Algebraic Number Theory
 Example Sheet 4

Hand in the answers to questions $3,6,7$. Deadline 2pm Thursday, Week 10.
(1) Let $\mathfrak{a}, \mathfrak{b}$ be ideals of \mathcal{O}_{K} with $\mathfrak{a} \subseteq \mathfrak{b}$.
(i) Show that $\operatorname{Norm}(\mathfrak{a}) \geq \operatorname{Norm}(\mathfrak{b})$.
(ii) Show that $\operatorname{Norm}(\mathfrak{a})=\operatorname{Norm}(\mathfrak{b})$ if and only if $\mathfrak{a}=\mathfrak{b}$.
(2) Let K be a number field. Show that \mathcal{O}_{K} is a PID if and only if it is a UFD.
(3) Let $K=\mathbb{Q}(\sqrt{-2})$. Show that \mathcal{O}_{K} is a principal ideal domain. Deduce that every prime $p \equiv 1,3(\bmod 8)$ can be written as $p=x^{2}+2 y^{2}$ with $x, y \in \mathbb{Z}$.
(4) Compute the class groups of the following quadratic fields

$$
\mathbb{Q}(\sqrt{5}), \quad \mathbb{Q}(\sqrt{-6}), \quad \mathbb{Q}(\sqrt{-30}) .
$$

(5) (i) Let α, β be non-zero elements of \mathcal{O}_{K}. Suppose $\langle\alpha\rangle=\langle\beta\rangle$. Show that $\alpha=\beta \varepsilon$ for some $\varepsilon \in U(K)$.
(ii) Let $\mathfrak{a}, \mathfrak{b}$ be non-zero ideals with $\mathfrak{a}+\mathfrak{b}=\langle 1\rangle$ (we say $\mathfrak{a}, \mathfrak{b}$ are coprime). Show that $\mathfrak{a}, \mathfrak{b}$ are coprime in the following sense: if \mathfrak{p} is a prime ideal then \mathfrak{p} divides at most one of $\mathfrak{a}, \mathfrak{b}$.
(iii) Let \mathfrak{a}, \mathfrak{b} be coprime non-zero ideals. Suppose $\mathfrak{a b}=\mathfrak{c}^{n}$ where \mathfrak{c} is an ideal and n is a positive integer. Show that there are ideals $\mathfrak{c}_{1}, \mathfrak{c}_{2}$ such that

$$
\mathfrak{a}=\mathfrak{c}_{1}^{n}, \quad \mathfrak{b}=\mathfrak{c}_{2}^{n}, \quad \mathfrak{c}=\mathfrak{c}_{1} \mathfrak{c}_{2}
$$

(iv) Give a counterexample, with $K=\mathbb{Q}$, to show that (iii) fails if \mathfrak{a}, \mathfrak{b} are not coprime.
(v) Let $x, y \in \mathbb{Z}$ and satisfy $x^{2}+2=y^{3}$. Show that x, y are odd, and deduce that the ideals $\mathfrak{a}=\langle x+\sqrt{-2}\rangle, \mathfrak{b}=\langle x-\sqrt{-2}\rangle$ are coprime.
(vi) Continuing from (v), show carefully that $x+\sqrt{-2}=(u+v \sqrt{-2})^{3}$ for some $u, v \in \mathbb{Z}$. Hence determine the solutions to $x^{2}+2=y^{3}$ with $x, y \in \mathbb{Z}$.
(6) Let $K=\mathbb{Q}(\sqrt{-5})$.
(a) Show that $\mathrm{Cl}(K) \cong C_{2}$.
(b) Let \mathfrak{a} be an ideal of \mathcal{O}_{K} and suppose \mathfrak{a}^{3} is principal. Show that \mathfrak{a} is principal.
(c) Solve $x^{2}+5=y^{3}$ with $x, y \in \mathbb{Z}$.
(7) Let $K=\mathbb{Q}(\sqrt[3]{2})$. You may suppose that $1, \sqrt[3]{2}, \sqrt[3]{2}{ }^{2}$ is an integral basis for \mathcal{O}_{K}. Show that

$$
U(K)=\left\{ \pm(\sqrt[3]{2}-1)^{n}: n \in \mathbb{Z}\right\}
$$

You may need to use WolframAlpha, MATLAB or a similar package to compute approximations to the embeddings of some algebraic numbers.

