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General Setting

Unknown u ∈ X , Hilbert space.
Prior µ0(du) = P(du) on u : µ0 = N(0, C0), µ0(X ) = 1.
Given data y = G(u) + η, η ∼ N(0, Γ).

Potential: Φ(u) := 1
2

∥∥Γ−
1
2
(
y − G(u)

)∥∥2
.

Posterior µ(du) = P(du|y) on u :

P(u|y) ∝ P(y |u)P(u)

dµ
dµ0

(u) ∝ exp
(
−Φ(u)

)
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Finite Dimensional Approximation

Karhunen-Loeve basis: C0ϕj = λ2
j ϕj .

Finite-dimensionalization: X N ⊂ X = span{ϕj}Nj=1 and
PN : X → X N orthogonal projection.
Approximation: ΦN = Φ ◦ PN .
Approximate Posterior on u :

dµN

dµ0
(u) ∝ exp

(
−ΦN(u)

)
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Assumptions

Karhunen-Loeve Eigenvalues: λj � j−k , k > 1
2 .

Hilbert-scale: X s space with norm ‖ · ‖s := ‖C−
s

2k
0 · ‖.

Potential Assumptions I: ∃M ≥ 0 and s ∈ [0, k − 1/2) such
that Φ : Hs → R+ and, ∀u ∈ Hs,N ∈ N,

‖∂2Φ(u)‖L(X s,X−s) + ‖∂2ΦN(u)‖L(X s,X−s) ≤ M.

Potential Assumptions II: behaviour out at infinity.
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Approximation Error

µ(du) ∝ exp
(
−Φ(u)

)
µ0(du),

µN(du) ∝ exp
(
−ΦN(u)

)
µ0(du).

Theorem
Cotter, Dashti and AMS, SINUM, 2010.
Assume that

|Φ(u)− ΦN(u)| ≤ K exp
(
ε‖u‖2X

)
ψ(N)

where ψ(N)→ 0 as N →∞. Then there is a constant C,
independent of N, and such that

dHell(µ, µ
N) ≤ Cψ(N).

See also Marzouk/Xiu CCP 2009.
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Implications

Mean: ∥∥Eµu − Eµ
N
u
∥∥

X ≤ Cψ(N).

Covariance∥∥Eµu ⊗ u − Eµ
N
u ⊗ u

∥∥
X→X ≤ Cψ(N)
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Old Random Walk Algorithm

Metropolis et al. Chem. Phys. 1953.

Set k = 0 and Pick u(0).
Propose v (k) = u(k) + βξ(k), ξ(k) ∼ N(0, C0).

Set u(k+1) = v (k) with proability a(u(k), v (k)).

Set u(k+1) = u(k) otherwise.
k → k + 1.

Here

a(u, v) = min{1,exp
(
I(u)− I(v)

)
}.

I(w) =
1
2
‖C−

1
2

0 w‖2 + Φ(w).
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New Random Walk Algorithm

Neal, 1999.
Beskos, Roberts, AMS and Voss Stoch. and Dyn., 2010.
Cotter, Roberts, AMS and White, arXiv 2012.

Set k = 0 and Pick u(0).
Propose v (k) =

√
(1− β2)u(k) + βξ(k), ξ(k) ∼ N(0, C0).

Set u(k+1) = v (k) with proability a(u(k), v (k)).

Set u(k+1) = u(k) otherwise.
k → k + 1.

Here a(u, v) = min{1,exp
(
Φ(u)− Φ(v)

)
}.
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Langevin Equation

M. Hairer, AMS and J. Voss: Ann. App. Prob. 2007.

Define the Langevin SDE:

du
dt

= −u + C0DΦ(u) +
√

2
dW
dt

.

Theorem
The Langevin equation has a global X s−valued strong solution
which is µ−reversible and satisfies

lim
T→∞

1
T

∫ T

0
ϕ
(
u(t)

)
dt =

∫
Hs
ϕ(u)µ(du)

in probability for every u(0) in the support of µ and every
bounded ϕ : X s → R with bounded derivative.
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Diffusion Limit for Old Random Walk

J. Mattingly, N. Pillai and AMS 2011

Let δ = β2/2.

uδ(t) := u(k) +
1
δ

(
t − kδ

)(
u(k+1) − u(k)), t ∈

[
kδ, (k + 1)δ

)
.

Theorem

The Old Random Walk Markov chain is µN− reversible on X N

and, if δ = O(N−1), and u(0) ∼ µN then uδ ⇒ u in C([0,T ]; X s)
as N →∞ (and hence δ → 0).

Number of MCMC steps is O(N).
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Diffusion Limit for New Random Walk

N. Pillai, AMS and A. Thiery 2011

Let δ = β2/2.

uδ(t) := u(k) +
1
δ

(
t − kδ

)(
u(k+1) − u(k)), t ∈

[
kδ, (k + 1)δ

)
.

Theorem

The New Random Walk Markov chain is µ− reversible on X N

and, for any fixed u(0) ∈ X N , uδ ⇒ u in C([0,T ]; X s) as δ → 0.

Number of MCMC steps is O(1).
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L2 Spectral Gap

L2
µ = {f : X → R : ‖f‖22 := Eµ|f (u)|2 <∞}.

L2
0 = {f ∈ L2

µ : µ(f ) = 0.}

Define the Markov kernel (Pf )(u) = E
(

f
(
u(1))|u(0) = u

)
.

‖P‖L2
0→L2

0
:= supf∈L2

0

‖Pf‖2
2

‖f‖2
2
.

We have L2
µ− spectral gap γ if ‖P‖L2

0→L2
0
< 1− γ.

γ ∈ (0,1): the bigger the better.
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Standard RWM Theorem

The standard method behaves poorly under refinement:

Theorem
(Hairer, AMS, Vollmer, arXiv 2012.)
For the standard Random walk algorithm:

If β = N−a with a ∈ [0,1) then the spectral gap is bounded
above by CpN−p for any positive integer p.
If β = N−a with a ∈ [1,∞) then the spectral gap is
bounded above by CN−

a
2 .

Hence spectral gap is bounded above by CN−
1
2 .
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New RWM Theorem

The new method behaves well under refinement:

Theorem
(Hairer, AMS, Vollmer, arXiv 2012.)
For the new Random walk algorithm the spectral gap is
bounded below independently of N. Hence CLT and, for
u(0) ∼ ν and C independent of N,

Eν
∣∣∣ 1
K

K∑
k=1

f (u(k))− Eµ
N
f
∣∣∣2 ≤ CK−1.
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What We Have Shown

We have shown that:

Applications: Many inverse problems in differential
equations can be formulated in the framework of Bayesian
statistics on function space.
Common Structure: These problems share a common
mathematical structure leading to well-posed inverse
problems for measures.
Approximation: This well-posedness leads to a transfer of
approximation properties from the forward problem to the
inverse problem, in the Hellinger metric.
Algorithms: MCMC methods can be defined on function
space. Results in new algorithms robust to discretization.
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