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Abstract
Let N = {1, 2, 3, · · · } denote the natural numbers. Given integers e ≥ 1 and

b ≥ 2, let x =
∑n

i=0 aib
i with 0 ≤ ai ≤ b − 1 (thus ai are the digits of x in base b).

We define the happy function Se,b : N −→ N by

Se,b(x) =

n∑
i=0

aei .

A positive integer x is then said to be (e, b)-happy if Sr
e,b(x) = 1 for some r ≥ 0,

otherwise we say it is (e, b)-unhappy. In this paper we investigate the cycles and fixed
points of the happy functions Se,b. We give an upper bound for the size of elements
belonging to the cycles of Se,b. We also prove that the number of fixed points of S2,b

is {
2 τ
(

b2+1
2

)
− 1 if b is odd,

τ(b2 + 1)− 1 if b is even,

where τ(m) denotes the number of positive divisors of m. We use our results to
determine the densities of happy numbers in a small handful of cases.

2000 Mathematics Subject Classification: Primary 11A63; Secondary 11B05.

1. Introduction

Guy [G] introduces Problem E34 Happy numbers as follows:

Reg. Allenby’s daughter came home from school in Britain with the concept
of happy numbers. The problem may have originated in Russia. If you iterate
the process of summing the squares of decimal digits of a number, then it’s
easy to see that you either reach the cycle

4→ 16→ 37→ 58→ 89→ 145→ 42→ 20→ 4

or you arrive at 1. In the latter case you started from a happy number.
∗E-mail address: k.hargreaves@warwick.ac.uk
†E-mail address: s.siksek@warwick.ac.uk
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Guy asks several questions about happy numbers which can be paraphrased as follows:

(a) It seems that about 1/7 of all numbers are happy, but what bounds on the density can
be proved?

(b) How many consecutive happy numbers can you have? Can there be arbitrarily many?

(c) We define the height of a happy number to be the least number of iterations needed
to reach 1. How big is the least happy number of height h?

(d) What if we replace squares by cubes, fourth powers, fifth powers etc., or we work in
different bases?

Most of the work done so far on happy numbers concerns question (b). For example, El-
Sedy and Siksek [ES] show that there are arbitrarily many consecutive happy numbers.
This was generalised by others, notably Grundman and Teeple [GT1] and [GT2], Pan [P]
and Zhou and Cai [ZC], to cover other bases and exponents. In all these proofs the cycles
and fixed points of the iteration process play a crucial rôle. This paper is concerned with
the cycles and fixed points of the iteration process.

Let N = {1, 2, 3, · · · } denote the natural numbers. Given integers e ≥ 1 and b ≥ 2, let
x =

∑n
i=0 aib

i with 0 ≤ ai ≤ b − 1 (thus ai are the digits of x in base b). We define the
happy function Se,b : N −→ N by

Se,b(x) =

n∑
i=0

aei .

A positive integer x is then said to be (e, b)-happy if Sr
e,b(x) = 1 for some r ≥ 0 (some-

times, we simply say x is happy), otherwise we say it is (e, b)-unhappy. It is usual to exclude
0 from the domain of Se,b.

By a cycle of Se,b of length n we mean a sequence of positive integers x1, x2, . . . , xn
such that

Se,b(x1) = x2, Se,b(x2) = x3, . . . , Se,b(xn−1) = xn, Se,b(xn) = x1.

Where the pair (e, b) is clear from the context, we shall use the following clearer notation
to denote the above cycle:

x1 → x2 → x3 → · · · → xn → x1.

By a fixed point of Se,b we mean a positive integer x such that Se,b(x) = x. Of course a
fixed point is nothing more than a cycle of length 1.

Write De,b for the union of all cycles of Se,b. Thus, for example,

D2,10 = {1} ∪ {4, 16, 37, 58, 89, 145, 42, 20}.

This paper is concerned in part with giving an upper bound for the elements of De,b.

Theorem 1.1. Let e ≥ 1 and b ≥ 2. If b > e, let M = ebe. If b ≤ e, let r be the smallest
positive integer satisfying e+ r ≤ br, and let M = be+r. For any x ∈ N, there is some k0
such that Sk

e,b(x) < M for all k ≥ k0.
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In the paper [GT2], it is shown that for every x ∈ N there is some k such that Sk
e,b(x) <

be+1. Note that our result is stronger in the sense that we prove Sk
e,b(x) < M for all

sufficiently large k.
The proof of Theorem 1.1 is given in Section 2. The following corollary is immediate.

Corollary 1.1. De,b ⊆ {1, 2, . . . ,M − 1}.

Again our conclusion is stronger than that in [GT2]. There, the conclusion is that every
cycle contains some x < be+1. Our conclusion is that every x belonging to some cycle
satisfies x < M .

In Section 3 we explain a simple and practical algorithm for computing De,b based on
this corollary. Guy’s book [G, pages 358–359] gives partial lists of cycles for S4,10 and
S5,10. We complete these lists using a program based on our algorithm.

In Section 4 we shall give some modest applications to densities of happy numbers. For
example, as we will see, every positive integer is (2, 4)-happy. We will also show that the
(5, 4)-happy integers are precisely those ≡ 1 (mod 3), and for b ≥ 2, that the (1, b)-happy
numbers are precisely those ≡ 1 (mod (b − 1)). So far as we know, these are the only
cases where the densities of happy numbers have been determined. In Section 5 we show
that the cycles of happy functions can be arbitrarily large.

We also pay special attention to the fixed points of Se,b. In Section 6 we show that any
fixed point x of Se,b satisfies x < min{e, b} · be. In the particular case e = 2 we have an
exact formula for the number of fixed points.

Theorem 1.2. For a positive integer m, denote the number of positive divisors of m by
τ(m).

1. If b is odd then S2,b has precisely 2 τ

(
b2 + 1

2

)
− 1 fixed points.

2. If b is even then S2,b has precisely τ(b2 + 1)− 1 fixed points.

In either case, exactly one of the fixed points has a single digit in base b; this is 1. The
remaining fixed points have precisely two digits in base b.

Theorem 1.2 is proved in Section 6. In Section 7 we deduce that the number of fixed
points of S2,b is arbitrarily large.

It is not immediately obvious, for a given pair (e, b), whether there should exist any
unhappy numbers. If e = 2 then the above theorem shows that there must exist unhappy
numbers whenever b2 + 1 is composite. This is not necessarily true if b2 + 1 is prime; as
we noted earlier, all integers are (2, 4)-happy.

The paper concludes with some further questions.

2. Proof of Theorem 1.1

Before we launch into the proof of Theorem 1.1, we point out another, arguably more ob-
vious approach, to determining De,b. Observe that every cycle must contain some element
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x satisfying x ≤ Se,b(x). It is easy to see that

x < (b− 1)e(logb(x) + 1).

There are standard (but slightly complicated) bounds for solutions to such inequalities; see
for example [S, Appendix B] which gives an explicit bound x < M ′. We have found that the
bounds M ′ obtained via this approach are worse than our bound M given in Theorem 1.1.
Moreover, all we know via this approach is that the cycle contains some element x < M ′;
we do not know that the entire cycle satisfies the bound. Thus our approach below, although
longer, gives stronger results.

Theorem 1.1 is trivially true if e = 1 or b = 2, so for the remainder of this section
we suppose e ≥ 2 and b ≥ 3. The theorem follows straightaway from the following two
lemmas.

Lemma 2.1. Let M be as in Theorem 1.1. If y < M then Se,b(y) < M .

Lemma 2.2. Let M be as in Theorem 1.1. For any x ∈ N there exists some ` such that
S`
e,b(x) < M .

For the proofs of Lemmas 2.1 and 2.2 we shall need the following lemma.

Lemma 2.3. Let s, t be positive integers with s < b. Suppose y < sbt. Then

Se,b(y) ≤ t(b− 1)e + (s− 1)e.

Proof. Consider the representation of y in base b. Clearly this has at most t + 1 digits.
Moreover, if y has precisely t+1 digits, then the leading digit is at most s− 1. The lemma
follows from the definition of Se,b.

Proof of Lemma 2.1. Suppose y < M . We consider the cases b > e and b ≤ e separately.
Suppose first that b > e. In this case M = ebe. Then y < ebe. By Lemma 2.3,

Se,b(x) ≤ e(b− 1)e + (e− 1)e

Now observe, using the Binomial Theorem, that

ebe = e((b− 1) + 1)e > e(b− 1)e + e2(b− 1)e−1 > e(b− 1)e + (e− 1)e,

where we have made use of b > e. Therefore Se,b(x) < ebe =M as required.
We now turn to the case b ≤ e. Here M = be+r where r satisfies e + r ≤ br. As

y < M , by Lemma 2.3

Se,b(y) ≤ (e+ r)(b− 1)e ≤ br(b− 1)e < be+r =M,

as required.
The proof of Lemma 2.2 is more complicated, and we shall need the following prepara-

tory lemma.

Lemma 2.4. Let B = be+1. If y < Bm then Se,b(y) < m(B − 1).
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Proof. Note y < Bm = bm(e+1); by Lemma 2.3, Se,b(y) ≤ m(e+ 1)(b− 1)e. Note that

B − 1 = be+1 − 1 = ((b− 1) + 1)e+1 − 1

=
(
(b− 1)e+1 + (e+ 1)(b− 1)e + · · ·+ 1

)
− 1 by the Binomial Theorem

> (e+ 1)(b− 1)e.

The lemma follows.

Proof of Lemma 2.2. Let B = be+1. Define

B1 = B, and Bi+1 = BBi for i ≥ 2.

Let x ∈ N be given. We would like to show that S`
e,b(x) < M for some ` where M is

as in the statement of Theorem 1.1. Clearly

x < B1+Bk ,

for some k ≥ 2. Then

Se,b(x) ≤ (1 +Bk)(B − 1) by Lemma 2.4

= (1 +BBk−1)(B − 1)

= B1+Bk−1 +B −BBk−1 − 1

< B1+Bk−1 .

Thus
Sk−1
e,b (x) < B1+B.

Applying Lemma 2.4 again gives

Sk
e,b(x) < (1 +B)(B − 1) < B2,

and again
Sk+1
e,b (x) < 2B = 2be+1.

Hence, by Lemma 2.3,
Sk+2
e,b (x) ≤ 1 + (e+ 1)(b− 1)e. (2.1)

We now consider the cases b ≤ e, b = e + 1 and b ≥ e + 2 separately. Suppose first that
b ≤ e. Recall that we have defined r to be the least positive integer such that e + r ≤ br,
and in this case M = be+r. Then

Sk+2
e,b (x) ≤ 1 + (e+ 1)(b− 1)e ≤ 1 + (e+ r)(b− 1)e < be+r =M.

This completes the proof of the lemma for b ≤ e.
Suppose now b = e+ 1. In this case M = ebe. By (2.1),

Sk+2
e,b (x) ≤ 1 + (e+ 1)(b− 1)e = 1 + b(b− 1)e < (b− 1)be =M,

as required.
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Finally suppose that b ≥ e+ 2. Again, M = ebe. By (2.1),

Sk+2
e,b (x) ≤ 1 + (e+ 1)(b− 1)e < (e+ 1)be.

Applying Lemma 2.3 we obtain

Sk+3
e,b (x) ≤ e(b− 1)e + ee

By the Binomial Theorem applied to be = ((b− 1) + 1)e we have

ebe > e(b− 1)e + e2(b− 1)e−1 > Sk+3
e,b (x),

since b ≥ e+ 2. This completes the proof.

3. Computing De,b

Corollary 1.1 gives an efficient method of computing De,b. Let

U0 = {1, 2, . . . ,M − 1}

where M is as in Theorem 1.1. Let Ui+1 = Se,b(Ui). Let k be the smallest non-negative
integer such that Uk+1 = Uk. Then De,b = Uk.

3.1. Examples

We wrote a short program in MAGMA to compute De,b using the above method. Here are
two examples.

Example 1. Take e = 2 and b = 10. Here M = 200. We start with U0 = {1, . . . , 199}
and after 11 iterations find

U10 = U11 = {1, 4, 16, 20, 37, 42, 58, 89, 145}.

This is D2,10 in agreement with Guy’s statement in the introduction.

Example 2. Take e = 5 and d = 10. Guy [G, page 359] lists 12 non-trivial cycles found
by Somjit Datta. Thus together with the trivial cycle {1} he has found 13 cycles; no claim
is made that this is the complete list of cycles. Grundman and Teeple [GT2, page 1141] list
nine cycles and mention that there are an additional seven longer cycles (that are not listed).
Here M = 5 × 105. We ran our program on a 2.8 GHz Dual-Core AMD Opteron. It took
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our program 58 iterations and just 9 seconds to compute D5,10. The cycles of S5,10 are

C1 : 1→ 1, C2 : 4150→ 4150, C3 : 4151→ 4151, C4 : 54748→ 54748,

C5 : 92727→ 92727, C6 : 93084→ 93084, C7 : 194979→ 194979,

C8 : 89883→ 157596→ 89883, C9 : 58618→ 76438→ 58618,

C10 : 10933→ 59536→ 73318→ 50062→ 10933,

C11 : 8299→ 150898→ 127711→ 33649→ 68335→ 44155→ 8299,

C12 :

{
8294→ 92873→ 108899→ 183635→ 44156→
12950→ 62207→ 24647→ 26663→ 23603→ 8294,

C13 :

{
9044→ 61097→ 83633→ 41273→ 18107→ 49577
→ 96812→ 99626→ 133682→ 41063→ 9044,

C14 :

{
24584→ 37973→ 93149→ 119366→ 74846→ 59399→ 180515
→ 39020→ 59324→ 63473→ 26093→ 67100→ 24584,

C15 :


9045→ 63198→ 99837→ 167916→ 91410→ 60075→ 27708→ 66414
→ 17601→ 24585→ 40074→ 18855→ 71787→ 83190→ 92061→ 66858
→ 84213→ 34068→ 41811→ 33795→ 79467→ 101463→ 9045,

C16 :


244→ 2080→ 32800→ 33043→ 1753→ 20176→ 24616→ 16609
→ 74602→ 25639→ 70225→ 19996→ 184924→ 93898→ 183877
→ 99394→ 178414→ 51625→ 14059→ 63199→ 126118→ 40579
→ 80005→ 35893→ 95428→ 95998→ 213040→ 1300→ 244.

Datta overlooked the cycles C5, C7 and C8.

Example 3. Let e = 4 and b = 10. The cycles are

C1 : 1→ 1, C2 : 1634→ 1634, C3 : 8208→ 8208,

C4 : 9474→ 9474, C5 : 2178→ 6514→ 2178,

C6 : 1138→ 4179→ 9219→ 13139→ 6725→ 4338→ 4514→ 1138.

Guy’s book [G, page 358] mentions C1, C3, C5, C6 but not C2 and C4.

Example 4. We used our program to compute D2,b for all b ≤ 1000 and its decomposition
into cycles. The entire computation took just under four hours on our 2.8 GHz Dual-Core
AMD Opteron. The largest D2,b found was D2,816 which has 1676 elements. This decom-
poses into 11 cycles of lengths 1, 2, 2, 3, 5, 7, 33, 47, 210, 630, 736.

The largest cycle for S2,b with b ≤ 1000 is for b = 974. This cycle has length 1005 and
has least element 1858 and largest element 1792145. It is interesting to note that precisely
495 elements of this cycle satisfy the inequality x < S2,974(x) and the remainder satisfy
x > S2,974(x).

We also took the opportunity test to how good our bound for the elements ofDe,b is. By
Theorem 1.1 and Corollary 1.1 we know that maxD2,b ≤ 2b2 − 1. For each 3 ≤ b ≤ 1000
we computed the value

m(b) =
maxD2,b

2b2 − 1
.
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The largest value for m(b) we found was for b = 981. Here 2b2 − 1 = 1924721 and
maxD2,981 = 1916884, giving

m(981) =
1916884

1924721
= 0.9959 · · · .

This shows the our bound M is indeed sharp.

4. A Remark on the Densities of Happy Numbers

As quoted in the introduction, Guy asks for the density of happy numbers in the case e = 2,
b = 10. This appears to us to be a difficult problem. However, there are a few pairs (e, b)
where have been able to compute the precise density of happy numbers.

Let e ≥ 1 and b ≥ 2. Let

A = {p prime : p | (b− 1) and (p− 1) | (e− 1)}, P =
∏
p∈A

p.

By convention, if A = ∅ then P = 1. As observed in [ZC], for all positive integers n,
we have Se,b(n) ≡ n (mod P ); this congruence is easy to prove using Fermat’s Little
Theorem. Let

D′e,b = {x ∈ De,b : x ≡ 1 (mod P )}.

If D′e,b = {1}, then it is easy to see that the (e, b)-happy integers are precisely those that
are ≡ 1 (mod P ). In this case the density of happy numbers is 1/P . We can only find a
handful of examples where this observation is useful.

Example 5. Let b = 2 (and e ≥ 1 arbitrary). Then D2,e = {1} and so every positive
integer is (2, e)-happy.

Example 6. Let e = 1 (and b ≥ 2 arbitrary). It is easy to see that S1,b(n) ≡ n (mod b−1)
for all n. Moreover,

D1,b = {1, 2, . . . , b− 1}.

Thus the happy numbers are precisely those ≡ 1 (mod b − 1), and the density of happy
numbers is 1/(b− 1).

Example 7. Let (e, b) = (2, 4). We found that D2,4 = {1}. Hence every number is
(2, 4)-happy.

Example 8. Let (e, b) = (5, 4). Then

D5,4 = {1, 3, 32, 33, 243, 245, 246, 276, 308, 309, 488, 519, 729}.

However P = 3 in this case and soD′5,4 = {1}. By the above observation we know that the
(5, 4)-happy numbers are precisely the ones ≡ 1 (mod 3). Hence exactly 1/3 of numbers
are (5, 4)-happy.

We ran a search with 1 ≤ e ≤ 6 and 2 ≤ b ≤ 10 for (e, b) satisfying the condition
D′e,b = {1}. The above examples were the only ones found.
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5. Large Cycles

As we saw, S2,10 has two cycles, one of length 1 and the other of length 8. An obvious
question is how large can the cycles of happy functions be. In fact they can be arbitrarily
large as we shall see now.

Let r, e ≥ 1. Let b = 2e
r−1 − 1. Consider the cycle starting with 2:

2→ 2e → 2e
2 → · · · → 2e

r−1
.

But 2e
r−1

= b + 1, so in base b this has the digits 11, hence Se,b(2e
r−1

) = 2. This shows
that we obtain a cycle of length r starting with 2, where r is as large as we please.

6. Fixed Points of Happy Functions

As we saw before, fixed points are cycles of length 1. We will see that fixed points are much
easier to analyse than arbitrary cycles and so we can say much more about them. For e = 2
we show that there can be arbitrarily many fixed points.

It is easy to see that if e = 1 then the only fixed points are the single digit numbers
1, 2, . . . , b− 1. Also, if b = 2 then the only fixed point is 1. We shall restrict to e ≥ 2 and
b ≥ 3. Of course, the only single-digit fixed point is 1.

6.1. Fixed points for exponent e = 2

We now restrict to e = 2 which turns out to be much easier to analyse than the general case.

Lemma 6.1. Let b ≥ 3. Then the happy function S2,b has no fixed points with at least three
digits.

Proof. Suppose that x is a non-zero fixed point of S2,b. By Theorem 1.1, x < 2b2. We may
write x = ub2 + vb + w where 0 ≤ u, v, w ≤ (b − 1) and u = 0 or 1. It is sufficient to
show that u = 0.

Suppose u = 1. As x is a fixed point,

b2 + vb+ w = 1 + v2 + w2.

Thus
(b− 1)2 ≥ w2 = b2 + v(b− v) + w − 1 ≥ b2 − 1 = (b− 1)(b+ 1),

giving a contradiction.

6.2. Proof of Theorem 1.2

Here e = 2. The theorem is obvious for b = 2 so we suppose b ≥ 3. By Lemma 6.1, S2,b
has no fixed points with three or more digits in base b, and so every fixed point has at most
two digits.

A non-negative number with at most two digits in base b has the form ub + v with
0 ≤ u, v < b. This is a fixed point for S2,b if and only if u2 + v2 = ub+ v. Let

U = {(u, v) ∈ Z2 : 0 < u, v < b and u2 + v2 = ub+ v}.
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It is easy to see that 1+#U is the number of fixed points of S2,b. Thus to prove Theorem 1.2
we need to show that

#U =

{
2 τ
(
b2+1
2

)
− 2 if b is odd,

τ(b2 + 1)− 2 if b is even.

Starting with u2 + v2 = ub+ v and completing the squares we obtain

(2u− b)2 + (2v − 1)2 = b2 + 1.

Let n = b2 + 1 and let

X = {(x, y) ∈ Z2 : y ≥ 1 and odd, x 6= ±b and x2 + y2 = n}.

As we will see, the number of elements ofX can be determined by relating it to the number
of representations of n as the sum of two squares. For now we would like to show that
#U = #X . Define φ : U → X and ψ : X → U by

φ(u, v) = (2u− b, 2v − 1), ψ(x, y) =

(
x+ b

2
,
y + 1

2

)
.

It is clear that φ and ψ are mutual inverses (and thus bijections) provided they are well-
defined. Thus to show that #U = #X all we have to do is to show that φ and ψ are
well-defined.

There is no difficulty in seeing that φ is well-defined. Let us show that ψ is well-defined.
Suppose (x, y) ∈ X . As y is odd and x2 + y2 = b2 + 1, we see that x and b have the same
parity. Thus ψ(x, y) ∈ Z2. Let (u, v) = ψ(x, y). From x2 + y2 = b2 + 1 we deduce that
u2 + v2 = ub + v. Moreover, −b ≤ x ≤ b and as x 6= ±b, we have −b < x < b so that
0 < u < b. Also, 1 ≤ y ≤ b, so that 1 ≤ v ≤ (b + 1)/2 < b as b ≥ 3. Hence (u, v) ∈ U .
This shows that ψ is well-defined. Thus #U = #X .

Now let

Y = {(x, y) ∈ Z2 : y ≥ 1 and odd, and x2 + y2 = n}.

Clearly #Y = 2 + #X = 2 + #U . Hence to complete the proof of Theorem 1.2 it is
sufficient to show that

#Y =

{
2 τ
(
n
2

)
if b is odd,

τ(n) if b is even.

To do this we introduce the following set which contains Y ,

Z = {(x, y) ∈ Z2 : x2 + y2 = n}.

The number of representations of an a positive integer n as the sum of two squares is well-
known:

#Z = 4
∑
d|n

(
−4
d

)
;



Cycles and Fixed Points of Happy Functions 75

see for example [C, Theorem 5.4.15]. However, all odd divisors d of n = b2 + 1 satisfy
d ≡ 1 (mod 4). Thus, in this case, #Z is 4 times the number of odd divisors of n. If b is
even then n is odd. If b is odd then n/2 is odd. Hence

#Z =

{
4 τ(n/2) if b is odd,
4 τ(n) if b is even.

To complete the proof of Theorem 1.2 we must relate #Y to #Z.
Suppose first that b is odd, and so n ≡ 2 (mod 4). Every solution to x2+ y2 = n must

have x and y odd. Thus Y is the subset of pairs (x, y) in Z with y ≥ 1. Since there are no
solutions with y = 0, we see that

#Y =
#Z

2
= 2 τ(n/2),

as required. This completes the proof of Theorem 1.2 for b odd.
Suppose now that b is even. Then n ≡ 1 (mod 4). If (x, y) is any solution to x2+y2 =

n then precisely one of x, y is odd and the other is even. Considering the fixed-point free
involutions

(x, y) 7→ (y, x), (x, y) 7→ (x,−y)
on Z, we see that precisely 1/4 of the elements of Z belong to Y . Hence

#Y =
#Z

4
= τ(n),

completing the proof of Theorem 1.2.

7. Arbitrarily Many Fixed Points

In this section we use Theorem 1.2 to deduce that the number of fixed points for S2,b can
be arbitrarily large.

Corollary 7.1. S2,b can have arbitrarily many fixed points.

Proof. Let r ≥ 1 be given. We will show that there exists a value of b with b2 + 1 having
at least r odd prime factors. Then by Theorem 1.2, S2,b has at least 2r − 1 fixed points.
Letting r be arbitrarily large proves the theorem.

Let p1, . . . , pr be distinct primes ≡ 1 (mod 4). There exist integers mi with m2
i ≡ −1

(mod pi) for i = 1, . . . , r. By the Chinese Remainder Theorem, there is some positive inte-
ger b such that b ≡ mi (mod pi) for i = 1, . . . , r. Then b2+1 is divisible by p1, p2, . . . , pr
as required.

8. Specific Fixed Points

By Theorem 1.2 we know that if b is odd then S2,b has at least three fixed points. If b is
even then we can conclude that there is at least one fixed point, but of course 1 is always a
fixed point, so the conclusion in this case does not add anything new. It is natural to wonder
whether for odd b there is a formula for the other two fixed points that are guaranteed to
exist. This is indeed the case.
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Corollary 8.1. Let b ≥ 3 be odd and write b = 2u+1. Then 1, 2u2+2u+1 and 2(u+1)2

are fixed points of S2,b, which respectively have the digits 1, (u, u+ 1) and (u+ 1, u+ 1)
in base b. If b2 + 1 is twice a prime then these are the only fixed points.

Proof. Note that 2u2 + 2u + 1 and 2(u + 1)2 respectively have digits (u, u + 1) and
(u+ 1, u+ 1) in base b. So

S2,b(2u
2 + 2u+ 1) = u2 + (u+ 1)2 = 2u2 + 2u+ 1.

S2,b(2(u+ 1)2) = 2(u+ 1)2.

If b2+1 is twice a prime then by Theorem 1.2 we know there are exactly three fixed points,
and this completes the proof.

If e = 2 and b is odd then, in the notation of Section 4, P = 2 and we know that every
happy number must be odd. Note by the above that 2u2 + 2u + 1 is an unhappy number
which is odd. The following corollary is interesting in view of Section 4.

Corollary 8.2. If b ≥ 3 is odd then the (2, b)-happy numbers are a proper subset of the odd
numbers.

9. Further Questions

The following two questions are very interesting and deserve further attention:

(I) Can one obtain sharp estimates for the number of fixed points of Se,b (for e ≥ 3) in
terms of e and b?

(II) Can one obtain sharp estimates for the number and sizes of the cycles of Se,b in terms
of e and b?

Of course by Corollary 1.1 we know that #De,b < M . But the experiments described
in Section 3 indicate that this bound is very far from being sharp. Can one obtain better
bounds? In fact for e = 2 we can do somewhat better. Recall in this case that M = 2b2 and
that every element of x ∈ D2,b satisfies x < 2b2. However, if x ∈ D2,b then x = S2,b(y) for
some y ∈ D2,b. As y < 2b2, it has at most three digits in base b, and if it has exactly three
digits then the leading digit is 1. Hence x = S2,b(y) has the form u2 + v2 or 1 + u2 + v2.
Denote by N2(X) the number of positive integers n ≤ X that can be written as the sum of
two squares. A well-known theorem of Landau (see [C, Proposition 5.4.10] and [M]) states
that

N2(X) = (C + o(1))
X√
logX

as X →∞,

where

C =
1√
2

∏
p≡3 mod 4

(
1− 1

p2

)−1/2
=
π

4

∏
p≡1 mod 4

(
1− 1

p2

)1/2

= 0.764223653 · · · .

As every integer in D2,b is at most 2b2 and has the form u2+v2 or 1+u2+v2 we conclude
that

#D2,b <
(
23/2C + o(1)

) b2√
log b

as b→∞. (9.1)
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In Example 4 we found that the largest #D2,b with b ≤ 1000 was #D2,816 = 1676.
However

23/2C · 8162√
log 816

= 555859.9 · · · .

This shows that (9.1) is still a very poor upper bound for #D2,b despite being much better
than M .

Now keep e ≥ 2 fixed. Regarding cycle lengths, it seems reasonable to guess that any
cycle for Se,b has length at most O(be/2) as b → ∞. This is what one would expect if Se,b
is a ‘random walk’ on the set {1, 2, . . . , ebe} which contains the cycles.
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