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1 Why algebraic geometry?

Why should a number theorist be interested in algebraic geometry? In this
course we hope to demonstrate one very good reason, by showing essentially
geometric reasons why certain Diophantine equations fail to have solutions. But
we will begin by placing the study of Diophantine equations into the context
of algebraic geometry, to see how techniques from many different realms of
mathematics can be useful in their study.

Suppose that we are interested in studying the integer or rational solutions to
a polynomial equation f ∈ Z[X0, X1, . . . , Xn]. We assume f to be homogeneous,
so that the sets of rational and integer solutions concide: more precisely, any
integer solution may be turned into a rational one by clearing denominators.
We wish to define a geometric object X as

“ X = {f = 0} ⊂ Pn ”, (1)

so that X is the zero-set of the polynomial f in projective space. This is, as it
stands, not a definition at all. What we really mean is, for example,

X(Q) = {[X0 : · · · : Xn] ∈ Pn(Q) | f(X0, . . . , Xn) = 0} (2)

where Pn(Q) is the set of (n+1)-tuples of rational numbers, modulo multiplying
them all through by a common factor. Given that f has integer coefficients,
we can take any (n + 1) − tuple of elements of any ring R and substitute it
into f , and so define X(R) in exactly the same way, replacing Q by R in the
definition (2) above. In this way we can consider the sets X(R), X(C), X(Fp)
and so on. There are obvious maps between some of these sets: for example, Q
is contained in R and so X(Q) is contained in X(R).
Remark 1.1. What we have defined here is a mapping R 7→ X(R) which is
actually a functor from the category of commutative rings to that of sets. This
functor is the functor of points of the scheme X defined in (1). This way of
looking at schemes can be very profitable: see [2, Chapter VI] for an explanation.

In Figure 1, several of these point sets are shown. The one which really
interests us is X(Q), the set of rational solutions to our polynomial equation.
Unfortunately, this is also the point set we know least about. The object of
studying the algebraic geometry of X is to use techniques available over the
various fields other than Q to deduce facts about X(Q). For example:

• On X(R), we can use real analysis. For example, if X is smooth then
X(R) is a real manifold. In particular, it is easy to check whether X(R)
is empty – and if X(R) is empty then X(Q) is certainly empty too!

1



X(C)

X(F̄p)
vv

Weil

conjectures

666v6v6v6v6v6v6v6v6v6v6v6v6v6v6v6v6v6v6v6v6v6v6v6v6v6v6v

X(Q̄)
?�

Lefschetz

principle

OO

X(R)
0 P

aaCCCCCCCCCCCCCCCCCCCCCCC

X(Fp)
?�

OO

X(Qp)
X projectiveoo X(Q)? _oo

. �

=={{{{{{{{{{{{{{{{{{{{{{{?�

Galois

theory

OO

Figure 1: Some of the sets of points associated to a Diophantine equation

• On X(C), we have all the tools available to study complex analytic vari-
eties. For example, X(C) has cohomology groups which give much infor-
mation about its geometry, and these come with Hodge decompositions.

• It may not be obvious that much can be said about X(Q̄). However, a
general idea known as the Lefschetz principle says that any algebraic fact
which can be proved about X(C), whether or not the proof uses methods
outside algebra, also applies to X(Q̄) and indeed to X(K) where K is
any algebraically closed field of characteristic zero. In particular, in this
course we will use the fact that the Picard groups of X over Q̄ and over
C are the same, and will often identify them.

• Given that X is defined over Q, many objects associated to X over Q̄ come
equipped with an action of the Galois group Gal(Q̄/Q). In particular, the
point set X(Q) and the Picard group Pic(XQ̄) have Galois actions, and we
can use Galois theory to deduce results about the corresponding objects
over Q.

• In the same way that X(Q) embeds into X(R), it also embeds into X(Qp)
for any prime p. Again, X(Qp) can be studied by analytic methods, and
in particular it is straightforward to decide whether X(Qp) is empty for
any given p.

• Given thatX is a projective variety, any point inX(Qp) can be represented
as [x0 : · · · : xn] where the xi all lie in Zp and are not all divisible by p.
This point then has a well-defined reduction modulo p, and so we get a
map from X(Qp) to X(Fp). Often, the study of X(Qp) actually comes
down to the study of X(Fp), especially when p is a prime of good reduction
for X. Varieties over finite fields have many advantages – in particular,
they have only finitely many points which can therefore be listed!
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• Finally, a rather more deep and complicated link exists between the ge-
ometry of X(F̄p) and that of X(C), given by the Weil conjectures. We
will not discuss this link at all in this course, but mention it as a powerful
example of the application of algebraic geometry to arithmetic.

2 The Picard group

Given a set of polynomial equations defined over Q, we aim to study their
rational solutions by considering the geometry of the variety X which they
define. One geometric invariant which has a great effect on the arithmetic is the
Picard group of X, and we will devote some time to the general definition of
the Picard group and to understanding its structure for some specific surfaces.

2.1 Definition of the Picard group

One way to see the construction of the Picard group is to try to mimic the
construction of the homology groups of a manifold. In that case, we form a
free group of “cycles” and take the quotient by a subgroup of “boundaries”. In
the case of algebraic varieties, it is reasonable to replace the cycles by algebraic
subvarieties. However, there is nothing immediately obvious to replace the
boundaries, since a subvariety does not have a boundary. Many ways have been
devised to solve this problem in arbitrary codimension, but in codimension one
there is one which is particularly straightforward to define.

In what follows, X will be a smooth irreducible variety over a field k.

Definition 2.1. A prime divisor on a smooth variety X over a field k is an
irreducible closed subvariety Z ⊂ X of codimension one, also defined over k.
A divisor is a finite formal linear combination D =

∑
i niZi, ni ∈ Z, of prime

divisors. The group of divisors on X, which is the free group on the prime
divisors, is denoted DivX.

Remark 2.2. A prime divisor is not required to be nonsingular.

Remark 2.3. If X is a variety over a field k which is not algebraically closed,
then a prime divisor may not be geometrically irreducible. For example, the
0-dimensional variety {x2 = 2} ⊂ A1

Q is irreducible as a variety over Q, and is
therefore a prime divisor on A1

Q.

Definition 2.4. A divisor D =
∑

i niZi is effective if ni ≥ 0 for all i.

Definition 2.5. The support of a divisor D, written suppD, is the closed subset
of X given by

supp

(∑
i

niZi

)
=
⋃

ni 6=0

Zi.

To define an equivalence relation on divisors, we use the rational functions
on X. For any prime divisor Z on X, we would like to define the valuation
of a function f along that divisor. Since X is smooth, the local ring OX,Z is
a discrete valuation ring and so defines a discrete valuation vZ on its field of
fractions. This is simply the function field κ(X) of X, so we get a discrete
valuation vZ : κ(X)→ Z for each prime divisor D.
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If vZ(f) = d > 0, then we say that f has a zero of order d along Z (and,
indeed this happens if and only if f vanishes at almost all points of Z). If
vZ(f) = −d < 0, then we say that f has a pole of order d along Z. If vZ(f) ≥ 0
then f is regular at Z.

Using the valuations, we can associate a divisor to any rational function f .

Definition 2.6. Let f ∈ κ(X) be a rational function on X. We define the
divisor of f to be

div f = (f) =
∑
Z

vZ(f)Z

where the sum is taken over all prime divisors Z ⊂ X.

Remark 2.7. This sum is finite – that is, vZ(f) = 0 for all but finitely many
prime divisors Z. To see this, write f as a quotient of two polynomials; they are
each zero only on a closed subset of codimension one in X, which is therefore
the union of finitely many prime divisors.

Definition 2.8. A divisor which is of the form (f) for some f ∈ κ(X) is called
a principal divisor. The subgroup of DivX consisting of the principal divisors
is denoted by PrincX.

Definition 2.9. Two divisors D, D′ ∈ DivX are linearly equivalent, written
D ∼ D′, if their difference D −D′ is principal.

Example 2.10. Suppose that D and D′ are two effective divisors, with disjoint
supports, which are linearly equivalent. Then, by definition, there is a function
f ∈ κ(X) such that (f) = D −D′. Now the function f defines a rational map
from X to P1

k, such that f−1(0) = D and f−1(∞) = D′. The other fibres of
this rational map are all effective divisors which are also linearly equivalent to
D, so give a “family” of effective divisors “moving” from D to D′.

We can now define the Picard group of a smooth variety.

Definition 2.11. Let X be a smooth variety. The Picard group of X is the
quotient group

PicX =
DivX

PrincX
.

Remark 2.12. For a general (not necessarily smooth) variety X, what we have
defined is not the Picard group, but the Weil divisor class group. The Picard
group in general is the group of isomorphism classes of line bundles on X. If
X is normal, we can define a Cartier divisor to be a divisor Z which is locally
principal: that is, each point of suppZ has a neighbourhood is which Z is
principal. For an irreducible normal variety, the Picard group is isomorphic
to the group of Cartier divisors modulo linear equivalence. This is equal to
the Weil divisor class group if X is locally factorial and, in particular, if X is
smooth. For a thorough treatment of these ideas, see Section II.6 of [3].

Example 2.13. Pic An = 0 for any n ≥ 1. To prove this, we must show that
any irreducible subvariety of codimension one in An may be defined by a single
polynomial. This reduces to the algebraic fact that, in a unique factorisation
domain, any prime ideal of height one is principal. For a proof, see [1, Corollary
10.6].
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Example 2.14. Let D be a divisor on a smooth variety X and let P be a
point of X. Then D is linearly equivalent to a divisor D′ with P /∈ suppD′.
For the local ring OX,P is a unique factorisation domain, and so by using the
same result as the previous example we can find a neighbourhood U of P and a
function f such that, after restricting to U , (f) = D. Therefore D′ = D − (f)
is a divisor linearly equivalent to D and with support avoiding P .

Example 2.15. Given a surface X ⊂ P3, a plane section is the divisor on X
defined by intersecting X with a plane (and, if necessary, counting the compo-
nents with the correct multiplicities). Any two plane sections of X are linearly
equivalent. For let D1 and D2 be the intersections of X with distinct planes
defined by linear forms l1 and l2 respectively. Then the quotient l1/l2 defines a
rational function on X, with divisor (l1/l2) = D1 −D2.

More generally, let X ⊆ Pn be any projective variety. For the same reason,
any two hyperplane sections of X are linearly equivalent. We will often talk of
“the” hyperplane section to mean the class in PicX of a hyperplane section.

Remark 2.16. Bertini’s Theorem [3, Chapter II, Theorem 8.8] shows that, if X
is smooth and k algebraically closed, then almost all hyperplane sections of X
are nonsingular. Generalisations of this result can give many consequences of
the form “Any divisor D is equivalent to a difference A−B with A,B effective
and nice”, where nice can mean, for example: smooth; avoiding a given finite
set of points; transverse to a given finite set of subvarieties; and so on.

Exercise 1. Let Z be a prime divisor in a smooth variety X, and let U denote
the complement X \ Z. Show that the sequence

Z→ PicX → PicU → 0,

where the first map is 1 7→ Z and the second D 7→ D ∩ U , is exact.

Exercise 2. Use the result of Exercise 1 to show that Pic Pn ∼= Z, for any
positive integer n.

2.2 Different ground fields

If the ground field k of the variety X is not algebraically closed, then the above
definitions are still valid. We have

PicX =
DivX

PrincX
=

Divisors defined over k
Divisors of functions defined over k

.

On the other hand, we can also consider the base extension X̄ of X to k̄, and
its Picard group. This is

Pic X̄ =
Div X̄

Princ X̄
=

Divisors defined over k̄
Divisors of functions defined over k̄

.

There is a natural homomorphism i : PicX → Pic X̄, given by the inclusion
DivX ⊆ Div X̄. The Galois group Gal(k̄/k) acts on Pic X̄, and the image of
i lies in the Galois-fixed subgroup (Pic X̄)Gal(k̄/k). We state a few facts about
the map i.
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• DivX = (Div X̄)Gal(k̄/k), that is, a divisor is defined over k if and only if
it is fixed by the Galois action. This is a restatement of Remark ??.

• If X is a projective variety, then i is injective. This comes down to saying
that if a divisor D is defined over k and is the divisor of a function defined
over k̄, then it is in fact the divisor of a function defined over k. This is
an easy consequence of Hilbert’s Theorem 90 (Proposition ??).

• If k is a number field and X has points everywhere locally – that is,
X(kv) 6= ∅ for all places v of k – then i is an isomorphism. This is a
consequence of the Hasse principle for Severi–Brauer varieties.

2.3 Intersection numbers

In this section, we let X be a smooth surface over a field k. Given two curves
in X, they will generally intersect in a finite number of points. The number of
points is called their intersection number, and it gives us a very useful bilinear
form on the Picard group.

We say that two curves C1, C2 on X intersect transversely at a point P ∈
C1 ∩ C2 if, in the local ring OX,P , there are functions f1, f2 which generate
the unique maximal ideal and are such that (fi) = Ci on a neighbourhood
of P . This definition corresponds to the intuitive notion that the curves are
nonsingular at P and have distinct tangent directions.

Definition 2.17. Let X be a smooth surface over a field k, and let D and D′ be
two prime divisors on X which intersect transversely. We define the intersection
number of D and D′ to be

D ·D′ = #(D ∩D′)

where the cardinality of the intersection D ∩ D′ is taken over the algebraic
closure of k.

Theorem 2.18. Let X be a smooth surface. The intersection number extends
to a symmetric bilinear pairing DivX ×DivX → Z which respects linear equiv-
alence, and hence to a symmetric bilinear pairing PicX × PicX → Z.

Proof. See [3, Chapter V, Theorem 1.1].

Definition 2.19. Let X be a smooth surface and D a divisor in X. The
self-intersection number of D is the intersection number D2 = D ·D.

Example 2.20. Any two distinct lines in P2 intersect in precisely one point,
so have intersection number 1. Moreover, any line is linearly equivalent to any
other line. We deduce that the self-intersection number of a line in P2 is 1.

Example 2.21. Let X ⊆ Pn be a projective surface, and let H be a hyperplane
section of X. Then H2 is the degree of X, defined to be the number of points
of intersection of X with any sufficiently general linear subspace of dimension
n − 2. To see this, use the fact that H2 = H1 · H2 where H1 and H2 are any
two sufficiently general hyperplane sections of X.

Exercise 3. Suppose that X is a smooth hypersurface in P3 defined by a single
equation of degree d. Show that the degree of X is equal to d.
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Example 2.22. Let X ⊆ Pn be a projective surface, and let C be an irreducible
curve on X. Then H · C is the degree of C, defined to be the number of points
of intersection of C with a sufficiently general hyperplane.

Exercise 4. Let X be the projective quadric surface xy = zw, and let U be
the open subset defined by w 6= 0.

1. Show that U is isomorphic to A2, and deduce that PicU = 0.

2. Show that X \ U consists of two straight lines. Using the exact sequence
of Exercise 1, show that PicX ∼= Z2, generated by the classes of these two
straight lines.

(Hint: to show that the two lines are not equivalent, you may like to use
intersection numbers.)

The intersection number defines a new equivalence relation on divisors on a
surface.

Definition 2.23. Let X be a smooth surface. Two divisors D and D′ on X
are said to be numerically equivalent if D · E = D′ · E for all divisors E on X.

Given that intersection numbers respect linear equivalence, this gives an
equivalence relation coarser than linear equivalence. The subgroup of classes in
PicX which are numerically equivalent to 0 is denoted by PicnX.

2.4 Structure of the Picard group over C
When X is a smooth projective variety over the complex numbers C, one can
use methods from the theory of analytic varieties to deduce results about the
Picard group of X. Here we mention briefly some useful facts arising from this.

There is an exact sequence of analytic sheaves onX known as the exponential
sequence, which gives rise to an exact sequence of cohomology groups:

H1(X(C),Z)→ H1(X,OX)→ PicX → H2(X(C),Z).

We state several interesting facts about this sequence.

• Since X is a smooth projective variety, X(C) is a compact manifold. Its
integral cohomology groups Hi(X(C),Z) are therefore finitely generated
abelian groups.

• The group H1(X,OX) is a finite-dimensional complex vector space, and
it turns out that H1(X(C),Z) is a lattice in this vector space. The image
of H1(X,OX) in PicX is therefore a complex torus, and in fact is an
Abelian variety. It is denoted Pic0X, and lies inside the kernel PicnX of
the intersection pairing.

• The image of PicX in H2(X(C),Z) is isomorphic to PicX/Pic0X, and
this is therefore a finitely generated abelian group, called the Néron–Severi
group of X.

For more background to these results, see Appendix B of [3].
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