Algebraic Number Theory Example Sheet 3

Hand in the answers to questions 5, 8, 13. Deadline 2pm Thursday, Week 8.

- (1) Let R be a ring and \mathfrak{a} be an ideal of R. Show that $\mathfrak{a} = R$ if and only if \mathfrak{a} contains a unit.
- (2) Let K be a number field, $\sigma : K \hookrightarrow \mathbb{C}$ be an embedding of K and let $L = \sigma(K)$. (i) Show that $\sigma(\mathcal{O}_K) = \mathcal{O}_L$. Thus σ induces an isomorphism $\sigma : \mathcal{O}_K \to \mathcal{O}_L$.
 - (ii) Let \mathfrak{a} be an ideal of \mathcal{O}_K . Show that $\sigma(\mathfrak{a})$ is an ideal of \mathcal{O}_L .
 - (iii) Give a counter example to show that the following statement is false: if $\sigma: R \to S$ is a homomorphism of rings, and \mathfrak{a} is an ideal of R then $\sigma(\mathfrak{a})$ is an ideal of S.
- (3) Let K be a number field. We define the norm of a non-zero ideal \mathfrak{a} of \mathcal{O}_K by $\operatorname{Norm}(\mathfrak{a}) = \#\mathcal{O}_K/\mathfrak{a}$ (this is shown to be finite in the lectures). If \mathfrak{a} and \mathfrak{b} are non-zero ideals satisfying $\mathfrak{a} + \mathfrak{b} = \mathcal{O}_K$ (we say \mathfrak{a} and \mathfrak{b} are coprime), use the Chinese Remainder Theorem to show that

 $\operatorname{Norm}(\mathfrak{ab}) = \operatorname{Norm}(\mathfrak{a}) \operatorname{Norm}(\mathfrak{b}).$

(4) Let $\alpha_1, \ldots, \alpha_m$ be elements of \mathcal{O}_K and suppose that $\langle \alpha_1, \ldots, \alpha_m \rangle = \langle \alpha \rangle$. Show that Norm (α) divides each of Norm $(\alpha_1), \ldots,$ Norm (α_n) .

(5) Let
$$K = \mathbb{Q}(\sqrt{-5})$$
. In $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$ let
 $\mathfrak{a} = \langle 2, 1 + \sqrt{-5} \rangle, \qquad \mathfrak{b} = \langle 3, 1 + \sqrt{-5} \rangle, \qquad \mathfrak{b}' = \langle 3, 1 - \sqrt{-5} \rangle.$
(i) Show that

$$\mathfrak{a}^2 = \langle 2 \rangle, \qquad \mathfrak{b}\mathfrak{b}' = \langle 3 \rangle, \qquad \mathfrak{a}\mathfrak{b} = \langle 1 + \sqrt{-5} \rangle, \qquad \mathfrak{a}\mathfrak{b}' = \langle 1 - \sqrt{-5} \rangle.$$

This shows that the Algebra II example of non-unique factorisation $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ comes from grouping the ideal factorization of 6 in two different ways: $(\mathfrak{a}^2) \cdot (\mathfrak{b}\mathfrak{b}')$ and $(\mathfrak{a}\mathfrak{b}) \cdot (\mathfrak{a}\mathfrak{b}')$.

- (ii) Show that \mathfrak{a} , \mathfrak{b} and \mathfrak{b}' are non-principal.
- (iii) Write \mathfrak{a}^n in simplest form for $n \geq 1$.
- (6) Compute the norms of the ideals \mathfrak{a} , \mathfrak{b} , \mathfrak{b}' in Question 5.
- (7) Let $K = \mathbb{Q}(\sqrt{15})$. Let \mathfrak{a} be the following ideal of \mathcal{O}_K :

$$\mathfrak{a} = \langle 7, 1 + \sqrt{15} \rangle.$$

Compute $\mathcal{O}_K/\mathfrak{a}$ and Norm (\mathfrak{a}) .

(8) Let $f = X^3 + X^2 - 2X + 8$ and let θ be a root of f. Let $K = \mathbb{Q}(\theta)$. An integral basis for \mathcal{O}_K is 1, θ , $(\theta^2 + \theta)/2$ (see the last example in Chapter 3 of the online lecture notes). Let

$$\mathfrak{a} = \langle 2, 1 + \theta \rangle.$$

Compute $\mathcal{O}_K/\mathfrak{a}$ and Norm(\mathfrak{a}).

- (9) Let $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ be non-zero ideals of \mathcal{O}_K with $\mathfrak{c} = \mathfrak{a}\mathfrak{b}$.
 - (i) If \mathfrak{a} , \mathfrak{b} are principal, show that \mathfrak{c} is principal.
 - (ii) If \mathfrak{b} , \mathfrak{c} are principal, show that \mathfrak{a} is principal.
- (10) Let K be a number field. Let α , β be non-zero elements of \mathcal{O}_K .
 - (i) Show that $\langle \alpha \rangle^{-1} = \langle \alpha^{-1} \rangle$.
 - (ii) Give an counterexample to the following claim: $\langle \alpha, \beta \rangle^{-1} = \langle \alpha^{-1}, \beta^{-1} \rangle$.
- (11) Let \mathfrak{a} be a non-zero ideal of \mathcal{O}_K .
 - (i) Show that $\mathfrak{a} \cap \mathbb{Z}$ is an ideal of \mathbb{Z} .
 - (ii) Show that $\mathfrak{a} \cap \mathbb{Z} = a\mathbb{Z}$ for some non-zero integer a.
 - (iii) Let \mathfrak{p} be a non-zero prime ideal of \mathcal{O}_K . Show that $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$ for some rational prime p.
- (12) You're given that $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ is a principal ideal domain for d = 6, 7, 21. Exhibit a generator for the following ideals
 - (i) $\langle 3, \sqrt{6} \rangle$, $\langle 5, 4 + \sqrt{6} \rangle$ in $\mathcal{O}_{\mathbb{Q}(\sqrt{6})}$.
 - (ii) $\langle 2, 1 + \sqrt{7} \rangle$ in $\mathcal{O}_{\mathbb{Q}(\sqrt{7})}$.
 - (iii) $\langle 3, \sqrt{21} \rangle$ in $\mathcal{O}_{\mathbb{Q}(\sqrt{21})}$.
- (13) For this exercise you'll need the **Kummer-Dedekind Theorem**: Let p be a rational prime. Let $K = \mathbb{Q}(\theta)$ be a number field where θ is an algebraic integer. Suppose $p \nmid [\mathcal{O}_K : \mathbb{Z}[\theta]]$. Let

$$\mu_{\theta}(X) \equiv f_1(X)^{e_1} f_2(X)^{e_2} \cdots f_r(X)^{e_r} \pmod{p}$$

where the polynomials $f_i \in \mathbb{Z}[X]$ are irreducible and pairwise coprime modulo p. Let $\mathfrak{p}_i = \langle p, f_i(\theta) \rangle$. Then the \mathfrak{p}_i are pairwise distinct prime ideals of \mathcal{O}_K and

$$\langle p \rangle = \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \cdots \mathfrak{p}_r^{e_r}$$

Moreover, Norm $(\mathfrak{p}_i) = p^{\deg(f_i)}$. Use the Kummer–Dedekind Theorem to factor into prime ideals $\langle p \rangle$ in $\mathcal{O}_{\mathbb{Q}(\sqrt[3]{6})}$ for p = 2, 5, 13, checking that the factors are principal (you may suppose that 1, $\sqrt[3]{6}$, $\sqrt[3]{6}^2$ is an integral basis).

(14) Let $K = \mathbb{Q}(\sqrt[3]{2})$. Determine \mathcal{O}_K . Show that

$$\mathcal{O}_K^* = \{ \pm (1 - \sqrt[3]{2})^n : n \in \mathbb{Z} \}.$$