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Abstract. Probabilistic thinking is of growing importance in many areas of mathemat-
ics. This paper highlights the beautiful mathematical framework, coupled with practical
algorithms, which results from thinking probabilistically about inverse problems arising
in partial differential equations.

Many inverse problems in the physical sciences require the determination of an un-
known field from a finite set of indirect measurements. Examples include oceanography,
oil recovery, water resource management and weather forecasting. In the Bayesian ap-
proach to these problems, the unknown and the data are modelled as a jointly varying
random variable, typically linked through solution of a partial differential equation, and
the solution of the inverse problem is the distribution of the unknown given the data.

This approach provides a natural way to provide estimates of the unknown field, to-
gether with a quantification of the uncertainty associated with the estimate. It is hence
a useful practical modelling tool. However it also provides a very elegant mathematical
framework for inverse problems: whilst the classical approach to inverse problems leads
to ill-posedness, the Bayesian approach leads to a natural well-posedness and stability
theory. Furthermore this framework provides a way of deriving and developing algo-
rithms which are well-suited to the formidable computational challenges which arise from
the conjunction of approximations arising from the numerical analysis of partial differen-
tial equations, together with approximations of central limit theorem type arising from
sampling of measures.
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1. Introduction

Let X, R be Banach spaces and G : X — R. For example G might represent the
forward map which takes the input data u € X for a partial differential equation
(PDE) into the solution r € R. Uncertainty quantification is concerned with

*The author is grateful to EPSRC, ERC and ONR for financial support which led to the work
described in this lecture. He is grateful to Marco Iglesias for help in preparing the figures and to
Yuan-Xiang Zhang for careful proofreading.



2 Andrew M Stuart

determining the propagation of randomness in the input u into randomness in
some quantity of interest ¢ € @, with ) again a Banach space, found by applying
operator @ : R — @ to G(u); thus ¢ = (Q o G)(u). The situation is illustrated in
Figure 1.
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Figure 1. Uncertainty Quantification

Inverse problems are concerned with the related problem of determining the
input « when given noisy observed data y found from G(u). Let Y be the Banach
space where the observations lie, let O : R — Y denote the observation operator,
define G = O o G, and consider the equation

y=G(u)+n (1.1)

viewed as an equation for u € X given y € Y. The element 1 € Y represents
noise, and typically something about the size of 7 is assumed known, often only in
a statistical sense, but the actual instance of 1 entering the data y is not known.
The aim is to reconstruct v from y. The Bayesian inverse problem is to find the
the conditional probability distribution on u|y from the joint distribution of the
random variable (u,y); the latter is determined by specifying the distributions on
u and 71 and, for example, assuming that v and 7 are independent. This situation
is illustrated in Figure 2.

To formulate the inverse problem probabilistically it is natural to work with
separable Banach spaces as this allows for development of an integration theory
(Bochner) as well as avoiding a variety of pathologies that might otherwise arise;
we assume separability from now on. The probability measure on u is termed the
prior, and will be denoted by po, and that on uly the posterior, and will be denoted
by p¥. Once the Bayesian inverse problems has been solved, the uncertainty in ¢
can be quantified with respect to input distributed according to the posterior on
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Figure 2. Bayesian Inverse Problem

u]y, resulting in improved quantification of uncertainty in comparison with simply
using input distributed according to the prior on u. The situation is illustrated
in Figure 3. The black dotted lines demonstrate uncertainty quantification prior
to incorporating the data, the red curves demonstrate uncertainty quantification
after the data has been incoprorated by means of Bayesian inversion.

Carrying out the program illusrated in Figure 3 can have enormous benefits
within a wide-range of important problems arising in science and technology. This
is illustrated in Figure 4. The top two panels show representative draws from the
prior (left) and posterior (right) probability distribution on the geological prop-
erties of a subsurface oil field, whilst the bottom two panels show predictions of
future oil production, with uncertainty represented via the spread of the ensemble
of outcomes shown, again under the prior on the left and under the posterior on
the right. The unknown w here is the log permeability of the subsurface, the data
y comprises measurements at oil wells and the quantity of interest ¢ is future oil
production. The map G is the solution of a system of partial differential equations
(PDEs) describing the two-phase flow of oil-water in a porous medium, in which
u enters as an unknown coefficient. The figure demonstrates that the use of data
significantly reduces the uncertainty in the predictions.

The reader is hopefully persuaded, then, of the power of combining a mathe-
matical model with data. Furthermore it should also be apparent that the set-up
described applies to an enormous range of applications; it is also robust to changes,
such as allowing for correlation between the noise 1 and the element v € X. How-
ever, producing Figure 4, and similar in other application areas, is a demanding
computational task: it requires the full power of numerical analysis, to approxi-
mate the forward map G, and the full power of computational statistics, to probe
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Figure 3. Uncertainty Quantification in Bayesian Inversion.

the posterior distribution. The central thrust of the mathematical research which
underlies this talk is concerned with how to undertake such tasks efficiently. The
key idea underlying all of the work is to conceive of Bayesian inversion in the sep-
arable Banach space X, to conceive of algorithms for probing the measure u¥ on
X and, only once this has been done, to then apply discretization of the unknown
field u, to a finite dimensional space RY, and discretization of the forward PDE
solver. This differs from a great deal of applied work which discretizes the space X
at the very start to obtain a measure ¥ on RY, and then employs standard sta-
tistical techniques on RY. The idea is illustrated in Figure 5. Of course algorithms
derived by the black route and the red route can lead to algorithms which coincide;
however many of the algorithms derived via the the black route do not behave well
under refinement of the approximation, N — oo, whilst those derived via the red
route do since they are designed to work on X where N = co. Conceptual problem
formulation and algorithm development via the red route is thus advocated.

This may all seem rather discursive, but a great deal of mathematical meat has
gone into making precise theories which back-up the philosophy. The short space
provided here is not enough to do justice to the mathematics and the reader is
directed to [73] for details. Here we confine ourselves to a brief description of the
historical context for the subject, given in section 2, and a summary of some of
the novel mathematical and algorithmic ideas which have emerged to support the
philisophy encapsulated in Figure 5, in sections 4 and 5. Section 3 contains some
examples of inverse problems which motivated the theoretical work highlighted
in sections 4 and 5, and may also serve to help the reader who prefers concrete
settings. Section 6 contains some concluding remarks.
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Figure 4. Upper panels: typical draws from the prior (left) and posterior (right). Lower
panels: uncertainty in oil production under the prior (left) and posterior (right).

2. Historical Context

A cornerstone in the mathematical development of uncertainty quantification is the
book [28] which unified and galvanized a growing engineering community interested
in problems with random (uncertain) parameters. The next two and a half decades
saw remarkable developments in this field, on both the applied and theoretical
sides; in particular a systematic numerical analysis evolved which may be traced
through the series of papers [77, 5, 6, 7, 59, 60, 15, 16, 17, 69, 62] and the referenes
therein. Inverse problems have a long history and arise in an enormous range
of applications and mathematical formulations. The 1976 article of Keller [38] is
widely cited as foundational in the classical approach to inverse problems, and the
modern classical theory, especially in relation to PDE and integral equations, is
overviewed in a variety of texts: see [25, 39], for example.

The classical theory of inverse problems does not quantify uncertainty: typ-
ically it employs knowledge of the size of 1 but not its statistical distribution.
However as long ago as 1970 the possibility of formulating PDE inverse problems
in terms of Bayes’ formula on the space X was recognized by Franklin [27] who
studied classical linear inverse problems, such as inverting the heat kernel, from
this perspective. That paper focussed on the rational basis for deriving a regular-
ization using the Bayesian approach, rather than on quantifying uncertainty, but
the posterior (Gaussian in this case) distribution did indeed provide a quantifica-
tion of uncertainty. However it is arguable that the work of Franklin was so far
ahead of its time that it made little impact when it appeared, primarily because
the computational power needed to approach practical problems from this perspec-
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Figure 5. The red route is conceptually benefical in comparison with the black route.

tive was not available. The book of Kaipio and Somersalo [40] in 2005, however,
had immediate impact, laying out a Bayesian methodology for inverse problems,
and demonstrating its applicability to a range of important applications; computer
power was ripe for the exploitation of fully Bayesian analyses when the book was
published. However the perspective in [40] corresponded essentially to the black
route outlined in Figure 5 (N < oo) and did not take an infinite dimensional
perspective in X.

In the interim between 1970 and 2005 there had been significant development of
the theory of Bayesian inversion in X for linear problems, building on the work of
Franklin [54, 50], and working directly in the infinite dimensional space X. Lasa-
nen then developed this into a fully nonlinear theory [45, 46, 48, 49], also working
on X. This theoretical work was not concerned directly with the development
of practical algorithms and the need to interface computational Bayesian prac-
tice with numerical analysis; in particular the need to deal with limits N — oo
in order to represent elements of X was not addressed. However others within
the Bayesian school of inverse problems were interested in this question; see, for
example, the paper [51]. Furthermore, in contrast to classical inversion, which
is (often by definition [25]) ill-posed, Bayesian inversion comes with a desirable
well-posedness theory on X which, itself, underpins approximation theories [72];
we will survey some of the developments which come from this perspective in what
follows. Cousins of this well-posedness theory on X may be found in the papers
[55, 58] both of which consider issues relating to perturbation of the posterior, in
the finite dimensional setting N < co.

The primary applications which drive the theoretical and algorithmic develop-
ments highlighted in this article are in subsurface geophysics and in the atmosphere-
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ocean sciences. In the subsurface two major forces for the adoption of the Bayesian
approach to inversion have been the work of Tarantola and co-workers and of
Oliver and co-workers; see the books [76, 61] for further references. In the ocean-
atmosphere sciences the Bayesian perspective has been less popular, but the book
of Bennett [9] makes a strong case for it, primarily in the oceanographic context,
whilst the work of Lorenc [53] has been a powerful force for Bayesian thinking in
numerical weather prediction.

3. Examples

We provide in this section three examples to aid the reader who prefers concrete
applications, and to highlight the type of problems which have motivated the
theoretical develepments overviewed in the following sections. All of the examples
can be placed in the general framework of (1.1).

3.1. Linear Inverse Problem. Consider the bounded linear map K :
X — Y, with XY separable Banach spaces, and the problem of finding v € X
from noisy observations y of the image of u under K, given by

y=Ku+n.

For example if u is the initial condition of the heat equation on bounded open set
D Cc RY X = L?(D) and K denotes the solution operator for the heat equation
over time interval T', then this is a widely used example of a classically ill-posed
inverse problem. Ill-posedness arises beause of the smoothing property of the heat
kernel and the fact that the noise n may take y out of the range space of K.
Further ill-posedness can arise, for example, if K is found from the composition of
the solution operator for the heat equation over time interval T" with an operator
comprising a finite set of point evaluations; the need to find a function u from
a finite set of observations then leads to the problem being under-determined,
further compounding ill-posedness. Linear inverse problems were the subject of
the foundational paper [27], and developed further in [54, 50]. Natural applications
include image processing.

3.2. Data Assimilation in Fluid Mechanics. A natural nonlinear
generalization of the inverse problem for the heat equation, and one which is pro-
totypical of the inverse problems arising in oceanography and weather forecasting,
is the following. Consider the Navier-Stokes equation written as an ordinary differ-
ential equation in the Hilbert space X := Lgiv(']I‘Q) of square-integrable divergence-
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free functions on the two-dimensional torus:
dv
dt
This describes the velocity field v(x,t) for a model of incompressible Newtonian

flow [74] on a two-dimensional periodic domain. An inverse problem protoypical of
weather forecasting in particular is to find v € X given noisy Fulerian observations

+vAv+ B(v,v) = f, v(0)=ueX.

Yjk = (w5, t) + 15 k-

Like the heat equation the forward solution operator is smoothing, and the fact
that the observations are finite in number further compounds ill-posedness. In
addition the nonlinearity adds further complications, such as sensitive dependence
on initial conditions arising from the chaotic character of the equations for v <« 1.
There are many interesting variants on this problem; one is to consider Lagrangian
observations derived from tracers moving according to the velocity field v itself,
and the problem is prototypical of inverse problems which arise in oceanography.
Determining the initial condition of models from fluid mechanics on the basis
of observations at later times is termed data assimilation. Both Eulerian and
Lagrangian data assimilation are formulated as Bayesain inverse problems in [13].

3.3. Groundwater Flow. The following is prototypical of inverse problems
arising in hydrology and in oil reservoir modelling. Consider the Darcy Flow, with
log permeability u € X = L*°(D), described by the equation

-V (exp(u)Vp) =0, z€D,
u=g, x€aD.

Here the aim is to find uw € X given noisy observations

y; = p(x;) + ;-

The pressure p is a surrogate for the height of the water table and measurements of
this height are made by hydrologists seeking to understand the earths subsurface.
The resulting classical inverse problem is studied in [67] and Bayesian formulations
are given in [21, 22]. The space L°°(D) is not separable, but this difficulty can be
circumvented by working in separable Banach spaces found as the closure of the
linear span of an infinite set of functions in L*°(D), with respect to the L*°(D)-
norm.

4. Mathematical Foundations

In this section we briefly outline some of the issues involved in the rigorous formu-
lation of Bayesian inversion on a separable Banach space X. We start by discussing
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various prior models on X, and then discuss how Bayes’ formula may be used to
incorporate data and update these prior distributions on « into posterior distribu-
tions on uly.

4.1. Priors: Random Functions. Perhaps the simplest way to construct
random priors on a function space X is as follows. Let {¢;}32; denotes an infinite
sequence in the Banach space X, normalized so that ||¢;||x = 1. Define the deter-
ministic random sequence v = {v,}52; € ¢, (R), where £}, (R) denotes the sequence
of pt" —power summable sequences, when weighted by the sequence w = {w; };";1
Then let £ = {¢; 521 denote the i.i.d sequence of centred random variables in R,
normalized to that E&Z = 1. We define u; = v;&; and pick a mean element m € X
and then consider the random function

u:erZujgaj. (4.1)

j=1

The probability measure on the random sequence implies, via its pushforward
under the construction (4.1) a probability measure on the function u; we denote
this measure by po. Of course the fact that the ¢; are elements of X does not
imply that po is a measure on X: assumptions must be made on the decay of the
sequence 7. For example, using the fact that the random sequence u = {u; }‘;‘;1
comprises independent centred random variables we find that

o0
Efollu —ml% =) 7.
j=1

This demonstrates that assuming v = {; 21 € (2(R) is sufficient to ensure that
the random function is almost surely an element of X. If the space X itself is not
separable, this difficulty can be circumvented by working in a separable Banach
space X' found as the closure of the linear span of the ¢; with respect to the norm
in X.

Expansions of the form (4.1) go by the name Karhunen-Loeve in the Gaussian
case [1] arising when &; is a Gaussian random variable. The so-called Besov case
was introduced in [51] and concerns the case where &; is distributed according to
Lebesgue density proportional to a power of exp(—| - |?), subsuming the Gaussian
situation as the special case ¢ = 2. Schwab has been a leading proponent of
random functions constructed using compactly supported random variables & —
see [69, 71] and the references therein; although not so natural from an applications
viewpoint, the simplicity that follows from this assumption allows the study of key
issues in uncertainty quantification and Bayesian inversion without the need to deal
with a variety of substantial technical issues which arise when £; is not compactly
supported; in particular integrability of the tails becomes a key technical issue for
non-compactly supported £, and there is a need for a Fernique theorem [26] or its
analogue [51, 22]. For a general treatment of random functions constructed as in
(4.1) see the book Kahane [37].
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4.2. Priors: Hierarchical. There are many parameters required in the
prior constructions of the previous subsection, and in many applications these may
not be known. In such situations these parameters can be inferred from the data,
along with u. Rather than giving a general discussion we consider the example of
Gaussian priors when X is a Hilbert space. A draw u from a Gaussian is written
as u ~ N(m,C) where N(m,C) denotes a Gaussian with mean m and covariance
C. Here the covariance operator C' is defined by

C=FE"(u—m)® (u—m)

=Y e ® e

j=1
Note that then

Coj = 7j¢;.
An example hierarchical prior may be constructed by introducing an unknown
parameter 0, which scales the covariance, and positing that

uld ~ N(0,671C).
d ~ Ga(a, ).

Here Ga denotes the Gamma distribution, and of course other prior assumptions
on § are possible. The potential for the use of hierarchical priors in linear inverse
problems has been highlighted in several recent papers, see [10, 11, 8] for example,
all in the finite dimensional context; such models have been studied in the large
dimension and infinite dimensional limit in [2].

4.3. Priors: Geometric. The probability measures constructed through
random functions are inherently infinite dimensional, being built on an infinite
sequence of random coefficients. In the previous subsection we showed how these
could be extended to priors which included an extra unknown parameter ¢ specify-
ing the scale of the prior; there are numerous generalizations of this basic concept.
Here we describe one of them that is particularly useful in the study of subsurface
inverse problems where the geometry imposed by faults, old fluival structures and
so forth is a major determining fact in underground porous medium fluid flow.

Examples of problems to which our theory applies may be found in Figure 6.
In the top left we show a layered structure in which a piecewise constant function
is constructed; this maybe generalized to include faults, as in the bottom left.
The top right shows a generalization of the layered structured to allow a different
Gaussian random field realization in each layer, and the bottom right shows a
generalization to allow for a channel-like structure, typical of fluvial deposition.

The development of layered prior models was pioneered in [12]. The chanellized
structure as prior was developed in [44] and [79]. All of this work was finite
dimensional, but a theoretical frameowork subsuming these particular cases, and
set in infinite dimensions, is developed in [36].
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Figure 6. Uncertainty quantification under the prior and the posterior
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4.4. Posterior. Recall that the Bayesuah solutiuon to the inverse problem of
funding u from data y given by (1.1) is to determine the probability distribution
on uly, which lives on the space X, from the probability distribution of the joint
random variable (u,y) which lives on X X Y. In order to do this we specify to
the situation where ¥ = R”, so that the number of observations is finite, and
assume that n ~ N(0,T), with T' an invertible covariance matrix on R’. Many
generalizations of this are possible, to both infinite dimensions or to non-Gaussian
noise 7, but the setting with fnite dimensional data allows us to expose the main
ideas.

We define the model-data mismatch functional, or least squares functional, given
by

D(u;y) == %|F7% (y— g(u))|2

where | - | denotes the Euclidean norm. Classical Bayesian inversion is concerned
with minimizing ®(-;y), typically with incoporation of regularization through addi-
tion of a penalty term (Tikhonov regularization) or through specification of seeking
minimizers within a compact subset of X [25]. It is natural to ask how a Bayesian
approach relates to such classical approaches.

Bayes’ formula is typically stated as

o Pylu)

and our wish is to formulate this precisely in the infinite dimensional context
where u lives in a separable Banach space. Given a prior measure g on v and a
posterior measure ¥ on u|y a typical infinite dimensional version of Bayes’ formula
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is a statement that p¥ is absolutely continuous with respect to ug and that

Z—ZZ(U) x exp(—q)(u;y)). (4.2)

Note that the righ-hand side is indeed proportional to P(y|u) whilst the left-hand

side is an infinite dimensional analogue of PEE,ZL%). The formula (4.2) implies that
the posterior measure is large (resp. small), relative to the prior measure, on sets
where ®(-;y) is small (resp. large). As such we see a clear link between classical
inversion, which aims to choose elements of X which make ®(-;y) small, and the

Bayesian approach.

There is a particular structure which occurs in the linear inverse problem of
subsection 3.1, namely that if 7 is distributed according to a Gaussian, then the
posterior on u|y is Gaussian if the prior on u is Gaussian; the prior and posterior
are termed conjugate in this situation, coming from the same class. See [42, 3]
for a discussion of this Gaussian conjugacy for linear inverse problems in infinite
dimensions.

4.5. Well-Posed Posterior. For a wide range of the priors and examples
given previously there is a well-posedness theory which accompanies the Bayesian
perspective. This theory is developed, for example, in the papers [72, 13, 21, 22, 36].
This theory shows that the posterior ¥ is Holder in the Hellinger metric with
respect to changes in the data y. The Holder exponent depends on the prior, and
is one (the Lipschitz case) for many applications. However it is important to strike
a note of caution concerning the robustness of the Bayesian approach: see [63].

4.6. Recovery of Truth. Consider data y given from truth uf by
y=G@u') +eny, ny~ N(0,Tp).

Thus we have assumed that the data is generated from the model used to construct
the posterior. It is then natural to ask how close is the posterior measure p¥ to the
truth uf? For many of the preceding problems we have (refinements of) results of
the type:

Forany 6 > 0, P“?J(|u7uf| >6) —0ase—0.

Examples of theories of this type may be found for linear problems of subsection
3.1 in [3, 4, 42, 43, 47, 66], for the Eulerian Navier-Stokes inverse problems of
subsection 3.2 in [68], and for the groundwater flow problem of subsection 3.3 in
[78].
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5. Algorithms

The preceding chapter describes a range of theoretical developments which al-
low for precise characterizations of, and study of the properties of, the posterior
distribution p¥. These are interesting in their own right, but they also underpin
algorithmic approaches which aim to be efficient with respect to increase of N in
the approximation of u¥ by a measure u¥'Y on RY. Here we outline research in
this direction.

5.1. Forward Error = Inverse Error. Imagine that we have approxi-
mated the space X by R¥; for example we might truncate the expansion (4.1)
at N terms and consider the inverse problem for the N unknown coefficients in
the representation of u. We then approximate the forward map G by a numerical
method to obtain GV satisfying, for v in X,

1G(u) =GN (u)] < Y(N) =0

as N — oco. Such results are in the domain of classical numerical analysis. It is
interesting to understand their implications for the Bayesian inverse problem.

The approximation of the forward map leads to an approximate posterior mea-
sure u¥" and it is natural to ask how expectations under ;¥, the ideal expectations
to be computed, and under p¥V, expectations under which we may approximate
by, for example statistical sampling techniques, compare. Under quite general con-
ditions it is possible to prove [18] that, for an appropriate class of test functions
f:X —S, with S a Banach space,

B f(u) —E*"" f(u)|ls < Cw(N).

The method used is to employ the stability in the Hellinger metric implied by the
well-posedness theory to show that p¥ and u¥ are ¥(N') close in the Hellinger
metric and then use properties of that metric to bound perturbations in expecta-
tions.

5.2. Faster MCMC. The preceding subsection demonstrates how to control
errors arising from the numerical analysis component of any approximation of
a Bayesian inverse problem. Here we turn to statistical sampling error, and in
particular to Markov Chain-Monte Carlo (MCMC) methods. These methods were
developed in the statistical physics community in [57] and then generalized to
a flexible tool for statistical sampling in [34]. The paper [75] demonstrated an
abstract framework for such methods on infinite dimensional spaces.

The full power of using MCMC methodology for inverse problems was high-
lighted in [40] and used for interesting applications in the subsurface in, for exam-
ple, [24]. However for a wide range of priors/model problems it is possible to show
that standard MCMC algorithms, derived by the black route in Figure 5, mix in



14 Andrew M Stuart

O(N®) steps, for some a > 0 implying undesirable slowing down as N increases.
By following the red route in Figure 5, however, it is possible to create new MCMC
algorithms which mix in O(1) steps.

The slowing down of standard MCMC methods in high dimensions is demon-
strated by means of diffusion limits in [56] for Gaussian priors and in [2] for hi-
erarchical Gaussian priors. Diffusion limits where then used to demonstrate the
effectiveness of the new method, derived via the red route in Figure 5, in [64] and
a review explaining the derivation of such new methods maybe found in [19]. The
paper [32] uses spectral gaps to both quantify the benefits of the method studied
in [64] (O(1) lower bounds on the spectral gap) compared with the drawbacks of
traditional methods, such as that studied in [56] (O(N~2) upper bounds on the
spectral gap.)

These new MCMC methods are starting to find their way into use within large-
scale engineering inverse problems and to be extended and modified to make them
more efficient in large data sets, or small noise data sets scenarios; see for examples
[29, 14, 20].

5.3. Other Directions. The previous subsection concentrated on a particu-
lar class of methods for exploring the posterior distribution, namely MCMC meth-
ods. These are by no means the only class of methods available for probing the
posterior and here we give a brief overview of some other approaches that may be
used.

The determinsitic approximation of posterior expectations, by means of sparse
approximation of high dimensional integrals, is one approach with great potential.
The mathematical theory behind this subject is overviewed in [69] in the context
of standard uncertainty quantification, and the approach is extended to Bayesian
inverse problems and uncertainty quantification in [71], with recent computational
and theoretical progress contained in [70].

It is also possible to combine sparse approximation techniques with MCMC and
the computational complexity of this approach is analyzed in [33], and references to
the engineering literature, where this approach was pioneered, are given. The idea
of multilevel Monte Carlo [30] has recently been generalized to MCMC methods;
see the paper [33] which analyzes the computational complexity of such methods,
the paper [41] in which a variant on such methods was introduced and implemented
for the groundwater flow problem and the thesis [31] which introduced the idea of
multilevel MCMC within the context of sampling conditioned diffusion processes.

Another computational approach, widely used in machine learning when com-
plex probability measures need to be probed, is to look for the best approximation
of p¥ within some simple class of measures. If the class comprises Dirac measures
then such an approach is known as mazimum a posterior estimation and corre-
sponds in finite dimensions, when the posterior has a Lebesgue density, to finding
the location of the peak of that density [40]. This idea is extended to the infinite
dimensional setting in [23]. In the context of uncertainty quantification the MAP
estimator itself is not of direct use as it contains no information about fluctuations.
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However linearization about the MAP can be used to compute a Gaussian approx-
imation at that point. A more sophisticated approach is to directly seek the best
Gaussian approximation v = N(m, C) wrt relative entropy. Analysis of this in the
infinite dimensional setting, viewed as a problem in the calculus of variations, is
undertaken in [65].

6. Conclusions

Combining uncertainty quantification with Bayesian inversion provides formidable
computational challenges relating to the need to control, and optimally balance,
errors arising from the numerical analysis, and approximation of the forward op-
erator, with errors arising from computational statistical probing of the posterior
distribution. The approach to this problem outlined here has been to adopt a way
of deriving and analyzing algorithms based on thinking about them in infinite di-
mensional spaces, and only then discretizing to obtain implementable algorithms
in RV with N < oo. This requires formulation and analysis of the Bayesian inverse
problem in infinite dimensions. We have overviewed the mathematical theory that
goes into this formulation and analysis, in section 3, and overviewed the algorithmic
developments which follow from it, in section 4.

In some applications it is starting to be feasible to compute accurate approxi-
mations of the Bayesian posterior distribution, and it is to be expected that there
will be great strides in this area over the next decade, both in terms of range
of applications and algorithmic innovation, with the latter based on the infinite
dimensional perspective given here, but making more careful exploitation of data
and structure of the likelihood. Even where the fully Bayesian approach is out
of the question for the forseeable future, for example in weather forecasting, the
Bayesian approach described here can be important as it may be used as a gold
standard against which to benchmark algorithms which are useable in practice.
This approach is employed in [52, 35] in the context of model problems of the type
shown in sections 3.2 and 3.3, and variants on them.

Finally the reader is reminded that this article is in essay form and contains
no mathematical details. For an overview of the subject in which mathematical
details are given the reader is refered to [73].
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