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THE SETTING

General Setting

@ Unknown u € X, Hilbert space.

@ Prior ug(du) =P(du) on u : pg = N(0,Cp), po(X)=1.
@ Givendata y = G( )+n, n~ N(O,T).

@ Potential: ®(u) := J||I~ 2 (v — G(u)) \
@ Posterior u(du) = P(duly)on u:

P(uly) o< P(y|u)P(u)
du
d_uo(u) x exp(—cb(u))
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THE SETTING

Finite Dimensional Approximation

@ Karhunen-Loeve basis: Cop; = M.

e Finite-dimensionalization: X¥ c X = span{p;}Y , and
PN - X — XN orthogonal projection.

@ Approximation: ®N = ¢ o PN,

@ Approximate Posterior on u :

N

diuo(u) x exp(—d)N(u))
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THE SETTING

Assumptions

@ Karhunen-Loeve Eigenvalues: ); =j K k> %

@ Hilbert-scale: X* space with norm || - ||s := Hco_ﬁ .
@ Potential Assumptions |I: 3M > 0 and s € [0,k — 1/2) such
that ® : H — Rt and, Yu € H5, N € N,

1P D) cexs x ) + [PV () cxs x—5) < M.

@ Potential Assumptions II: behaviour out at infinity.
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THE SETTING
Approximation Error

pu(du) oc exp(—d(u)) po(du),
pM(du) oc exp (=N () po(du).

Theorem

Cotter, Dashti and AMS, SINUM, 2010.
Assume that

[@(u) — N(u)| < Kexp(e|lulk)w(N)

where 1)(N) — 0 as N — oco. Then there is a constant C,
independent of N, and such that

dren(p, 1) < Cy(N).
See also Marzouk/Xiu CCP 2009.
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THE SETTING
Implications

@ Mean: .
|E*u —E*"ul|,, < Co(N).

@ Covariance

[Eruu—E" v ul|,_, < Co(N)
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RANDOM WALKS OLD AND NEW

Old Random Walk Algorithm

Metropolis et al. Chem. Phys. 1953.

@ Set k = 0 and Pick u(9.

@ Propose v(F) = k) 1 getk) (k) ~ N(0, Co).
@ Set utk+1) = (k) with proability a(u®), v(¥)).
o Set utkt1) = y(k) otherwise.

@ k— k+1.

Here

a(u,v) =min{1,exp(/(u) — I(v))}.
Iw) = SiCy * Wl + o(w).
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RANDOM WALKS OLD AND NEW

New Random Walk Algorithm

Neal, 1999.
Beskos, Roberts, AMS and Voss Stoch. and Dyn., 2010.
Cotter, Roberts, AMS and White, arXiv 2012.
@ Set k = 0 and Pick u(9.
@ Propose v = /(1 — 32)ut®) 4 gtk ¢(k) ~ N(0,Cp).
@ Set utk+1) = vk with proability a(u (k), v,
@ Set utkt1) = (k) otherwise.
@ k— k+1.

Here a(u, v) = min{1,exp(®(u) — ®(v))}.
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DIFFUSION LIMITS

Langevin Equation

M. Hairer, AMS and J. Voss: Ann. App. Prob. 2007.

Define the Langevin SDE:

du aw

Theorem

The Langevin equation has a global X®—valued strong solution
which is u—reversible and satisfies

)
lim 17/0 @(u(t))dt:/Hsgo(u)u(du)

T—oo

in probability for every u(0) in the support of n and every
bounded ¢ : X* — R with bounded derivative. /)




DIFFUSION LIMITS

Diffusion Limit for Old Random Walk

J. Mattingly, N. Pillai and AMS 2011

Let 6 = 52/2.

W(t) == u® + %(t — ko) (utk) — ulK) -t e [ké, (k +1)d).

The Old Random Walk Markov chain is N— reversible on XN
and, if6 = O(N="), and u® ~ pN then u® = u in C([0, T]; X®)

as N — oo (and hence 6 — 0).

Number of MCMC steps is O(N).
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Diffusion Limit for New Random Walk

N. Pillai, AMS and A. Thiery 2011

Let 6 = 52/2.

(1) = a4 (1 ko) (WD~ u), e [k, (K +1)0).

The New Random Walk Markov chain is ji— reversible on XN
and, for any fixed u® e XN % = uin C([0, T]; X%) as § — 0.

Number of MCMC steps is O(1).
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L? Spectral Gap

o Lo ={f: X R:f|5:=E|f(u)* < oo}.
° L%:{fELﬁ:u(f)zo.}
@ Define the Markov kernel (Pf)(u) = E(f(u(”) 1u® = u).

) (il
° HPHLS~>L3 -= SUPfe,2 W';

@ We have L2 — spectral gap v if IPllzoiz <1 =1
@ v € (0,1): the bigger the better.
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SPECTRAL GAP

Standard RWM Theorem

The standard method behaves poorly under refinement:

Theorem

(Hairer, AMS, Vollmer, arXiv 2012.)
For the standard Random walk algorithm:

@ If 3= N2 withaec [0,1) then the spectral gap is bounded
above by CoN~P for any positive integer p.

@ If 3= N2 with ac [1,00) then the spectral gap is
bounded above by CN~ 2.

Hence spectral gap is bounded above by CN~z.
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SPECTRAL GAP

New RWM Theorem

The new method behaves well under refinement:

Theorem
(Hairer, AMS, Vollmer, arXiv 2012.)
For the new Random walk algorithm the spectral gap is

bounded below independently of N. Hence CLT and, for
u® ~ v and C independent of N,

EV

K
1 N |2 _
RE f(u) —E*f| < CKT.
k=1
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CONCLUSIONS

What We Have Shown

We have shown that:

@ Applications: Many inverse problems in differential
equations can be formulated in the framework of Bayesian
statistics on function space.

@ Common Structure: These problems share a common
mathematical structure leading to well-posed inverse
problems for measures.

@ Approximation: This well-posedness leads to a transfer of
approximation properties from the forward problem to the
inverse problem, in the Hellinger metric.

@ Algorithms: MCMC methods can be defined on function
space. Results in new algorithms robust to discretization.
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CONCLUSIONS
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