Chabauty and the Mordell–Weil Sieve Episode 1

Samir Siksek

University of Warwick

1 September 2014

Warning: some of the mathematics will be only approximately correct.

Warning: some of the mathematics will be only approximately correct.

"In mathematics you don't understand things. You just get used to them."

John von Neumann

Joseph H. Silverman

The Arithmetic of Elliptic Curves

Basic Philosophy

A Basic Philosophy of Arithmetic Geometry: The geometry of an algebraic variety governs its arithmetic.

A Central Question of Arithmetic Geometry: How does the geometry govern the arithmetic?

Think of varieties as defined by systems of polynomial equations in affine or projective space. An **affine variety** $V \subset \mathbb{A}^n$ defined over a field k is given by a system of polynomial equations

$$V : \begin{cases} f_1(x_1,...,x_n) = 0, \\ \vdots & f_i \in k[x_1,...,x_n]. \\ f_m(x_1,...,x_n) = 0, \end{cases}$$

For $L \supseteq k$, the set of *L*-points of *V* is

$$V(L) = \{(a_1, ..., a_n) \in L^n : f_i(a_1, ..., a_n) = 0 \text{ for } i = 1, ..., m\}.$$

A **projective variety** $V \subseteq \mathbb{P}^n$ defined over k is given by a system of polynomial equations

$$V: \begin{cases} f_1(x_0, \dots, x_n) = 0, \\ \vdots \\ f_m(x_0, \dots, x_n) = 0, \end{cases} \quad f_i \in k[x_0, \dots, x_n] \text{ are homogeneous.}$$

For $L \supseteq k$, the set of *L*-points of *V* is

$$V(L) = \{(a_0, ..., a_n) \in L^{n+1} \setminus \{0\} : f_i(a_0, ..., a_n) = 0 \text{ for } i = 1, ..., m\} / \sim,$$

where $(a_0, ..., a_n) \sim (b_0, ..., a_n)$ if there is some $\lambda \in L^*$ such that $\lambda a_i = b_i$ for $i = 0, ..., n$.

A variety $V \subset \mathbb{P}^n$ is covered by n+1 affine patches:

$$V \cap \{x_i = 1\}$$
 $i = 0, 1, ..., n.$

Dimension

We classify varieties by dimension, a non-negative integer: 0,1,2,....

Fact

A variety $V \subset \mathbb{A}^n$ or \mathbb{P}^n , defined by a single polynomial equation V : f = 0, where f is a non-constant polynomial, has dimension n-1.

Example

$$\begin{array}{ll} V_1 \subset \mathbb{A}^1, & V_1 : x^3 + x + 1 = 0 & \text{has dimension 0.} \\ & V_2 \subset \mathbb{A}^2, & V_2 : y^2 = x^6 + 1, & \text{has dimension 1.} \\ & V_3 \subset \mathbb{P}^2, & V_3 : x^3 + y^3 + z^3 = 0, & \text{has dimension 1.} \\ & V_4 \subset \mathbb{P}^3, & V_4 : x^3 + y^3 + z^3 + w^3 = 0, & \text{has dimension 2.} \end{array}$$

Varieties of dimension 1,2,3,... are called **curves**, **surfaces**, **threefolds**, etc.

Smooth

Let V be an affine variety $V \subset \mathbb{A}^n$ of dimension d, defined over a field k, and given by a system of polynomial equations

$$V : \begin{cases} f_1(x_1,...,x_n) = 0, \\ \vdots & f_i \in k[x_1,...,x_n]. \\ f_m(x_1,...,x_n) = 0, \end{cases}$$

We say that $P \in V(\overline{k})$ is smooth if the matrix

$$\operatorname{rank}\left(\frac{\partial f_i}{\partial x_j}(P)\right)_{i=1,\dots,m,\,j=1,\dots,n}=n-d.$$

We say that V is smooth or non-singular if it is smooth at all points $P \in V(\overline{k})$.

If $V \subset \mathbb{P}^n$, we say that V is **smooth** if all the affine patches $V \cap \{x_i = 1\}$ are smooth.

Example

Let

$$C: y^2 = f(x)$$
 (hyperelliptic curve)

where f is a non-constant polynomial. Then $P = (a, b) \in C$ is singular iff

$$(2a - f'(b)) = (00).$$

So

$$2a = 0$$
, $a^2 = f(b)$, $f'(b) = 0$.

If $char(k) \neq 2$, then f(b) = f'(b) = 0. So C has a singular point if and only if Disc(f) = 0. So C is smooth iff $Disc(f) \neq 0$.

Example

Let $V \subset \mathbb{P}^n$ (defined over k) be given by

$$/:f(x_0,\ldots,x_n)=0,$$

where $f \neq 0$ is homogeneous. Then V is singular if and only if there is $P \in V(\overline{k})$ such that

$$\frac{\partial f}{\partial x_1}(P) = \dots = \frac{\partial f}{\partial x_n}(P) = 0.$$

We will restrict to curves.

Definition

By a curve C over a field k, we mean a smooth, projective, absolutely irreducible (or geometrically irreducible), 1-dimensional k-variety.

Rational Points: Given C/\mathbb{Q} , we want to understand $C(\mathbb{Q})$.

Example: Reducibility

Example

Consider the variety $V \subset \mathbb{A}^2$ given by the equation

$$V : x^6 - 1 = y^2 + 2y.$$

Can rewrite as

$$V: (y+1-x^3)(y+1+x^3) = 0.$$

So

$$V=V_1\cup V_2$$

where

$$V_1 : y + 1 - x^3 = 0,$$
 $V_2 : y + 1 + x^3 = 0.$

Note V is *reducible*, but V_1 and V_2 are *irreducible*. To understand $V(\mathbb{Q})$ enough to understand $V_1(\mathbb{Q})$ and $V_2(\mathbb{Q})$.

Example: Absolute Reducibility

Example

$$V : 2x^6 - 1 = y^2 + 2y.$$

V is irreducible, but absolutely reducible since

$$V_{\overline{\mathbb{Q}}} = \{y + 1 + \sqrt{2}x^3 = 0\} \cup \{y + 1 - \sqrt{2}x^3 = 0\}.$$

If $(x, y) \in V(\mathbb{Q})$ then

$$y + 1 + \sqrt{2}x^3 = y + 1 - \sqrt{2}x^3 = 0.$$

In other words

$$y=-1, \qquad x=0.$$

So $V(\mathbb{Q}) = \{(0, -1)\}.$

Moral: To understand rational points on varieties, it is enough to understand rational on absolutely irreducible varieties.

Function Fields

Let $V \subset \mathbb{A}^n$ be an absolutely irreducible affine variety defined over k by the equations

$$V: \begin{cases} f_1(x_1,...,x_n) = 0, \\ \vdots & f_i \in k[x_1,...,x_n]. \\ f_m(x_1,...,x_n) = 0, \end{cases}$$

The affine coordinate ring of V is given by

$$k[V] = k[x_1,\ldots,x_n]/(f_1,\ldots,f_m).$$

The function field k(V) of V is the field of fractions of k[V].

If $V \subset \mathbb{P}^n$ then its function field is the function field of any affine patch.

$$k[\mathbb{A}^n] = k[x_1,...,x_n], \qquad k(\mathbb{A}^n) = k(x_1,...,x_n),$$

 $k(\mathbb{P}^n) = k(\mathbb{P}^n \cap \{x_0 = 1\}) = k(x_1,...,x_n).$

Function Fields

Let $V \subset \mathbb{A}^n$ be an absolutely irreducible affine variety defined over k by the equations

$$V: \begin{cases} f_1(x_1,...,x_n) = 0, \\ \vdots & f_i \in k[x_1,...,x_n]. \\ f_m(x_1,...,x_n) = 0, \end{cases}$$

The affine coordinate ring of V is given by

$$k[V] = k[x_1, \ldots, x_n]/(f_1, \ldots, f_m).$$

The function field k(V) of V is the field of fractions of k[V].

If $V \subset \mathbb{P}^n$ then its function field is the function field of any affine patch.

$$C : y^{2} = f(x) \qquad f \in k[x] \setminus k, \qquad \text{disc}(f) \neq 0.$$

$$k[C] = k[x, y] / (y^{2} - f(x)), \qquad k(C) = k(x)(\sqrt{f(x)}).$$

Function Fields

Let $V \subset \mathbb{A}^n$ be an absolutely irreducible affine variety defined over k by the equations

$$V: \begin{cases} f_1(x_1,...,x_n) = 0, \\ \vdots & f_i \in k[x_1,...,x_n]. \\ f_m(x_1,...,x_n) = 0, \end{cases}$$

The affine coordinate ring of V is given by

$$k[V] = k[x_1,...,x_n]/(f_1,...,f_m).$$

The function field k(V) of V is the field of fractions of k[V].

If $V \subset \mathbb{P}^n$ then its function field is the function field of any affine patch.

Example (Why do we want irreducibility?)

$$V \subset \mathbb{A}^2$$
, $V : x_1 x_2 = 0$, $k[V] = k[x_1, x_2]/(x_1 x_2)$.

 x_1 , x_2 are zero divisors in k[V] so it isn't an integral domain.

Genus

We classify curves by genus. This is a non-negative integer: 0,1,2,....

Example

lf

$$C/k : F(x, y, z) = 0, \qquad C \subset \mathbb{P}^2$$

is smooth, where $F \in k[x, y, z]$ is homogeneous of degree *n*, then *C* has genus (n-1)(n-2)/2.

Example

Let

$$C/k : y^2 = f(x), \qquad C \subset \mathbb{A}^2 \qquad (f \in k[x] \text{ non-constant}).$$

If C is smooth and deg(f) = n then

genus(C) =
$$\begin{cases} (d-1)/2 & d \text{ odd} \\ (d-2)/2 & d \text{ even.} \end{cases}$$

Curves of Genus 0

Theorem

Let C be a curve of genus 0 defined over k. Then C is isomorphic (over k) to a smooth plane curve of degree 2 (i.e. a conic). Moreover, if $C(k) \neq \emptyset$ then C is isomorphic over k to \mathbb{P}^1 .

Theorem

(The Hasse Principle) Let C/\mathbb{Q} be a curve of genus 0. The following are equivalent:

- 2 $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ for all primes p.

Theorem

(The Hasse Principle) Let C/\mathbb{Q} be a curve of genus 0. The following are equivalent:

- $C(\mathbb{Q}) \neq \emptyset;$
- $C(\mathbb{R}) \neq \emptyset \text{ and } C(\mathbb{Q}_p) \neq \emptyset \text{ for all primes } p.$

Theorem (Legendre, Hasse)

Let

C : $ax^2 + by^2 + cz^2 = 0$, *a*, *b*, *c* non-zero, squarefree integers.

The following are equivalent:

• $C(\mathbb{Q}) \neq \emptyset;$

- $C(\mathbb{R}) \neq \emptyset \text{ and } C(\mathbb{Q}_p) \neq \emptyset \text{ for all primes } p.$
- **3** $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ for all primes $p \mid 2abc$.

Genus 1

Theorem

If C is a curve of genus 1 over a field k and $P_0 \in C(k)$, then C is isomorphic over k to a Weierstrass elliptic curve

$$y^{2}z + a_{1}xyz + a_{3}yz^{2} = x^{3} + a_{2}x^{2}z + a_{4}xz^{2} + a_{6}z^{3} \subset \mathbb{P}^{2}$$

where the isomorphism sends P_0 to (0:1:0). (Mordell–Weil) Moreover, if $k = \mathbb{Q}$ or a number field, then C(k) is a finitely generated abelian group with P_0 as the zero element.

- **1** There is no known algorithm for deciding if $C(\mathbb{Q}) \neq \emptyset$.
- There is no known algorithm for computing a Mordell–Weil basis for C(Q) if it is non-empty.

But there is a descent strategy that usually works (Steffen's lectures).

Genus ≥ 2

Theorem (Faltings)

Let C be a curve of genus ≥ 2 over a number field k. Then C(k) is finite.

- **1** There is no known algorithm for computing C(k).
- 2 There is no known algorithm for deciding if $C(k) \neq \emptyset$.

But there is a bag of tricks that can be used to show that C(k) is empty, or determine C(k) if it is non-empty. These include:

- Local Methods (Michael's Lectures).
- Quotients (Michael's Lectures).
- 3 Descent (Michael's Lectures).
- Ohabauty.
- Mordell–Weil sieve.

The purpose of these lectures is to get a feel for each of these methods and see it applied in some example.

Divisors

Let C be a curve over k. A divisor D on C is a formal linear combination

$$D = \sum_{i=1}^{n} a_i P_i, \qquad a_i \in \mathbb{Z}, \quad P_i \in C(\overline{k}).$$

We define the degree of D to be $\sum a_i$.

Example Let $C: y^2 = x(x^2+1)(x^3+1).$ Let $D_1 = 2 \cdot (0,0) + (1,2), \quad D_2 = (i,0) - (-i,0), \quad D_3 = (i,0) + (-i,0) - 2 \cdot (1,2).$ Then $\deg(D_1) = 3, \quad \deg(D_2) = 0, \quad \deg(D_3) = 0.$

We say that D is **rational** if it is invariant under $Gal(\overline{k}/k)$.

Example

Let

$$C/\mathbb{Q}$$
: $y^2 = x(x^2+1)(x^3+1)$.

Let

$$D_1 = 2 \cdot (0,0) + (1,2), \quad D_2 = (i,0) - (-i,0), \quad D_3 = (i,0) + (-i,0) - 2 \cdot (1,2).$$

Then D_1 is rational, D_3 is rational, D_2 is **not** rational.

Definition

Let

$$Div^{0}(C/k) := \{rational degree 0 divisors\}.$$

This is an abelian group.

In the example $D_3 \in \text{Div}^0(C/k)$, but D_1 , $D_2 \notin \text{Div}^0(C/k)$.

Principal Divisors

Let k(C) be the function field of C, and let $f \in k(C)$. If $P \in C(\overline{k})$ then there is $v_P(f) \in \mathbb{Z}$ which measures the **order of vanishing** of f at P. Define

$$\operatorname{div}(f) = \sum_{P \in C(\overline{k})} v_P(f) \cdot P.$$

Then $\operatorname{div}(f) \in \operatorname{Div}^0(C/k)$.

Let
$$f = \frac{x^2 - 7}{x^3}$$
 on \mathbb{P}^1 . Then
 $div(f) = -3 \cdot (0) + (\sqrt{7}) + (-\sqrt{7})$

Principal Divisors

Let k(C) be the function field of C, and let $f \in k(C)$. If $P \in C(\overline{k})$ then there is $v_P(f) \in \mathbb{Z}$ which measures the **order of vanishing** of f at P. Define

$$\operatorname{div}(f) = \sum_{P \in C(\overline{k})} v_P(f) \cdot P.$$

Then $\operatorname{div}(f) \in \operatorname{Div}^0(C/k)$.

Let
$$f = \frac{x^2 - 7}{x^3}$$
 on \mathbb{P}^1 . Then
 $div(f) = -3 \cdot (0) + (\sqrt{7}) + (-\sqrt{7}) + \infty$.

Picard Group

Define

$$Princ(C/k) := \{ div(f) : f \in k(C)^* \}$$
 principal divisors.

This is an abelian group (note $\operatorname{div}(fg) = \operatorname{div}(f) + \operatorname{div}(g)$). Also $\operatorname{Princ}(C/k) \subset \operatorname{Div}^0(C/k)$. We define the Picard group of C/k as

$$\operatorname{Pic}^{0}(C/k) := \frac{\operatorname{Div}^{0}(C/k)}{\operatorname{Princ}(C/k)}.$$

$$\mathsf{Pic}^0(\mathbb{P}^1/k) = 0.$$

Define

$$\mathsf{Princ}(C/k) := \{\mathsf{div}(f) : f \in k(C)\}.$$

This is an abelian group (note $\operatorname{div}(fg) = \operatorname{div}(f) + \operatorname{div}(g)$). Also $\operatorname{Princ}(C/k) \subset \operatorname{Div}^0(C/k)$. We define the Picard group of C/k as

$$\operatorname{Pic}^{0}(C/k) := \frac{\operatorname{Div}^{0}(C/k)}{\operatorname{Princ}(C/k)}.$$

Example

Let

$$E : y^2 = x^3 + Ax + B,$$
 $A, B \in k, \quad 4A^3 + 27B^2 \neq 0.$

be an elliptic curve over k. Then (consequence of Riemann-Roch)

$$E(k) \cong \operatorname{Pic}^{0}(E/k), \qquad P \mapsto [P - \infty].$$

If C is a curve that isn't an elliptic curve, what is the right object to replace E(k) in this isomorphism?

Jacobians

Let C/k be a curve of genus g. The Jacobian J_C of C is a g-dimensional abelian variety defined over k. An elliptic curve E is its own Jacobian $J_E = E$.

Theorem

(Mordell–Weil Theorem) If k is a number field then $J_C(k)$ is a finitely generated abelian group.

Proof uses descent. Can often compute $J_C(k)$ in practice, but there is no algorithm guaranteed to work.

Theorem

Let C be a curve with $C(k) \neq \emptyset$. Then

```
J_C(k) \cong \operatorname{Pic}^0(C/k).
```

We usually use elements of $Pic^{0}(C/k)$ to represent elements of $J_{C}(k)$.

Example

Let

$$C: y^2 = x(x^2 + 1)(x^2 + 3).$$

The curve C has genus 2. Using descent it is possible to show that

$$J_C(\mathbb{Q}) = \frac{\mathbb{Z}}{2\mathbb{Z}} \cdot [(0,0) - \infty] \oplus \frac{\mathbb{Z}}{2\mathbb{Z}} \cdot [(i,0) + (-i,0) - 2\infty].$$

Note

$$[(0,0) - \infty] + [(i,0) + (-i,0) - 2\infty] = [(\sqrt{-3},0) + (-\sqrt{-3},0) - 2\infty].$$

Definition

Let C/k be a curve of genus ≥ 1 . Let $P_0 \in C(k)$. Associated to P_0 is an embedding

$$\iota: C \hookrightarrow J_C, \qquad P \to [P - P_0]$$

called the **Abel–Jacobi** map associated to P_0 .

Definition

Let C/k be a curve of genus ≥ 1 . Let $P_0 \in C(k)$. Associated to P_0 is an embedding

$$\iota : C \hookrightarrow J_C, \qquad P \to [P - P_0]$$

called the **Abel–Jacobi** map associated to P_0 .

Lemma

If C has genus ≥ 1 , $P_0 \in C(k)$. Then $\iota(C(k)) \subseteq J_C(k)$. If $J_C(k)$ is finite (and we know it) we can compute C(k).

Lemma

If C has genus ≥ 1 , $P_0 \in C(k)$. Then $\iota(C(k)) \subseteq J_C(k)$. If $J_C(k)$ is finite (and we know it) we can compute C(k).

Example

$$C: y^2 = x(x^2+1)(x^2+3).$$

$$J_{C}(\mathbb{Q}) = \{0, [(0,0) - \infty], [(i,0) + (-i,0) - 2\infty], [(\sqrt{-3},0) + (-\sqrt{-3},0) - 2\infty] \}.$$
 (1)

We can take $\iota: C \hookrightarrow J_C$, $P \mapsto [P - \infty]$, and using this we find that

 $C(\mathbb{Q}) = \{\infty, (0,0)\}.$

What if $J_C(\mathbb{Q})$ is infinite?

Definition

Let C/k be a curve of genus ≥ 1 . Let $P_0 \in C(k)$. Associated to P_0 is an embedding

$$\iota : C \hookrightarrow J_C, \qquad P \to [P - P_0]$$

called the Abel–Jacobi map associated to P_0 .

What if $J_{\mathcal{C}}(\mathbb{Q})$ is infinite?

Definition

Let C/k be a curve of genus ≥ 1 . Let $P_0 \in C(k)$. Associated to P_0 is an embedding

$$\iota : C \hookrightarrow J_C, \qquad P \to [P - P_0]$$

called the Abel–Jacobi map associated to P_0 .

Suppose C is defined over \mathbb{Q} . If $J_C(\mathbb{Q})$ is infinite, can we still use it to recover $C(\mathbb{Q})$?

What if $J_C(\mathbb{Q})$ is infinite?

Definition

Let C/k be a curve of genus ≥ 1 . Let $P_0 \in C(k)$. Associated to P_0 is an embedding

$$\iota : C \hookrightarrow J_C, \qquad P \to [P - P_0]$$

called the Abel–Jacobi map associated to P_0 .

Suppose C is defined over \mathbb{Q} . If $J_C(\mathbb{Q})$ is infinite, can we still use it to recover $C(\mathbb{Q})$?

Find out on Wednesday!