Algebraic Number Theory
 Example Sheet 3

Hand in the answers to questions $5,8,13$. Deadline 2pm Thursday, Week 8.
(1) Let R be a ring and \mathfrak{a} be an ideal of R. Show that $\mathfrak{a}=R$ if and only if \mathfrak{a} contains a unit.
(2) Let K be a number field, $\sigma: K \hookrightarrow \mathbb{C}$ be an embedding of K and let $L=\sigma(K)$.
(i) Show that $\sigma\left(\mathcal{O}_{K}\right)=\mathcal{O}_{L}$. Thus σ induces an isomorphism $\sigma: \mathcal{O}_{K} \rightarrow \mathcal{O}_{L}$.
(ii) Let \mathfrak{a} be an ideal of \mathcal{O}_{K}. Show that $\sigma(\mathfrak{a})$ is an ideal of \mathcal{O}_{L}.
(iii) Give a counter example to show that the following statement is false: if $\sigma: R \rightarrow S$ is a homomorphism of rings, and \mathfrak{a} is an ideal of R then $\sigma(\mathfrak{a})$ is an ideal of S.
(3) Let K be a number field. We define the norm of a non-zero ideal \mathfrak{a} of \mathcal{O}_{K} by $\operatorname{Norm}(\mathfrak{a})=\# \mathcal{O}_{K} / \mathfrak{a}$ (this is shown to be finite in the lectures). If \mathfrak{a} and \mathfrak{b} are non-zero ideals satisfying $\mathfrak{a}+\mathfrak{b}=\mathcal{O}_{K}$ (we say \mathfrak{a} and \mathfrak{b} are coprime), use the Chinese Remainder Theorem to show that

$$
\operatorname{Norm}(\mathfrak{a b})=\operatorname{Norm}(\mathfrak{a}) \operatorname{Norm}(\mathfrak{b})
$$

(4) Let $\alpha_{1}, \ldots, \alpha_{m}$ be elements of \mathcal{O}_{K} and suppose that $\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle=\langle\alpha\rangle$. Show that $\operatorname{Norm}(\alpha)$ divides each of $\operatorname{Norm}\left(\alpha_{1}\right), \ldots, \operatorname{Norm}\left(\alpha_{n}\right)$.
(5) Let $K=\mathbb{Q}(\sqrt{-5})$. In $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-5}]$ let

$$
\mathfrak{a}=\langle 2,1+\sqrt{-5}\rangle, \quad \mathfrak{b}=\langle 3,1+\sqrt{-5}\rangle, \quad \mathfrak{b}^{\prime}=\langle 3,1-\sqrt{-5}\rangle .
$$

(i) Show that

$$
\mathfrak{a}^{2}=\langle 2\rangle, \quad \mathfrak{b} \mathfrak{b}^{\prime}=\langle 3\rangle, \quad \mathfrak{a} \mathfrak{b}=\langle 1+\sqrt{-5}\rangle, \quad \mathfrak{a} \mathfrak{b}^{\prime}=\langle 1-\sqrt{-5}\rangle .
$$

This shows that the Algebra II example of non-unique factorisation $6=$ $2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$ comes from grouping the ideal factorization of 6 in two different ways: $\left(\mathfrak{a}^{2}\right) \cdot\left(\mathfrak{b b} \mathfrak{b}^{\prime}\right)$ and $(\mathfrak{a b}) \cdot\left(\mathfrak{a b} \mathfrak{b}^{\prime}\right)$.
(ii) Show that $\mathfrak{a}, \mathfrak{b}$ and \mathfrak{b}^{\prime} are non-principal.
(iii) Write \mathfrak{a}^{n} in simplest form for $n \geq 1$.
(6) Compute the norms of the ideals $\mathfrak{a}, \mathfrak{b}, \mathfrak{b}^{\prime}$ in Question 5 .
(7) Let $K=\mathbb{Q}(\sqrt{15})$. Let \mathfrak{a} be the following ideal of \mathcal{O}_{K} :

$$
\mathfrak{a}=\langle 7,1+\sqrt{15}\rangle
$$

Compute $\mathcal{O}_{K} / \mathfrak{a}$ and $\operatorname{Norm}(\mathfrak{a})$.
(8) Let $f=X^{3}+X^{2}-2 X+8$ and let θ be a root of f. Let $K=\mathbb{Q}(\theta)$. An integral basis for \mathcal{O}_{K} is $1, \theta,\left(\theta^{2}+\theta\right) / 2$ (see the last example in Chapter 3 of the online lecture notes). Let

$$
\mathfrak{a}=\langle 2,1+\theta\rangle .
$$

Compute $\mathcal{O}_{K} / \mathfrak{a}$ and $\operatorname{Norm}(\mathfrak{a})$.
(9) Let $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ be non-zero ideals of \mathcal{O}_{K} with $\mathfrak{c}=\mathfrak{a b}$.
(i) If $\mathfrak{a}, \mathfrak{b}$ are principal, show that \mathfrak{c} is principal.
(ii) If $\mathfrak{b}, \mathfrak{c}$ are principal, show that \mathfrak{a} is principal.
(10) Let K be a number field. Let α, β be non-zero elements of \mathcal{O}_{K}.
(i) Show that $\langle\alpha\rangle^{-1}=\left\langle\alpha^{-1}\right\rangle$.
(ii) Give an counterexample to the following claim: $\langle\alpha, \beta\rangle^{-1}=\left\langle\alpha^{-1}, \beta^{-1}\right\rangle$.
(11) Let \mathfrak{a} be a non-zero ideal of \mathcal{O}_{K}.
(i) Show that $\mathfrak{a} \cap \mathbb{Z}$ is an ideal of \mathbb{Z}.
(ii) Show that $\mathfrak{a} \cap \mathbb{Z}=a \mathbb{Z}$ for some non-zero integer a.
(iii) Let \mathfrak{p} be a non-zero prime ideal of \mathcal{O}_{K}. Show that $\mathfrak{p} \cap \mathbb{Z}=p \mathbb{Z}$ for some rational prime p.
(12) You're given that $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ is a principal ideal domain for $d=6,7,21$. Exhibit a generator for the following ideals
(i) $\langle 3, \sqrt{6}\rangle,\langle 5,4+\sqrt{6}\rangle$ in $\mathcal{O}_{\mathbb{Q}(\sqrt{6})}$.
(ii) $\langle 2,1+\sqrt{7}\rangle$ in $\mathcal{O}_{\mathbb{Q}(\sqrt{7})}$.
(iii) $\langle 3, \sqrt{21}\rangle$ in $\mathcal{O}_{\mathbb{Q}(\sqrt{21})}$.
(13) For this exercise you'll need the Kummer-Dedekind Theorem: Let p be a rational prime. Let $K=\mathbb{Q}(\theta)$ be a number field where θ is an algebraic integer. Suppose $p \nmid\left[\mathcal{O}_{K}: \mathbb{Z}[\theta]\right]$. Let

$$
\mu_{\theta}(X) \equiv f_{1}(X)^{e_{1}} f_{2}(X)^{e_{2}} \cdots f_{r}(X)^{e_{r}} \quad(\bmod p)
$$

where the polynomials $f_{i} \in \mathbb{Z}[X]$ are irreducible and pairwise coprime modulo p. Let $\mathfrak{p}_{i}=\left\langle p, f_{i}(\theta)\right\rangle$. Then the \mathfrak{p}_{i} are pairwise distinct prime ideals of \mathcal{O}_{K} and

$$
\langle p\rangle=\mathfrak{p}_{1}^{e_{1}} \mathfrak{p}_{2}^{e_{2}} \cdots \mathfrak{p}_{r}^{e_{r}}
$$

Moreover, $\operatorname{Norm}\left(\mathfrak{p}_{i}\right)=p^{\operatorname{deg}\left(f_{i}\right)}$. Use the Kummer-Dedekind Theorem to factor into prime ideals $\langle p\rangle$ in $\mathcal{O}_{\mathbb{Q}(\sqrt[3]{6})}$ for $p=2,5,13$, checking that the factors are principal (you may suppose that $1, \sqrt[3]{6}, \sqrt[3]{6}^{2}$ is an integral basis).
(14) Let $K=\mathbb{Q}(\sqrt[3]{2})$. Determine \mathcal{O}_{K}. Show that

$$
\mathcal{O}_{K}^{*}=\left\{ \pm(1-\sqrt[3]{2})^{n}: n \in \mathbb{Z}\right\}
$$

