Chabauty and the Mordell-Weil Sieve Episode 1

Samir Siksek

University of Wainuch
1 September 2014

Warning

Warning: some of the mathematics will be only approximately correct.

Warning

Warning: some of the mathematics will be only approximately correct.
"In mathematics you don't understand things. You just get used to them."

John von Neumann

Joseph H. Silverman

The Arithmetic of Elliptic Curves

Basic Philosophy

A Basic Philosophy of Arithmetic Geometry: The geometry of an algebraic variety governs its arithmetic.

A Central Question of Arithmetic Geometry: How does the geometry govern the arithmetic?

Think of varieties as defined by systems of polynomial equations in affine or projective space. An affine variety $V \subset \mathbb{A}^{n}$ defined over a field k is given by a system of polynomial equations

$$
V:\left\{\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=0,
\end{array} \quad f_{i} \in k\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

For $L \supseteq k$, the set of L-points of V is

$$
V(L)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in L^{n}: f_{i}\left(a_{1}, \ldots, a_{n}\right)=0 \text { for } i=1, \ldots, m\right\} .
$$

A projective variety $V \subseteq \mathbb{P}^{n}$ defined over k is given by a system of polynomial equations

$$
V:\left\{\begin{array}{c}
f_{1}\left(x_{0}, \ldots, x_{n}\right)=0, \\
\vdots \\
f_{m}\left(x_{0}, \ldots, x_{n}\right)=0,
\end{array} \quad f_{i} \in k\left[x_{0}, \ldots, x_{n}\right]\right. \text { are homogeneous. }
$$

For $L \supseteq k$, the set of L-points of V is

$$
V(L)=\left\{\left(a_{0}, \ldots, a_{n}\right) \in L^{n+1} \backslash\{0\}: f_{i}\left(a_{0}, \ldots, a_{n}\right)=0 \text { for } i=1, \ldots, m\right\} / \sim \text {, }
$$

where $\left(a_{0}, \ldots, a_{n}\right) \sim\left(b_{0}, \ldots, a_{n}\right)$ if there is some $\lambda \in L^{*}$ such that $\lambda a_{i}=b_{i}$ for $i=0, \ldots, n$.

A variety $V \subset \mathbb{P}^{n}$ is covered by $n+1$ affine patches:

$$
V \cap\left\{x_{i}=1\right\} \quad i=0,1, \ldots, n .
$$

Dimension

We classify varieties by dimension, a non-negative integer: $0,1,2, \ldots$.

Fact

A variety $V \subset \mathbb{A}^{n}$ or \mathbb{P}^{n}, defined by a single polynomial equation $V: f=0$, where f is a non-constant polynomial, has dimension $n-1$.

Example

$$
\begin{gathered}
V_{1} \subset \mathbb{A}^{1}, \quad V_{1}: x^{3}+x+1=0 \text { has dimension } 0 . \\
V_{2} \subset \mathbb{A}^{2}, \quad V_{2}: y^{2}=x^{6}+1, \quad \text { has dimension } 1 . \\
V_{3} \subset \mathbb{P}^{2}, \quad V_{3}: x^{3}+y^{3}+z^{3}=0, \quad \text { has dimension } 1 . \\
V_{4} \subset \mathbb{P}^{3}, \quad V_{4}: x^{3}+y^{3}+z^{3}+w^{3}=0, \quad \text { has dimension } 2 .
\end{gathered}
$$

Varieties of dimension $1,2,3, \ldots$ are called curves, surfaces, threefolds, etc.

Smooth

Let V be an affine variety $V \subset \mathbb{A}^{n}$ of dimension d, defined over a field k, and given by a system of polynomial equations

$$
V:\left\{\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=0,
\end{array} \quad f_{i} \in k\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

We say that $P \in V(\bar{k})$ is smooth if the matrix

$$
\operatorname{rank}\left(\frac{\partial f_{i}}{\partial x_{j}}(P)\right)_{i=1, \ldots, m, j=1, \ldots, n}=n-d
$$

We say that V is smooth or non-singular if it is smooth at all points $P \in V(\bar{k})$.

If $V \subset \mathbb{P}^{n}$, we say that V is smooth if all the affine patches $V \cap\left\{x_{i}=1\right\}$ are smooth.

Example

Let

$$
C: y^{2}=f(x) \quad \text { (hyperelliptic curve) }
$$

where f is a non-constant polynomial. Then $P=(a, b) \in C$ is singular iff

$$
\left(2 a \quad-f^{\prime}(b)\right)=(00)
$$

So

$$
2 a=0, \quad a^{2}=f(b), \quad f^{\prime}(b)=0 .
$$

If $\operatorname{char}(k) \neq 2$, then $f(b)=f^{\prime}(b)=0$. So C has a singular point if and only if $\operatorname{Disc}(f)=0$. So C is smooth iff $\operatorname{Disc}(f) \neq 0$.

Example

Let $V \subset \mathbb{P}^{n}$ (defined over k) be given by

$$
V: f\left(x_{0}, \ldots, x_{n}\right)=0
$$

where $f \neq 0$ is homogeneous. Then V is singular if and only if there is $P \in V(\bar{k})$ such that

$$
\frac{\partial f}{\partial x_{1}}(P)=\cdots=\frac{\partial f}{\partial x_{n}}(P)=0 .
$$

Curves

We will restrict to curves.

Definition

By a curve C over a field k, we mean a smooth, projective, absolutely irreducible (or geometrically irreducible), 1-dimensional k-variety.

Rational Points: Given C / \mathbb{Q}, we want to understand $C(\mathbb{Q})$.

Example: Reducibility

Example

Consider the variety $V \subset \mathbb{A}^{2}$ given by the equation

$$
V: x^{6}-1=y^{2}+2 y
$$

Can rewrite as

$$
V:\left(y+1-x^{3}\right)\left(y+1+x^{3}\right)=0
$$

So

$$
V=V_{1} \cup V_{2}
$$

where

$$
V_{1}: y+1-x^{3}=0, \quad V_{2}: y+1+x^{3}=0
$$

Note V is reducible, but V_{1} and V_{2} are irreducible. To understand $V(\mathbb{Q})$ enough to understand $V_{1}(\mathbb{Q})$ and $V_{2}(\mathbb{Q})$.

Example: Absolute Reducibility

Example

$$
V: 2 x^{6}-1=y^{2}+2 y .
$$

V is irreducible, but absolutely reducible since

$$
V_{\overline{\mathbb{Q}}}=\left\{y+1+\sqrt{2} x^{3}=0\right\} \cup\left\{y+1-\sqrt{2} x^{3}=0\right\} .
$$

If $(x, y) \in V(\mathbb{Q})$ then

$$
y+1+\sqrt{2} x^{3}=y+1-\sqrt{2} x^{3}=0
$$

In other words

$$
y=-1, \quad x=0
$$

So $V(\mathbb{Q})=\{(0,-1)\}$.
Moral: To understand rational points on varieties, it is enough to understand rational on absolutely irreducible varieties.

Function Fields

Let $V \subset \mathbb{A}^{n}$ be an absolutely irreducible affine variety defined over k by the equations

$$
V:\left\{\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=0,
\end{array} \quad f_{i} \in k\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

The affine coordinate ring of V is given by

$$
k[V]=k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{m}\right) .
$$

The function field $k(V)$ of V is the field of fractions of $k[V]$.
If $V \subset \mathbb{P}^{n}$ then its function field is the function field of any affine patch.

Example

$$
\begin{gathered}
k\left[\mathbb{A}^{n}\right]=k\left[x_{1}, \ldots, x_{n}\right], \quad k\left(\mathbb{A}^{n}\right)=k\left(x_{1}, \ldots, x_{n}\right), \\
k\left(\mathbb{P}^{n}\right)=k\left(\mathbb{P}^{n} \cap\left\{x_{0}=1\right\}\right)=k\left(x_{1}, \ldots, x_{n}\right) .
\end{gathered}
$$

Function Fields

Let $V \subset \mathbb{A}^{n}$ be an absolutely irreducible affine variety defined over k by the equations

$$
V:\left\{\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=0,
\end{array} \quad f_{i} \in k\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

The affine coordinate ring of V is given by

$$
k[V]=k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{m}\right) .
$$

The function field $k(V)$ of V is the field of fractions of $k[V]$.
If $V \subset \mathbb{P}^{n}$ then its function field is the function field of any affine patch.
Example

$$
\begin{gathered}
C: y^{2}=f(x) \quad f \in k[x] \backslash k, \quad \operatorname{disc}(f) \neq 0 . \\
k[C]=k[x, y] /\left(y^{2}-f(x)\right), \quad k(C)=k(x)(\sqrt{f(x)}) .
\end{gathered}
$$

Function Fields

Let $V \subset \mathbb{A}^{n}$ be an absolutely irreducible affine variety defined over k by the equations

$$
V:\left\{\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=0,
\end{array} \quad f_{i} \in k\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

The affine coordinate ring of V is given by

$$
k[V]=k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{m}\right) .
$$

The function field $k(V)$ of V is the field of fractions of $k[V]$.
If $V \subset \mathbb{P}^{n}$ then its function field is the function field of any affine patch.

Example (Why do we want irreducibility?)

$$
V \subset \mathbb{A}^{2}, \quad V: x_{1} x_{2}=0, \quad k[V]=k\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}\right) .
$$

x_{1}, x_{2} are zero divisors in $k[V]$ so it isn't an integral domain.

Genus

We classify curves by genus. This is a non-negative integer: $0,1,2, \ldots$.

Example

If

$$
C / k: F(x, y, z)=0, \quad C \subset \mathbb{P}^{2}
$$

is smooth, where $F \in k[x, y, z]$ is homogeneous of degree n, then C has genus $(n-1)(n-2) / 2$.

Example

Let

$$
C / k: y^{2}=f(x), \quad C \subset \mathbb{A}^{2} \quad(f \in k[x] \text { non-constant }) .
$$

If C is smooth and $\operatorname{deg}(f)=n$ then

$$
\operatorname{genus}(C)= \begin{cases}(d-1) / 2 & d \text { odd } \\ (d-2) / 2 & d \text { even. }\end{cases}
$$

Curves of Genus 0

Theorem

Let C be a curve of genus 0 defined over k. Then C is isomorphic (over k) to a smooth plane curve of degree 2 (i.e. a conic). Moreover, if $C(k) \neq \varnothing$ then C is isomorphic over k to \mathbb{P}^{1}.

Theorem

(The Hasse Principle) Let C / \mathbb{Q} be a curve of genus 0 . The following are equivalent:
(1) $C(\mathbb{Q}) \neq \varnothing$;
(2) $C(\mathbb{R}) \neq \varnothing$ and $C\left(\mathbb{Q}_{p}\right) \neq \varnothing$ for all primes p.

Theorem

(The Hasse Principle) Let C / \mathbb{Q} be a curve of genus 0 . The following are equivalent:
(1) $C(\mathbb{Q}) \neq \varnothing$;
(2) $C(\mathbb{R}) \neq \varnothing$ and $C\left(\mathbb{Q}_{p}\right) \neq \varnothing$ for all primes p.

Theorem (Legendre, Hasse)

Let

$$
C: a x^{2}+b y^{2}+c z^{2}=0, \quad a, b, c \text { non-zero, squarefree integers. }
$$

The following are equivalent:
(1) $C(\mathbb{Q}) \neq \varnothing$;
(2) $C(\mathbb{R}) \neq \varnothing$ and $C\left(\mathbb{Q}_{p}\right) \neq \varnothing$ for all primes p.
(0) $C(\mathbb{R}) \neq \varnothing$ and $C\left(\mathbb{Q}_{p}\right) \neq \varnothing$ for all primes $p \mid 2 a b c$.

Genus 1

Theorem

If C is a curve of genus 1 over a field k and $P_{0} \in C(k)$, then C is isomorphic over k to a Weierstrass elliptic curve

$$
y^{2} z+a_{1} x y z+a_{3} y z^{2}=x^{3}+a_{2} x^{2} z+a_{4} x z^{2}+a_{6} z^{3} \quad \subset \mathbb{P}^{2}
$$

where the isomorphism sends P_{0} to $(0: 1: 0)$.
(Mordell-Weil) Moreover, if $k=\mathbb{Q}$ or a number field, then $C(k)$ is a finitely generated abelian group with P_{0} as the zero element.
(1) There is no known algorithm for deciding if $C(\mathbb{Q}) \neq \varnothing$.
(2) There is no known algorithm for computing a Mordell-Weil basis for $C(\mathbb{Q})$ if it is non-empty.

But there is a descent strategy that usually works (Steffen's lectures).

Genus ≥ 2

Theorem (Faltings)

Let C be a curve of genus ≥ 2 over a number field k. Then $C(k)$ is finite.
(1) There is no known algorithm for computing $C(k)$.
(2) There is no known algorithm for deciding if $C(k) \neq \varnothing$.

But there is a bag of tricks that can be used to show that $C(k)$ is empty, or determine $C(k)$ if it is non-empty. These include:
(1) Local Methods (Michael's Lectures).
(3) Quotients (Michael's Lectures).
© Descent (Michael's Lectures).

- Chabauty.
- Mordell-Weil sieve.

The purpose of these lectures is to get a feel for each of these methods and see it applied in some example.

Divisors

Let C be a curve over k. A divisor D on C is a formal linear combination

$$
D=\sum_{i=1}^{n} a_{i} P_{i}, \quad a_{i} \in \mathbb{Z}, \quad P_{i} \in C(\bar{k})
$$

We define the degree of D to be $\sum a_{i}$.
Example
Let

$$
C: y^{2}=x\left(x^{2}+1\right)\left(x^{3}+1\right) .
$$

Let

$$
D_{1}=2 \cdot(0,0)+(1,2), \quad D_{2}=(i, 0)-(-i, 0), \quad D_{3}=(i, 0)+(-i, 0)-2 \cdot(1,2) .
$$

Then

$$
\operatorname{deg}\left(D_{1}\right)=3, \quad \operatorname{deg}\left(D_{2}\right)=0, \quad \operatorname{deg}\left(D_{3}\right)=0
$$

We say that D is rational if it is invariant under $\operatorname{Gal}(\bar{k} / k)$.

Example

Let

$$
C / \mathbb{Q}: y^{2}=x\left(x^{2}+1\right)\left(x^{3}+1\right) .
$$

Let

$$
D_{1}=2 \cdot(0,0)+(1,2), \quad D_{2}=(i, 0)-(-i, 0), \quad D_{3}=(i, 0)+(-i, 0)-2 \cdot(1,2) .
$$

Then D_{1} is rational, D_{3} is rational, D_{2} is not rational.

Definition

Let

$$
\operatorname{Div}^{0}(C / k):=\{\text { rational degree } 0 \text { divisors }\} .
$$

This is an abelian group.
In the example $D_{3} \in \operatorname{Div}^{0}(C / k)$, but $D_{1}, D_{2} \notin \operatorname{Div}^{0}(C / k)$.

Principal Divisors

Let $k(C)$ be the function field of C, and let $f \in k(C)$. If $P \in C(\bar{k})$ then there is $v_{P}(f) \in \mathbb{Z}$ which measures the order of vanishing of f at P. Define

$$
\operatorname{div}(f)=\sum_{P \in C(\bar{k})} v_{P}(f) \cdot P .
$$

Then $\operatorname{div}(f) \in \operatorname{Div}^{0}(C / k)$.

Example

Let $f=\frac{x^{2}-7}{x^{3}}$ on \mathbb{P}^{1}. Then

$$
\operatorname{div}(f)=-3 \cdot(0)+(\sqrt{7})+(-\sqrt{7})
$$

Principal Divisors

Let $k(C)$ be the function field of C, and let $f \in k(C)$. If $P \in C(\bar{k})$ then there is $v_{P}(f) \in \mathbb{Z}$ which measures the order of vanishing of f at P. Define

$$
\operatorname{div}(f)=\sum_{P \in C(\bar{k})} v_{P}(f) \cdot P .
$$

Then $\operatorname{div}(f) \in \operatorname{Div}^{0}(C / k)$.

Example

Let $f=\frac{x^{2}-7}{x^{3}}$ on \mathbb{P}^{1}. Then

$$
\operatorname{div}(f)=-3 \cdot(0)+(\sqrt{7})+(-\sqrt{7})+\infty
$$

Picard Group

Define

$$
\operatorname{Princ}(C / k):=\left\{\operatorname{div}(f): f \in k(C)^{*}\right\} \quad \text { principal divisors. }
$$

This is an abelian group (note $\operatorname{div}(f g)=\operatorname{div}(f)+\operatorname{div}(g))$. Also $\operatorname{Princ}(C / k) \subset \operatorname{Div}^{0}(C / k)$. We define the Picard group of C / k as

$$
\operatorname{Pic}^{0}(C / k):=\frac{\operatorname{Div}^{0}(C / k)}{\operatorname{Princ}(C / k)}
$$

Example

$$
\operatorname{Pic}^{0}\left(\mathbb{P}^{1} / k\right)=0
$$

Define

$$
\operatorname{Princ}(C / k):=\{\operatorname{div}(f): f \in k(C)\} .
$$

This is an abelian group (note $\operatorname{div}(f g)=\operatorname{div}(f)+\operatorname{div}(g))$. Also $\operatorname{Princ}(C / k) \subset \operatorname{Div}^{0}(C / k)$. We define the Picard group of C / k as

$$
\operatorname{Pic}^{0}(C / k):=\frac{\operatorname{Div}^{0}(C / k)}{\operatorname{Princ}(C / k)}
$$

Example

Let

$$
E: y^{2}=x^{3}+A x+B, \quad A, B \in k, \quad 4 A^{3}+27 B^{2} \neq 0
$$

be an elliptic curve over k. Then (consequence of Riemann-Roch)

$$
E(k) \cong \operatorname{Pic}^{0}(E / k), \quad P \mapsto[P-\infty] .
$$

If C is a curve that isn't an elliptic curve, what is the right object to replace $E(k)$ in this isomorphism?

Jacobians

Let C / k be a curve of genus g. The Jacobian J_{C} of C is a g-dimensional abelian variety defined over k. An elliptic curve E is its own Jacobian $J_{E}=E$.

Theorem

(Mordell-Weil Theorem) If k is a number field then $J_{C}(k)$ is a finitely generated abelian group.

Proof uses descent. Can often compute $J_{C}(k)$ in practice, but there is no algorithm guaranteed to work.

Theorem
Let C be a curve with $C(k) \neq \varnothing$. Then

$$
J_{C}(k) \cong \operatorname{Pic}^{0}(C / k)
$$

We usually use elements of $\operatorname{Pic}^{0}(C / k)$ to represent elements of $J_{C}(k)$.

Example

Let

$$
C: y^{2}=x\left(x^{2}+1\right)\left(x^{2}+3\right) .
$$

The curve C has genus 2. Using descent it is possible to show that

$$
J_{C}(\mathbb{Q})=\frac{\mathbb{Z}}{2 \mathbb{Z}} \cdot[(0,0)-\infty] \oplus \frac{\mathbb{Z}}{2 \mathbb{Z}} \cdot[(i, 0)+(-i, 0)-2 \infty] .
$$

Note

$$
[(0,0)-\infty]+[(i, 0)+(-i, 0)-2 \infty]=[(\sqrt{-3}, 0)+(-\sqrt{-3}, 0)-2 \infty] .
$$

Definition

Let C / k be a curve of genus ≥ 1. Let $P_{0} \in C(k)$. Associated to P_{0} is an embedding

$$
\iota: C \hookrightarrow J_{C}, \quad P \rightarrow\left[P-P_{0}\right]
$$

called the Abel-Jacobi map associated to P_{0}.

Definition

Let C / k be a curve of genus ≥ 1. Let $P_{0} \in C(k)$. Associated to P_{0} is an embedding

$$
\imath: C \hookrightarrow J_{C}, \quad P \rightarrow\left[P-P_{0}\right]
$$

called the Abel-Jacobi map associated to P_{0}.

Lemma

If C has genus $\geq 1, P_{0} \in C(k)$. Then $\iota(C(k)) \subseteq J_{C}(k)$. If $J_{C}(k)$ is finite (and we know it) we can compute $C(k)$.

Lemma

If C has genus $\geq 1, P_{0} \in C(k)$. Then $ı(C(k)) \subseteq J_{C}(k)$. If $J_{C}(k)$ is finite (and we know it) we can compute $C(k)$.

Example

$$
\begin{gather*}
C: y^{2}=x\left(x^{2}+1\right)\left(x^{2}+3\right) . \\
J_{C}(\mathbb{Q})=\{0,[(0,0)-\infty],[(i, 0)+(-i, 0)-2 \infty], \\
[(\sqrt{-3}, 0)+(-\sqrt{-3}, 0)-2 \infty]\} . \tag{1}
\end{gather*}
$$

We can take $\iota: C \hookrightarrow J_{C}, P \mapsto[P-\infty]$, and using this we find that

$$
C(\mathbb{Q})=\{\infty,(0,0)\} .
$$

What if $J_{C}(\mathbb{Q})$ is infinite?

Definition

Let C / k be a curve of genus ≥ 1. Let $P_{0} \in C(k)$. Associated to P_{0} is an embedding

$$
\iota: C \hookrightarrow J_{C}, \quad P \rightarrow\left[P-P_{0}\right]
$$

called the Abel-Jacobi map associated to P_{0}.

What if $J_{C}(\mathbb{Q})$ is infinite?

Definition

Let C / k be a curve of genus ≥ 1. Let $P_{0} \in C(k)$. Associated to P_{0} is an embedding

$$
\iota: C \hookrightarrow J_{C}, \quad P \rightarrow\left[P-P_{0}\right]
$$

called the Abel-Jacobi map associated to P_{0}.

Suppose C is defined over \mathbb{Q}. If $J_{C}(\mathbb{Q})$ is infinite, can we still use it to recover $C(\mathbb{Q})$?

What if $J_{C}(\mathbb{Q})$ is infinite?

Definition

Let C / k be a curve of genus ≥ 1. Let $P_{0} \in C(k)$. Associated to P_{0} is an embedding

$$
\iota: C \hookrightarrow J_{C}, \quad P \rightarrow\left[P-P_{0}\right]
$$

called the Abel-Jacobi map associated to P_{0}.

Suppose C is defined over \mathbb{Q}. If $J_{C}(\mathbb{Q})$ is infinite, can we still use it to recover $C(\mathbb{Q})$?

Find out on Wednesday!

