concerned about newforms up to Galois conjugacy. The number
of newforms (up to Galois conjugacy) at a particular level depends in a very erratic
way on the level N .

Theorem 1. There are no newforms at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60.

1For those familiar with modular forms, by a newform of level N we mean a normalized cusp
form of weight 2 for the full modular group, belonging to the new space at level N , that is a
simultaneous eigenfunction for the Hecke operators.



MODULAR APPROACH TO DIOPHANTINE EQUATIONS 3

Example 2.1. The newforms at a fixed level N can be computed using the modular
symbols algorithm [36], [12]. Thankfully, this has been implemented in MAGMA [5]
by William Stein. To compute in MAGMA the newforms at level N , use the command
Newforms(CuspForms(N)). For example, the newforms at level 110 are

f1 = q − q2 + q3 + q4 − q5 − q6 + 5q7 + · · · ,

f2 = q + q2 + q3 + q4 − q5 + q6 − q7 + · · · ,

f3 = q + q2 − q3 + q4 + q5 − q6 + 3q7 + · · · ,

f4 = q − q2 + θq3 + q4 + q5 − θq6 − θq7 + · · · ,

where the first three have coefficients in Z and the last one has coefficients in Z[θ]
where θ = (−1 +

√
33)/2. Note that there is a fifth newform at level 110 which

is the conjugate of f4. As stated above, in these notes we will only need to worry
about newforms up to Galois conjugacy.

3. Correspondence between rational newforms and elliptic curves

We call a newform rational if its coefficients are all in Q, otherwise we call it
irrational.

Theorem 2. (The Modularity Theorem for Elliptic Curves) Associated to any
rational newform f of level N is an elliptic curve Ef/Q of conductor N so that
for all primes l - N

cl = al(Ef )
where cl is the l-th coefficient in the q-expansion of f and al(Ef ) = l+1−#Ef (Fl).
For any given positive integer N , the association f 7→ Ef is a bijection between
rational newforms of level N and isogeny classes of elliptic curves of conductor N .

The association f 7→ Ef is due to Shimura. The fact that this association is
surjective was previously known as the Modularity Conjecture, and first proved for
squarefree N (the semi-stable case) by Wiles [38], [37]. The proof was completed in
a series of papers by Diamond [15], Conrad, Diamond and Taylor [11], and finally
Breuil, Conrad, Diamond and Taylor [6].

4. Some Useful MAGMA Commands

This section is a short MAGMA tutorial for those who would like to carry out
some of the computations described in these notes, or would like to try some of the
exercises.

Example 4.1. We choose an elliptic curve at random and calculate its minimal
model and discriminant.

> E:=EllipticCurve([0,8,0,48,0]);
> E;
Elliptic Curve defined by y^2 = x^3 + 8*x^2 + 48*x over Rational Field
> F:=MinimalModel(E);
> F;
Elliptic Curve defined by y^2 = x^3 - x^2 + 2*x - 2 over Rational Field
> D:=Discriminant(F);
> D;
-1152
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> Factorisation(D);

>> Factorisation(D);
^

Runtime error in ’Factorisation’: Bad argument types

We want to factorise the minimal discriminant D. The problem here is that
MAGMA is thinking about D as a rational number (because it is the discriminant
of an elliptic curve F defined over the rationals). MAGMA factorises integers but
not rationals.

> D:=Integers()!D;
> Factorisation(D);
[ <2, 7>, <3, 2> ]

The first line tells MAGMA to think of D as an integer. Now MAGMA is happy
to factor D and we know that D = 27×32. Let us also compute the conductor and
its factorisation.

> N:=Conductor(E);
> Factorisation(N);
[ <2, 7>, <3, 1> ]

Example 4.2. In example 2.1 we looked at the newforms at level 110. Let us
return to these and reexamine them with a view towards the Modularity Theorem
(Theorem 2).

> NFs:=Newforms(CuspForms(110));
> NFs;
[* [*

q - q^2 + q^3 + q^4 - q^5 - q^6 + 5*q^7 + O(q^8)
*], [*

q + q^2 + q^3 + q^4 - q^5 + q^6 - q^7 + O(q^8)
*], [*

q + q^2 - q^3 + q^4 + q^5 - q^6 + 3*q^7 + O(q^8)
*], [*

q - q^2 + a*q^3 + q^4 + q^5 - a*q^6 - a*q^7 + O(q^8),
q - q^2 + b*q^3 + q^4 + q^5 - b*q^6 - b*q^7 + O(q^8)

*]*]

MAGMA returns the newforms in Galois conjugacy classes. The first three
classes contain one newform each. Thus each of the first three newforms is rational
and so corresponds to an elliptic curve. Let us take the third one, for example, and
see which elliptic curve it corresponds to.

> f:=NFs[3,1];

The [3, 1] tells MAGMA to pick out the first element of the third conjugacy class.

> f;
q + q^2 - q^3 + q^4 + q^5 - q^6 + 3*q^7 + O(q^8)
> E:=EllipticCurve(f);
> E;
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Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + 10*x - 45 over Rational Field
> Conductor(E);
110

Notice that the elliptic curve corresponding to f has conductor 110 which is
equal to the level of f .

We can even get the reference of E in Cremona’s tables [12];

> CremonaReference(E);
110A1

Now let us look instead at the fourth newform.

> g:=NFs[4,1];
> g;
q - q^2 + a*q^3 + q^4 + q^5 - a*q^6 - a*q^7 + O(q^8)

MAGMA displays only a few coefficients of g, but we can ask for any coefficient
we like.

> Coefficient(g,17);
-a - 2

But what is a? The coefficients of g must live in some totally real field. We know
that this field is quadratic since g has only one other conjugate in its conjugacy
class.

> N<a>:=Parent(Coefficient(g,1));
> N;
Number Field with defining polynomial x^2 + x - 8 over the Rational Field

N is the number field generated by the coefficients of g, and a is a root of
x2 + x− 8. In other words a = (−1 +

√
33)/2 (up to conjugacy).

5. Level-Lowering

5.1. ‘arises from’.

Definition. Let E be an elliptic curve over the rationals of conductor N , and
suppose that f is a newform (of weight 2 as always) and level N ′ with q-expansion
as in (1), and coefficients ci generating the number field K/Q. We shall say 2 that
the curve E arises modulo p from the newform f (and write E ∼p f) if there is
some prime ideal P | p of K such that for almost all primes l, we have al(E) ≡ cl

(mod P).

In fact we can be a little more precise.

Proposition 5.1. Suppose E ∼p f . Then there is some prime ideal P | p of K
such that for all primes l

2Rather that saying that E arises modulo p from the newform f , it is usual here to say that
the Galois representation

ρE
p : Gal(Q/Q) → Aut(E[p])

arises from the newform f .
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(i) if l - pNN ′ then al(E) ≡ cl (mod P), and
(ii) if l - pN ′ and l || N then l + 1 ≡ ±cl (mod P).

If f is a rational newform, then we know that f corresponds to some elliptic
curve F say (this is Ef in the notation of Theorem 2). If E arises modulo p from
f then we shall also say that E arises modulo p from F (and write E ∼p F ).

Proposition 5.2. Suppose that E, F are elliptic curves over Q with conductors N
and N ′ respectively. Suppose that E arises modulo p from F . Then for all primes l

(i) if l - NN ′ then al(E) ≡ al(F ) (mod p), and
(ii) if l - N ′ and l || N then l + 1 ≡ ±al(F ) (mod p).

It does seem that this Proposition is merely a restatement of Proposition 5.1 in
this special case. However it does represent a slight but very important strengthen-
ing (due to Kraus and Oesterlé [19]); namely the assumption that l 6= p is removed.
This is important because later on p will be an unknown prime exponent in some
equation that we would like to solve. It is thus awkward to have conditions that
depend on p.

We note in passing that the condition l - NN ′ is equivalent to saying that the
two elliptic curves E and F have good reduction at l. The condition l - N ′ and
l || N means that E has multiplicative reduction at l, whilst F has good reduction
at l.

5.2. Ribet’s Level-Lowering Theorem. Let E be an elliptic curve over Q. Let
∆ = ∆min be the discriminant for a minimal model of E, and N be the conductor
of E. Suppose p is a prime, and let 3

(2) Np = N
/ ∏

q||N,
p | ordq(∆)

q.

We emphasize that the ∆ appearing in the definition of Np must be the minimal
discriminant.

Theorem 3. (A simplified special case of Ribet’s Level-Lowering Theorem) Suppose
E is an elliptic curve over Q and p ≥ 5 is prime. Suppose further that E does not
have any p-isogenies. Let Np be as defined above. Then there exists a newform f
of level Np such that E ∼p f .

Ribet’s Theorem is much more general than this, but this is the only case that we
need. Ribet’s Theorem has a modularity assumption, but since we are restricting
ourselves to elliptic curves, this follows from Theorem 2 (the Modularity Theorem).

Example 5.1. Consider the elliptic curve

E : y2 = x3 − x2 − 77x + 330

3A highbrow remark that should be omitted on first reading: This Np is not always
the same as the Serre conductor. If we denote the Serre conductor by N ′

p then N ′
p | Np and the

two can only differ by a power of p. In fact Ribet’s Theorem allows us to get a newform at level N ′
p

and weight kp ≥ 2 (kp is the Serre weight). However in these notes we have restricted ourselves
to newforms of weight 2, and it turns out that we obtain a newform at level Np and not at N ′

p.

In my experience, for purposes of practical computation, this is a bonus and not a hindrance.
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with Cremona reference 132B1. The minimal discriminant and conductor are re-
spectively

∆min = 24 × 310 × 11, N = 22 × 3× 11.

The only isogeny the curve E has is a 2-isogeny. Hence we may apply Ribet’s
Theorem with p = 5. From the above recipe (2) for the level we find that Np = 44.
However, there is only one newform at level 44 which corresponds to the elliptic
curve

F : y2 = x3 + x2 + 3x− 1
with Cremona reference 44A1. Thus E ∼5 F . We record here the traces for E and
F for primes 2 ≤ l ≤ 19.

l 2 3 5 7 11 13 17 19
al(E) 0 −1 2 2 −1 6 −4 −2
al(F ) 0 1 −3 2 −1 −4 6 8

The reader is invited to compare this table with what is expected from Propo-
sition 5.2.

Exercise 5.2. Let

E : y2 + xy = x3 − x2 − 47808x + 4476064.

(i) Calculate the minimal discriminant and the conductor of E, and their fac-
torisations.

(ii) Show that E does not have 5-isogenies. One way of doing this is to ask
MAGMA for the 5-th division polynomial of E and its factorisation:
Factorisation(DivisionPolynomial(E));

(iii) Apply Ribet’s Theorem to E with p = 5. Show that E ∼5 f where f is a
newform of level N5 = 171.

(iv) Compute all the newforms at level 171. Determine which one does E arise
from modulo 5 (warning: there is no reason to suppose that this newform
f is one of the rational ones—be sure to consider both the rational and the
irrational newforms).

6. Absence of Isogenies

To be able to apply Ribet’s Theorem we must know that our elliptic curve E
does not have a p-isogeny. In Exercise 5.2 we did this by writing down the p-th
division polynomial of E and testing it for irreducibility. We will shortly apply
Ribet’s Theorem to Frey elliptic curves. We will explain what Frey curves are
later, but for now let us just say that these are elliptic curves that depend on some
unknown solution to a Diophantine equation that we would like to solve. Therefore
the coefficients of E are not known exactly. Even if p is fixed it is not usually easy
to decide if the p-th division polynomial is irreducible. However, the situation is
normally much more difficult than that. Normally, p is some unknown exponent
in the Diophantine equation that we would like to solve (think of the exponent in
Fermat’s Last Theorem). We need some way of saying that infinitely many division
polynomials are irreducible. What is in fact needed is the following beautiful and
powerful theorem of Mazur.

Theorem 4. (Mazur [24]) Suppose E/Q is an elliptic curve and that at least one
of the following conditions holds.
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• p ≥ 17 and j(E) 6∈ Z[ 12 ],
• or p ≥ 11 and E is a semi-stable elliptic curve,
• or p ≥ 5, #E(Q)[2] = 4, and E is a semi-stable elliptic curve,

Then E does not have any p-isogenies.

Theorem 5. (Diamond and Kramer [16]) Suppose that E/Q is an elliptic curve
with conductor N . If ord2(N) = 3, 5, 7 then E does not have any isogenies of odd
degree.

Example 6.1. Let E be a semi-stable elliptic curve and ∆ be its minimal discrim-
inant. Brumer and Kramer conjectured [7] that if |∆| is a perfect p-th power for
some prime p, then p ≤ 7 and E has a point of order p. Serre gave a proof of this in
[29] that was dependent at the time on what is known as Serre’s conjectures. This
dependency has now been removed thanks to the work of Ribet and Wiles. Let us
follow some of the steps of Serre’s proof.

It is easy to see that Np = 1. Suppose that p ≥ 11. By Theorem 4 the curve E,
being semi-stable, does not have p-isogenies. Thus Ribet’s Theorem implies that
E ∼p f where f is a newform of level 1. But there are no newforms of level 1. This
contradiction shows that p ≤ 7. With some extra work, Serre proves not only that
p ≤ 7 but that the curve E has non-trivial p-torsion.

Example 6.2. If E has no p-isogenies then we know from Ribet’s Theorem that
E ∼p f for some newform f at level Np. At level Np there may be rational and non-
rational newforms, and some of the non-rational ones can be defined over number
fields of rather large degree. There is no reason to suppose that f is rational, or
even that the degree of the number field over which f is defined is small as we will
show in this example.

Let p be a prime and let L = 2p+4 + 1; here we do not assume that L is prime.
Write

E : Y 2 = X(X + 1)(X − 2p+4)

The minimal discriminant and conductor are respectively given by

∆min = 22pL2, N = 2Rad(L).

From Mazur’s Theorem E has no p-isogenies, and so applying Ribet’s Theorem we
see that E ∼p f for some newform at level Np, defined over some number field K.
We cannot calculate Np exactly since we do not know if L has any p-th powers
in its prime–power decomposition, but we observe that 2 - Np. Moreover 2 || N .
Applying Proposition 5.1 we see that

p | NormK/Q(3± c2),

where ci are the coefficients of the q expansion of f . From the facts we have stated
about newforms we know that all the conjugates of c2 are bounded by 2

√
2 < 3.

Hence
p < 6[K:Q]

or in other words

[K : Q] >
log p

log 6
,

showing indeed that an elliptic curve can arise from a newform whose degree (of
field of definition) is arbitrarily large.
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7. Frey Curves or ‘How to use Ribet’s Theorem?’

How do we use Ribet’s Theorem to solve Diophantine equations. Well, given
a Diophantine equation, we shall suppose that it has a solution and associate the
solution somehow to an elliptic curve E called a Frey curve, if possible. The key
properties of a ‘Frey curve’ are that

• the coefficients of E depend on the solution to the Diophantine equation,
• The minimal discriminant of the elliptic curve can be written in the form

∆ = C ·Dp where D is an expression that depends on the solution of the
Diophantine equation. The factor C does not depend on the solutions
but only on the equation itself.

• E has multiplicative reduction at primes dividing D.
The conductor N of E will be divisible by the primes dividing C and D, and those
dividing D will be removed when we write down Np. In other words we can make
a finite list of possibilities for Np that depend on the equation. Thus we are able
to list a finite set of newforms f such that E ∼p f . From knowing the newforms
we deduce local information about E, and since the model for E has coefficients
that depend on solutions of our original Diophantine equation, we get information
about these solutions.

The rest of these notes is devoted to giving concrete examples of how Ribet’s
Theorem is used in getting information about solutions to Diophantine equations
and occasionally solving them.

8. Fermat’s Last Theorem

In this section we prove Fermat’s Last Theorem. In fact we solve a more general
equation.

Theorem 6. Suppose p ≥ 5 is prime. The equation

(3) xp + 2ryp + zp = 0

has no solutions with xyz 6= 0, and x, y, z pairwise coprime except r = 1 and
(x, y, z) = ±(−1, 1,−1).

Proof. This Theorem is due to Wiles [38] for r = 0, Ribet [27] for r ≥ 2, and
Darmon and Merel [13] for r = 1. Suppose that x, y, z is a solution to (3) that is
non-trivial (meaning xyz 6= 0) and primitive (meaning x, y, z are pairwise coprime).
We may assume without loss of generality that

xp ≡ −1 (mod 4), 2ryp ≡ 0 (mod 2), 0 ≤ r < p.

Associate to this solution the elliptic curve (called a Frey curve)

(4) E : Y 2 = X(X − xp)(X + 2ryp).

We write the associated invariants

c4 = 16(z2p − 2rxpyp), ∆ = 22r+4(xyz)2p, j =
(z2p − 2rxpyp)3

22r−8(xyz)2p
.

Applying Tate’s algorithm [33, pages 364–369] we compute the minimal discrimi-
nant and conductor:

∆min =

{
22r+4(xyz)2p if 16 - 2ryp

22r−8(xyz)2p if 16 | 2ryp,
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(5) N =


2 Rad2(xyz) r ≥ 5 or y is even
Rad2(xyz) r = 4 and y is odd
8 Rad2(xyz) r = 2, 3 and y is odd
32 Rad2(xyz) r = 1 and y is odd,

where for positive integer R and prime q we let

Radq(R) =
∏

l | R prime,
l 6=q

l.

Applying the recipe in (2) we find that

Np =



2 r = 0 or r ≥ 5
1 r = 4
2 1 ≤ r ≤ 3 and y is even
8 r = 2, 3 and y is odd
32 r = 1 and y is odd.

Before applying Ribet’s Theorem (Theorem 3) we must ensure that E does not
have p-isogenies. Now we know that E(Q)[2] = 4. Thus by Mazur’s Theorem
(Theorem 4), if the conductor N is squarefree then E does not have p-isogenies
(recall that p ≥ 5 and is prime). Examining the formulae for N in (5) we see that if
N is not squarefree then ord2(N) = 3 or 5. In this case it follows from Theorem 5
that E has not p-isogenies.

Now Ribet’s Theorem tells us that there is a newform f of level Np such that
E ∼p f . Theorem 1 tells us that there are no newforms of levels 1, 2, 8. Thus we
deduce that r = 1 and y is odd. We cannot yet eliminate this last possibility since
there are newforms at level 32. In fact there is precisely one newform at level 32
corresponding to the elliptic curve

(6) F : Y 2 = X(X + 1)(X + 2)

with Cremona reference 32A2. Notice that we can get the elliptic curve F by letting
x = −1, y = 1, r = 1, in the model for E given in (4). That is, we are substituting
a solution to the equation (3) that satisfies the additional constraints placed above.
At this point all that we can conclude is that E arises modulo p from F . The curve
F is unusual in that it has complex multiplication. This fact enabled Darmon and
Merel to solve the equation (3). The proof will be completed later after we take a
closer look at the consequence for an elliptic curve to arise modulo p from another
curve with complex multiplication. �

8.1. E arises from a curve having complex multiplication. To solve the
equation xp+2yp+zp = 0 we shall use the following theorem. For other Diophantine
applications of this theorem see [13], [22], [18].

Theorem 7. Suppose that E and F are elliptic curves over Q, and F has complex
multiplication by an order in a number field L. Suppose that E ∼p F for some
prime p.

(i) (Halberstadt and Kraus [17]) If p = 11 or p ≥ 17, and p splits in L then
the conductors of E and F are equal.
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(ii) (Darmon and Merel [13]) If p ≥ 5 and p is inert in L, and E has a Q-
rational subgroup of order 2 or 3, then j(E) ∈ Z[ 1p ].

Remark. In part (ii) of the theorem, if we assume that p2 - N and p - N ′ where N ,
N ′ are respectively the conductor of E, F then we can deduce that j(E) ∈ Z. To
see this suppose that j(E) ∈ Z[ 1p ]\Z. Then p || N , and so by Proposition 5.2

p + 1 ≡ ±ap(F ) (mod p).

But since p is inert in L, and F has complex multiplication by an order in L we
see that ap(F ) = 0. This immediately gives a contradiction.

Completion of the Proof of Theorem 6. We now return to complete the proof of
Theorem 6. We have shown that r = 1, that y is odd and E ∼p F where E and F
are as in (4) and (6). To simplify we assume that p 6= 5, 13. However we note that
Dénes [14] has solved the equation xp + 2yp + zp = 0 for p ≤ 31 by classical means.

Now F has complex multiplication by Z[i]. By Theorem 7, if p ≡ 1 (mod 4)
(p splits in Q(i)), then the conductor of E is 32. From the formula for the conductor
in (5) we know that x, y and z are not divisible by any odd primes. But x, y, z are
odd, and it follows (x, y, z) = ±(−1, 1,−1).

Suppose now that p ≡ 3 (mod 4) (p is inert in Q(i)). Note also that E has a
point of order 2. Then j(E) ∈ Z. From the formula for the j-invariant above and
the pairwise coprimality of x, y, z above, we see again that x, y, z is not divisible
by odd primes and so (x, y, z) = ±(−1, 1,−1). �

Exercise 8.1. Use the Theorem 1 and the recipes in Section 13 of the notes to
study the equation

xp + 6ryp + zp = 0

under the conditions: p ≥ 5 is prime, r ≥ 1 and x, y, z are pairwise coprime and
not divisible by 2, 3. What can you deduce about r?

Exercise 8.2. Consider the Diophantine equation

(7) x2 = yp + 2mzp, x, y, z are non-zero, odd and coprime,

where p is prime, and m ≥ 2. Without loss of generality, assume that x ≡ 3
(mod 4) and associate a solution of this equation to the Frey curve

E : Y 2 = X(X2 + 2xX + yp).

Mimic the proof of Theorem 6 to show, assuming that p is suitably large, that the
only solutions to (7) are m = 3, x = ±3, y = z = 1 and p arbitrary. Where does
the proof break down for m = 1? [If you get stuck, then this equation is solved in
[18] and [30]. You might find the paper of Papadopoulos [25] useful for calculating
the conductor.]

9. An Occasional Bound for the Exponent

The proof of Theorem 6 is somewhat miraculous. In general, we expect to find
newforms at the level predicted by Ribet’s Theorem. Moreover, complex multiplica-
tion is rather rare. In general what we will probably find is a collection of newforms,
some rational, and some irrational. It is however often possible to obtain a bound
for the exponent p via the following Proposition.
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Proposition 9.1. Let E/Q be an elliptic curve of conductor N , and suppose that
t | #E(Q)tors. Suppose that f is a newform of level N ′. Let l be a prime such that
l - N ′ and l2 - N . Let

Sl =
{

a ∈ Z : −2
√

l ≤ a ≤ 2
√

l, a ≡ l + 1 (mod t)
}

.

Let cl be the l-th coefficient of f and define

B′
l(f) = NormK/Q((l + 1)2 − c2

l )
∏

a∈Sl

NormK/Q(a− cl)

and

Bl(f) =

{
l ·B′

l(f) if f is not rational,
B′

l(f) if f is rational.

If E ∼p f then p | Bl(f).

Proof. This follows easily from Propositions 5.1, 5.2 and the fact the if l is a prime
of good reduction for E then l + 1− al(E) = #E(Fl) ≡ 0 (mod t). �

Notice that this Proposition allows us to bound p provided we can find l such
that Bl(f) 6= 0. We are guaranteed to succeed in two cases:

(a) Suppose that f is irrational. Then for infinitely many primes l we have
Bl(f) 6= 0. This is true since cl 6∈ Q for infinitely many of the coefficients cl.

(b) Suppose that f is rational and that t is prime or t = 4. Suppose that
for every elliptic curve F in the isogeny class corresponding to f we have
t - #F (Q)tors. Then there are infinitely many primes l such that Bl(f) 6= 0.

Exercise 9.1. Let L = 2m − 1 be a Mersenne prime with m ≥ 5. Show that there
is some newform f having level 2L such that Bl(f) = 0 for all primes l 6= 2, L.
[Hint: Show that the elliptic curve

F : Y 2 = X(X + 1)(X + 2m)

has conductor 2L. Now let f be the newform corresponding to F .]

10. An Example of Serre-Mazur-Kraus

Let L be an odd prime number. In this section we take a close look at the
equation

(8) xp + Lryp + zp = 0, xyz 6= 0, p ≥ 5 is prime,

studied by Serre in [29] and Kraus in [20] – the connection of this equation with
Mazur will become apparent. We assume that

(9) x, y, z are pairwise coprime, 0 < r < p.

Let A, B, C be some permutation of xp, Lryp and zp such that A ≡ −1 (mod 4)
and 2 | B, and let E be the elliptic curve

(10) E : Y 2 = X(X −A)(X + B).

The minimal discriminant and conductor of E are

∆min = 2−8L2r(xyz)2p, N = Rad(Lxyz).

The recipe for Np in (2) shows that

Np = 2L.
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Notice that the elliptic curve E is semi-stable (squarefree conductor N) and that
#E(Q)[2] = 4. By Theorem 4, E does not have p-isogenies. Applying Ribet’s
Theorem we see that E arises modulo p from some newform f at level Np = 2L.

The following result appears in Serre’s paper [29].

Theorem 8. (Mazur) Suppose that L is an odd prime that is neither a Mersenne
prime nor a Fermat prime (hence L cannot be written in the form 2m ± 1). Then
there is a constant CL such that if (x, y, p) is a solution to equation (8) satisfying
condition (9) then p ≤ Cl.

Proof. The point of the proof is that for primes L that are neither Mersenne nor
Fermat primes, there are no elliptic curves having full 2-torsion and conductor 2L.
The theorem then follows from the remarks made after Proposition 9.1.

We briefly sketch why there are no elliptic curves having full 2-torsion and con-
ductor 2L unless L is a Mersenne or Fermat prime 4. Suppose F is a curve with
conductor 2L and full 2-torsion. It is possible to construct a model for F of the
form

Y 2 = X(X − a)(X + b)

which is minimal away from 2, where a, b are integers. Now the discriminant of
this model must be of the form 2uLv. However the discriminant of this model is

16a2b2(a + b)2.

As the model is minimal but has bad reduction at L, we find that precisely one of
a, b, a + b is divisible by L. We quickly obtain a relation of the form

±2α ± 2β ± 2γLδ = 0

where δ ≥ 1. From this it is easy to deduce that L is a Fermat or Mersenne
prime. �

In fact Kraus [20] went even further proving the following:

Theorem 9. (Kraus) Suppose that L is an odd prime number that is neither a
Mersenne prime nor a Fermat prime. Suppose that (x, y, p) is a solution to equation
(8) satisfying conditions (9). Then

p ≤

(√
L + 1

2
+ 1

)L+11
6

The bound is rather large. However, in practice we obtain a very tiny bound
since we can, for any given newform f , compute Bl(f) for many primes l and take
the greatest common divisor of them.

Theorem 10. Suppose 3 ≤ L < 100 is prime. Then the equation (8) has no
solutions satisfying conditions (9) unless L = 31, in which case E ∼p F where F
is the curve 62A1.

Proof. The proof of this result depends on Proposition 9.1, the method of Kraus
(Proposition 11.2 below), and the method of predicting exponents (Section 12). See
Exercise 11.1 and Exercise 12.1.

4There is no proof given of this in [29]. Here we follow [20, Lemme 7].
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For illustration we treat the case L = 19. From the above we know that E ∼p f
for some newform at level Np = 38. There are two newforms at level 38:

f1 = q − q2 + q3 + q4 − q6 − q7 + · · ·
f2 = q + q2 − q3 + q4 − 4q5 − q6 + 3q7 + · · ·

We apply Proposition 9.1 with t = 4 and compute B3(f1) = −15 and B5(f1) =
−144. By Proposition (9.1), if E ∼p f1 then p must divide both. But this is
impossible as we are assuming that p ≥ 5.

Also

B3(f2) = 15, B5(f2) = 240, B7(f2) = 1155, B11(f2) = 3360.

Thus if E ∼p f2 then p = 5. It turns out that all of the Bl(f2) are divisible by 5. To
see why let F be the elliptic curve 38B1; this is the elliptic curve that corresponds
to f2. Now looking at Cremona’s tables [12] we see that this curve has a point of
order 5. Hence 5 | #F (Fl) for all primes l - 38. In other words 5 | (l + 1 − al(F ))
for all primes l - 38. Now we see from the definition of Bl(f2) that 5 | Bl(f2) for
all primes l - 38. Thus we are unable to eliminate the possibility that p = 5 using
Proposition 9.1. However we can turn the situation to our advantage as follows:
suppose that E ∼5 f2 or equivalently E ∼5 F . Then al(E) ≡ al(F ) (mod 5) for all
but finitely many primes l. Hence 5 | (l+1−al(E)) for all but finitely many primes
l. It follows from the Čebotarev Density Theorem that E has a 5-isogeny (do this
as an exercise, or see [28, IV-6]). But E is semi-stable and has full 2-torsion; by
Mazur’s Theorem (Theorem 4) we have reached a contradiction. Thus we know
that equation (8) does not have any solutions with L = 19 and p ≥ 5 satisfying
conditions (9). For the analogue of this trick when the newform is irrational see
[20, pages 1155–1156]. �

Exercise 10.1. Let A, B, C be non-zero integers such that A + B + C = 0. Let
E be the elliptic curve

E : Y 2 = X(X −A)(X + B).

Show that any permutation of A, B, C will give a curve that is isomorphic to E or
to its quadratic twist by −1.

11. The Method of Kraus

Proposition 9.1 is often capable of bounding p when our (hypothetical Frey)
elliptic curve arises modulo p from a newform f . There is another rather interesting
method, due to Kraus [21], that can often be used to derive a contradiction for a
fixed value of p. Kraus used this method to prove that the equation

a3 + b3 = cp, a, b, c non-zero and coprime,

has no solutions for 11 ≤ p ≤ 10000. A combination of Proposition 9.1, the method
of Kraus and classical techniques for Diophantine equations recently lead to the
complete solutions of equations x2 + D = yn for n ≥ 3 and 1 ≤ D ≤ 100 (see [9],
[31]). In this section we adapt the method of Kraus for equation (8).

We continue with the notation of the previous section. Recall that E is the curve
(10) where A, B, C is some permutation of xp, Lryp, zp such that A ≡ −1 (mod 4)
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and 2 | B. It is somewhat awkward to work with the curve E since there are six
possibilities for the triple A, B, C. However, letting

E′ : Y 2 = X(X − xp)(X + zp),

we see (from Exercise 10.1) that E and E′ are either isomorphic, or quadratic twists
of each other by −1. Now E′ depends on two variables x, z. However if we write
δ = (z/x)p then we see that E′ is the quadratic twist of

Eδ : Y 2 = X(X − 1)(X + δ),

by xp. For prime l - x it follows that al(E) = ±al(Eδ). From this and Proposition
5.2 we deduce the following.

Lemma 11.1. With notation as above, suppose that E ∼p f for some newform f
with level 2L. Suppose that l is a prime distinct from 2, L, p. Write cl for the l-th
coefficient of f as in (1).

• If l | xyz then p | Norm((l + 1)2 − c2
l ).

• If l - xyz then p | Norm(al(Eδ)2 − c2
l ).

Suppose l = np + 1 is prime. Let

(11) µn(Fl) =
{
ζ ∈ Fl : ζn = 1

}
.

Note that if l - xyz then the reduction of δ = (x/z)p modulo l belongs to µn(Fl).
The following proposition is now obvious.

Proposition 11.2. Suppose that p ≥ 5 is a fixed prime and E is as above. Suppose
that for each newform f at level 2L there exists a positive integer n satisfying the
following four conditions:

• l = np + 1 is prime.
• l 6= L.
• p - Norm((l + 1)2 − c2

l ). (Here cl is the l-th coefficient of f).
• For all δ ∈ µn(Fl), δ 6= −1 we have

p - Norm(al(Eδ)2 − c2
l ).

Then the equation (8) does not have any solutions satisfying conditions (9).

Theorem 11. Suppose L = 31. Then equation (8) does not have any solutions
satisfying condition (9) for 11 ≤ p ≤ 106.

Proof. Suppose L = 31. By Theorem 10 we know that E ∼p F where F is the
elliptic curve 62A1 with equation

y2 + xy + y = x3 − x2 − x + 1.

We wrote a very short GP [1] script which, for a given prime p, searches for a prime
l satisfying the conditions (i), (ii), (iii) of Proposition 11.2. This took about 18
minutes for p in the above range. Our program failed to find a suitable value of
n ≤ 1000 for p = 5 and p = 7. The case p = 7 is dealt with in Exercise 12.1. �

Exercise 11.1. Using a combination of Proposition 9.1 and Proposition 11.2, show
that the equation (8) has no solutions for L = 23.
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12. ‘Predicting Exponents of Constants’

The title is in quotes because it is rather vague. For various Diophantine equa-
tions the modular approach is very effective at predicting exponents of terms with
constant base. This method is central to the recent determination of all perfect
powers in the Fibonacci and Lucas sequences [8]. We would like to illustrate this
method by studying the Diophantine equation

(12) x2 − 2 = yp, p ≥ 5 prime.

The exponent that we would like to predict will become known shortly. As a
motivation for studying this equation let us note that the more general equation

x2 − 2m = yp

has been solved for all m ≥ 2 (if you did not do Exercise 8.2 then see [18], [30]).
Besides, equation (12) is now considered to be one of the most difficult exponential
Diophantine equations. This section presents a partial attempt at solving this
equation by Bugeaud, Mignotte and myself.

Equation (12) is a special case of the more general equation Axn + Byn = Cz2

and so applying the recipes in Section 13 we may associate any solution (x, y) of
(12) to the Frey curve

E : Y 2 = X3 + 2xX2 + 2X.

We find that

∆min = 28yp, N = 27 Rad(y), Np = 128.

From Theorem 5 we know that the curve E does not have p-isogenies. We deduce
that E arises from a newform of level 128. There are four newforms at level 128—all
rational—corresponding to the four elliptic curves

F1 = 128A1, F2 = 128B1, F3 = 128C1, F4 = 128D1.

Hence E ∼p Fi for some i. Notice that the equation (12) has the solutions (x, y) =
(±1,−1) for all exponents p. Hence any attempt to prove that p is bounded by
some result similar to Proposition 9.1 will fail. So will mimicking Kraus’s method.
However we can still use the modular approach to derive non-trivial information
about (12).

The classical line of attack for an equation such as (12) is to factorize the left-
hand side and deduce that

(13) x +
√

2 = (1 +
√

2)r(U + V
√

2)p

for some U , V ∈ Z and

(14)
−(p− 1)

2
< r ≤ p− 1

2
.

We deduce that

(15)
1

2
√

2

(
(1 +

√
2)r(U + V

√
2)p − (1−

√
2)r(U − V

√
2)p
)

= 1.

Notice that the polynomial on the left-hand side is homogeneous of degree p in U ,
V with coefficients in Z. Thus to solve equation (12) for any particular exponent p
we are forced to solve p Thue equations (15), one for each value of r in the range
(14). As p gets larger, the coefficients of these equations become very unpleasant,
making it difficult to solve them. However, we believe, based on a short search,
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that the only solutions are x = ±1, y = −1. Thus from (13) we suspect the only
values of r that should correspond to solutions are r = ±1. We prove this using
the modular approach together with a result proved by classical means.

Proposition 12.1. With notation as above, r = ±1.

Proof. Fix F to be one of the four elliptic curves F1, . . . , F4 above, and suppose
that E ∼p F . Now let l be a prime satisfying the following conditions:

(a) l = np + 1 for some integer n,
(b)

(
2
l

)
= 1,

(c) l + 1 6≡ ±al(F ) (mod p),

Let θ ∈ Fl be some fixed choice of
√

2 modulo l. We impose on l yet one more
condition, namely:

(d) (1 + θ)n 6≡ 1 (mod l).
We note that if l | y then l will be a prime of multiplicative reduction for E and so
condition (a) contradicts Proposition 5.2. We deduce that l - y. Hence yp ∈ µn(Fl)
where µn(Fl) is given in (11). Let

X′
l =

{
δ ∈ Fl : δ2 − 2 ∈ µn(Fl)

}
.

We see that x ∈ X′
l. Notice that X′

l has cardinality at most 2n. We would like to
refine X′

l to obtain better information on the value of x modulo l. For δ ∈ X′
l, let

Eδ be the elliptic curve over Fl

Eδ : Y 2 = X3 + 2δX2 + 2X.

We let
Xl = {δ ∈ X′

l : al(Eδ) ≡ al(F ) (mod p)} .

It is clear from Proposition 5.2 that x ∈ Xl where Xl is now a set that we hope is
much smaller than X′

l. Now we want to obtain information about r from knowing
that x ∈ Xl. It follows from (13) that, for some δ ∈ Xl,

(16) δ + θ ≡ (1 + θ)r(U + V θ)p (mod l);

We note that U +V θ 6≡ 0 (mod l) since U2−2V 2 = ±y and we know that l - y. To
get information about r we need to use the discrete logarithm modulo l. Fix once
and for all some primitive root g of Fl. The discrete logarithm with respect to g is
the isomorphism F∗l → Z/(l − 1) given by gk 7→ k (mod (l − 1)). Write Φ for the
composite of the discrete logarithm with the natural projection Z/(l − 1) → Z/p.
We apply L to both sides of (16) and deduce that,

Φ(δ + θ) ≡ rΦ(1 + θ) (mod p).

It follows from (d) that Φ(1 + θ) 6≡ 0 (mod l). Hence

r (mod p) ∈ Rl(F ) :=
{

Φ(δ + θ)
Φ(1 + θ)

: δ ∈ Xl

}
.

Now we would like to show that r = ±1. Since r lies in the interval (14), it is
enough to show that r ≡ ±1 (mod p). Thus we look for primes l1, . . . , lk satisfying
conditions (a)–(d) so that

∩k
j=1Rlj (F ) ⊆ {±1 (mod p)} .
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If we can do this for each of the F = F1, . . . , F4 we will have proved that r = ±1.
We wrote a short GP script to carry out the above proof for all 5 ≤ p < 106. The
proof for this range took about 3 hours.

Going up to p < 106 is indeed overkill, since a careful application of linear forms
in logarithms [23] to this problem shows that p < 8200 if y 6= −1. Thus we know
for any p that is not in our range (and indeed for p > 8200) that y = −1 and we
easily see that r = ±1 in all cases. �

It is possible to improve the estimate p < 8200 mentioned in the proof above
now that we know that r = ±1 and using another interesting piece of information
given below.

Lemma 12.2. Suppose y 6= −1. Then y ≥ (
√

p− 1)2.

Proof. It is clear that if y 6= −1 then y > 1. Clearly y is odd. Hence there is some
odd prime l | y. By Proposition 5.2 we see that

l + 1 ≡ ±al(F ) (mod p),

where F is one of F1, . . . , F4. However |al(F )| < 2
√

l. Thus we see that

p ≤ l + 1 + 2
√

l ≤ y + 1 + 2
√

y = (1 +
√

y)2.

The Lemma follows. �

Using this information, another careful application of linear forms in logarithms
[23] shows that p < 1237.

We can also try to solve the Thue equations with r = ±1. In fact if we
let Fr(U, V ) be the polynomial on the left-hand side of equation (15), we see
that F−1(U, V ) = F1(U,−V ). Hence it is sufficient to solve the Thue equation
F1(U, V ) = 1. Solving this with GP for 5 ≤ p ≤ 37 we get that (U, V ) = (1, 0) is the
only solution. Thus we have proved the following modest result.

Lemma 12.3. If 5 ≤ p ≤ 37 then (x, y) = (±1,−1) are the only solutions to (12).

Exercise 12.1. In this exercise we adapt the method of predicting exponents to
equation (8). So suppose that (x, y, z) is a solution to equation (8) and that we
would like to predict the exponent r. We follow the notation of Sections 10 and 11.
Suppose that E ∼p f for some newform f of level 2L. Fix a prime p ≥ 7.

(i) Let l = np + 1 be a prime such that l 6= L and p - Norm((l + 1)2 − c2
l ).

Define

Xl =
{
δ ∈ µn(Fl)\

{
−1
}

: p | Norm(al(Eδ)2 − c2
l )
}

.

Prove that zp/xp ≡ δ (mod l) for some δ ∈ Xl. [Hint: Use Lemma 11.1.
To see why zp/xp 6≡ −1 (mod l) use equation (8).]

(ii) Let Φ : F∗l → Z/p be a surjective homomorphism as in the proof of
Proposition 12.1. Let

Rl =
{

Φ(−1− δ)
Φ(L)

: δ ∈ Xl

}
.

Show that
r (mod p) ∈ Rl.

(iii) Use this to prove that equation (8) has no solutions with p = 7 and L = 31.
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13. Recipes for Ternary Diophantine Equations

By ternary Diophantine equations we mean equations of the form Axl + Bym =
Czn; the triple of exponents (l, m, n) is called the signature of the equation. How to
associate such an equation to a Frey curve is detailed for three important signatures
(p, p, p), (p, p, 2) and (p, p, 3) respectively by Kraus [20], by Bennett and Skinner
[2], and by Bennett, Vatsal and Yazdani [3]. For convenience of the reader we
reproduce the recipes appearing in these papers for the Frey curves and levels.
We must however point out that there is much more in these papers than just
the recipes and the reader is particularly urged to pursue them. This section is
influenced heavily by Bennett’s paper [4].

13.1. Recipes for signature (p, p, p). Suppose that A, B, C are non-zero pairwise
coprime integers, and p ≥ 5 is prime. Let

R = ABC,

and suppose that
ordq(R) < p

for every prime number q. Consider the equation

(17) Axp + Byp + Czp = 0,

where we assume that

Ax, By, Cz are non-zero and pairwise coprime.

Without loss of generality we also suppose that

Axp ≡ −1 (mod 4), Byp ≡ 0 (mod 2).

The Frey curve is
E : Y 2 = X(X −Axp)(X + Byp).

The minimal discriminant is

∆min =

{
24R2(xyz)2p if 16 - Byp,
2−8R2(xyz)2p if 16 | Byp,

and the conductor N is given by

N =



2 Rad2(Rxyz) if ord2(R) = 0 or ord2(R) ≥ 5,
2 Rad2(Rxyz) if 1 ≤ ord2(R) ≤ 4 and y is even,
Rad2(Rxyz) if ord2(R) = 4 and y is odd,
23 Rad2(Rxyz) if ord2(R) = 2 or 3 and y is odd,
25 Rad2(Rxyz) if ord2(R) = 1 and y is even.

Theorem 12. (Kraus [20]) Under the above assumptions, E ∼p f for some new-
form f of level Np where

Np =



2 Rad2(R) if ord2(R) = 0 or ord2(R) ≥ 5,
Rad2(R) if ord2(R) = 4,
2 Rad2(R) if 1 ≤ ord2(R) ≤ 3 and y is even,
23 Rad2(R) if ord2(R) = 2 or 3 and y is odd,
25 Rad2(R) if ord2(R) = 1 and y is odd.
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The proof is left as an exercise to the reader. Note that you must show that E
does not have any p-isogenies.

13.2. Recipes for signature (p, p, 2). Consider the equation

Axp + Byp = Cz2, p ≥ 7 is prime,

where we assume that

Ax, By, Cz are non-zero and pairwise coprime.

We moreover suppose that

ordq(A) < p, ordq(B) < p, for all primes q

and

C is squarefree.

Without loss of generality we may suppose that we are in one of the following
situations:

(i) ABCxy ≡ 1 (mod 2) and y ≡ −BC (mod 4).
(ii) xy ≡ 1 (mod 2) and either ord2(B) = 1 or ord2(C) = 1.
(iii) xy ≡ 1 (mod 2), ord2(B) = 2 and z ≡ −By/4 (mod 4).
(iv) xy ≡ 1 (mod 2), ord2(B) ∈ {3, 4, 5} and z ≡ C (mod 4).
(v) ord2(Byp) ≥ 6 and z ≡ C (mod 4).

In cases (i) and (ii) we consider the curve

E1 : Y 2 = X3 + 2CzX2 + BCypX.

In cases (iii) and (iv) we consider

E2 : Y 2 = X3 + CzX2 +
BCyp

4
X,

and in case (v) we consider

E3 : Y 2 + XY = X3 +
Cz − 1

4
X2 +

BCyp

64
X.

Theorem 13. (Bennett and Skinner [2]) With assumptions and notation as above,
we have:

(a) The minimal discriminant of Ei is given by

∆i = 2δiC3B2A(xy2)p,

where

δ1 = 6, δ2 = 0, δ3 = −12.

(b) The conductor of the curve Ei is given by

N = 2αC2 Rad(ABxy),
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where

α =



5 if i = 1, case (i)
6 if i = 1, case (ii)
1 if i = 2, case (iii), ord2(B) = 2 and y ≡ −BC/4 (mod 4)
2 if i = 2, case (iii), ord2(B) = 2 and y ≡ BC/4 (mod 4)
4 if i = 2, case (iv) and ord2(B) = 3
2 if i = 2, case (iv) and ord2(B) = 4 or 5
−1 if i = 3, case (v) and ord2(By7) = 6
0 if i = 3, case (v) and ord2(By7) ≥ 7.

(c) suppose that Ei does not have complex multiplication (This would follow if
we assume that xy 6= ±1). Then Ei ∼p f for some newform f of level

Np = 2βC2 Rad(AB)

where

β =


α cases (i)–(iv),
0 case (v) and ord2(B) 6= 0, 6,

1 case (v) and ord2(B) = 0,

−1 case (v) and ord2(B) = 6.

(d) The curves Ei have non-trivial 2-torsion.
(e) Suppose E = Ei is a curve associated to some solution (x, y, z) satisfying

the above conditions. Suppose that F is another curve defined over Q such
that E ∼p F . Then the denominator of the j-invariant j(F ) is not divisible
by any odd prime q 6= p dividing C.

Part (d) is included to help with the application of Proposition 9.1. Part (e)
is often very useful in eliminating rational newforms (which correspond to elliptic
curves). See for example Exercise 13.2.

Exercise 13.1. Determine all the solutions of the equation

xp + 2ryp = 3z2, r ≥ 2, p ≥ 7 prime

in coprime integers x, y, z.

Exercise 13.2. The Fibonacci and Lucas sequences Fn, Ln are defined by

F0 = 0, F1 = 1, Fn+2 = Fn + Fn+1 for all n ≥ 0,

L0 = 2, L1 = 1, Ln+2 = Ln + Ln+1 for all n ≥ 0.

(a) Show that 5F 2
n + 4(−1)n = L2

n.
(b) Prove that the equation Ln = yp has no solution with n even.

[ Hint for (b): You should follow the recipes above and use part (e) of Theorem 13
to deduce a contradiction.]

Exercise 13.3. In this exercise we look at the equation Fn = yp where Fn is the
Fibonacci sequence defined above. This is a very difficult Diophantine problem,
whose solution [8] required just about all the tools described in these lecture notes
plus a highly non-trivial application of Baker’s Theory and the methods of Dio-
phantine approximation. Our aim in this exercise is to show how congruences for
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n can be obtained by the modular approach. This is really an exercise about pre-
dicting the exponents of constants in the style of Section 12; note that the index n
is an exponent in the familiar expressions for the Fibonacci and Lucas sequences:

Fn =
λn − µn

√
5

, Ln = λn + µn,

where λ = (1 +
√

5)/2 and µ = (1−
√

5)/2.

To simplify, suppose p = 7 and n ≡ 1 (mod 6).
(a) Show that Fn ≡ Ln ≡ 1 (mod 4) (for n ≡ 1 (mod 6)).
(b) Show that Fn = y7 implies that

5y14 − 4 = L2
n.

(c) Apply the recipes above to this equation (with p = 7). This means that we
take the Frey curve to be

En : Y 2 = X3 + LnX2 −X.

Deduce from the recipes that En ∼7 E where E is the unique elliptic curve
of conductor 20. One model for E is

E : Y 2 = X3 + X2 −X.

Note that E1 = E which is not a coincidence since F1 = 1 = 17 is a solution
to the Diophantine equation that we are trying to solve.

(d) Use Proposition 5.2 with l = 3 to show that Ln ≡ 1 (mod 3).
(e) By writing down the sequence Ln modulo 3 for sufficiently many n (until

it starts repeating), deduce from Ln ≡ 1 (mod 3) that n ≡ 1, 3, 4 (mod 8).
However, we are assuming that n ≡ 1 (mod 6), so that n ≡ 1 or 19
(mod 24).

(f) Repeat steps (d) and (e) with l = 7 to deduce that n ≡ 1 or 43 (mod 48).
Deduce that if n 6= 1 then n ≥ 43.

One step in the solution of Fn = yp for n ≡ 1 (mod 6) and p = 7 is to show that
either n = 1 or n > 2.639×1046. This was shown By repeating the above argument
(using a suitable computer program) with thousands of primes l.

13.3. Recipes for signature (p, p, 3). Consider the equation

Axp + Byp = Cz3, p ≥ 5 is prime,

where we suppose that

Ax, By, Cz are non-zero and pairwise coprime.

We suppose without loss of generality that

ordq(A) < p, ordq(B) < p, ordq(C) < 3,

for all primes q, and that

Ax 6≡ 0 (mod 3), Byp 6≡ 2 (mod 3).

Let
E : Y 2 + 3CzXY + C2BypY = X3.

Theorem 14. (Bennett, Vatsal and Yazdani [3]) With notation and assumptions
as above:
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(a) The conductor N of the curve E is given by

N = Rad3(ABxy) Rad3(C)2ε3

where

ε3 =



32 if 9 | (2 + C2Byp − 3Cz),
33 if 3 || (2 + C2Byp − 3Cz),
34 if ord3(Byp) = 1,

33 if ord3(Byp) = 2,

1 if ord3(Byp) = 3,

3 if ord3(Byp) > 3,

35 if 3 | C.

(b) Suppose that xy 6= 1 and the curve E does not correspond to one of the
equations

1 · 25 + 27 · (−1)5 = 5 · 13, 1 · 27 + 3 · (−1)7 = 1 · 53.

Then E ∼p f for some newform f of level

Np = Rad3(AB) Rad3(C)2ε′3,

where

ε′3 =



32 if 9 | (2 + C2Byp − 3Cz),
33 if 3 || (2 + C2Byp − 3Cz),
34 if ord3(Byp) = 1,

33 if ord3(Byp) = 2,

1 if ord3(B) = 3,

3 if ord3(Byp) > 3 and ord3(B) 6= 3,

35 if 3 | C.

(c) The curve E has a point of order 3, namely the point (0, 0).
(d) Suppose F is an elliptic curve defined over Q such that E ∼p F . Then the

denominator of the j-invariant j(F ) is not divisible by any odd prime q 6= p
dividing C.
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résiduelle 2 et 2, J. Number Theory 44 (1993), 119–152.

[26] K. Ribet, On modular representations of Gal(Q/Q) arising from modular forms, Invent.
Math. 100 (1990), 431–476.

[27] K. Ribet, On the equation ap + 2bp + cp = 0, Acta Arith. LXXIX.1 (1997), 7–15.
[28] J.-P. Serre, Abelian l-adic representations and elliptic curves, W. A. Benjamin, New York,
1968.

[29] J.-P. Serre, Sur les représentations modulaires de degré 2 de Gal(Q/Q), Duke Math. J. 54
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