Algebraic Number Theory Example Sheet 4

Hand in the answers to questions 3, 6, 7. Deadline 2pm Thursday, Week 10.

- (1) Let $\mathfrak{a}, \mathfrak{b}$ be ideals of \mathcal{O}_K with $\mathfrak{a} \subseteq \mathfrak{b}$.
 - (i) Show that $\operatorname{Norm}(\mathfrak{a}) \geq \operatorname{Norm}(\mathfrak{b})$.
 - (ii) Show that $\operatorname{Norm}(\mathfrak{a}) = \operatorname{Norm}(\mathfrak{b})$ if and only if $\mathfrak{a} = \mathfrak{b}$.
- (2) Let K be a number field. Show that \mathcal{O}_K is a PID if and only if it is a UFD.
- (3) Let $K = \mathbb{Q}(\sqrt{-2})$. Show that \mathcal{O}_K is a principal ideal domain. Deduce that every prime $p \equiv 1, 3 \pmod{8}$ can be written as $p = x^2 + 2y^2$ with $x, y \in \mathbb{Z}$.
- (4) Compute the class groups of the following quadratic fields

$$\mathbb{Q}(\sqrt{5}), \qquad \mathbb{Q}(\sqrt{-6}), \qquad \mathbb{Q}(\sqrt{-30}).$$

- (5) (i) Let α , β be non-zero elements of \mathcal{O}_K . Suppose $\langle \alpha \rangle = \langle \beta \rangle$. Show that $\alpha = \beta \varepsilon$ for some $\varepsilon \in U(K)$.
 - (ii) Let \mathfrak{a} , \mathfrak{b} be non-zero ideals with $\mathfrak{a} + \mathfrak{b} = \langle 1 \rangle$ (we say \mathfrak{a} , \mathfrak{b} are coprime). Show that \mathfrak{a} , \mathfrak{b} are coprime in the following sense: if \mathfrak{p} is a prime ideal then \mathfrak{p} divides at most one of \mathfrak{a} , \mathfrak{b} .
 - (iii) Let \mathfrak{a} , \mathfrak{b} be coprime non-zero ideals. Suppose $\mathfrak{a}\mathfrak{b} = \mathfrak{c}^n$ where \mathfrak{c} is an ideal and n is a positive integer. Show that there are ideals \mathfrak{c}_1 , \mathfrak{c}_2 such that

$$\mathfrak{a} = \mathfrak{c}_1^n, \qquad \mathfrak{b} = \mathfrak{c}_2^n, \qquad \mathfrak{c} = \mathfrak{c}_1 \mathfrak{c}_2.$$

- (iv) Give a counterexample, with $K = \mathbb{Q}$, to show that (iii) fails if \mathfrak{a} , \mathfrak{b} are not coprime.
- (v) Let $x, y \in \mathbb{Z}$ and satisfy $x^2 + 2 = y^3$. Show that x, y are odd, and deduce that the ideals $\mathfrak{a} = \langle x + \sqrt{-2} \rangle$, $\mathfrak{b} = \langle x \sqrt{-2} \rangle$ are coprime.
- (vi) Continuing from (v), show carefully that $x + \sqrt{-2} = (u + v\sqrt{-2})^3$ for some $u, v \in \mathbb{Z}$. Hence determine the solutions to $x^2 + 2 = y^3$ with $x, y \in \mathbb{Z}$.
- (6) Let $K = \mathbb{Q}(\sqrt{-5})$.
 - (a) Show that $Cl(K) \cong C_2$.
 - (b) Let \mathfrak{a} be an ideal of \mathcal{O}_K and suppose \mathfrak{a}^3 is principal. Show that \mathfrak{a} is principal.
 - (c) Solve $x^2 + 5 = y^3$ with $x, y \in \mathbb{Z}$.
- (7) Let $K = \mathbb{Q}(\sqrt[3]{2})$. You may suppose that $1, \sqrt[3]{2}, \sqrt[3]{2}^2$ is an integral basis for \mathcal{O}_K . Show that

$$U(K) = \{ \pm (\sqrt[3]{2} - 1)^n : n \in \mathbb{Z} \}.$$

You may need to use WolframAlpha, MATLAB or a similar package to compute approximations to the embeddings of some algebraic numbers.