Computational Complexity of MCMC In High Dimensions

Andrew M Stuart¹

¹Mathematics Institute and Centre for Scientific Computing University of Warwick

MCMC Workshop ICMS, Edinburgh, April 23*rd*-25*th* 2012

Funded by EPSRC, ERC and ONR

・ロット (雪) (日) (日)

- 2 RANDOM WALKS OLD AND NEW
- **3** DIFFUSION LIMITS
- SPECTRAL GAP

- 2 RANDOM WALKS OLD AND NEW
- **3 DIFFUSION LIMITS**
- 4 SPECTRAL GAP
- 5 CONCLUSIONS

General Setting

- Unknown $u \in X$, Hilbert space.
- Prior $\mu_0(du) = \mathbb{P}(du)$ on $u : \mu_0 = N(0, C_0), \quad \mu_0(X) = 1.$
- Given data $y = \mathcal{G}(u) + \eta$, $\eta \sim N(0, \Gamma)$.
- Potential: $\Phi(u) := \frac{1}{2} \| \Gamma^{-\frac{1}{2}}(y \mathcal{G}(u)) \|^2$.
- Posterior $\mu(du) = \mathbb{P}(du|y)$ on u:

$$\mathbb{P}(u|y) \propto \mathbb{P}(y|u)\mathbb{P}(u) \ rac{d\mu}{d\mu_0}(u) \propto \exp\Bigl(-\Phi(u)\Bigr)$$

Finite Dimensional Approximation

- Karhunen-Loeve basis: $C_0 \varphi_j = \lambda_j^2 \varphi_j$.
- Finite-dimensionalization: $X^N \subset X = \text{span}\{\varphi_j\}_{j=1}^N$ and $P^N : X \to X^N$ orthogonal projection.
- Approximation: $\Phi^N = \Phi \circ P^N$.
- Approximate Posterior on *u* :

$$rac{d\mu^{N}}{d\mu_{0}}(u) \propto \exp\Bigl(-\Phi^{N}(u)\Bigr)$$

Assumptions

- Karhunen-Loeve Eigenvalues: $\lambda_j \simeq j^{-k}$, $k > \frac{1}{2}$.
- Hilbert-scale: X^s space with norm $\|\cdot\|_s := \|\mathcal{C}_0^{-\frac{s}{2k}}\cdot\|.$
- Potential Assumptions I: ∃M ≥ 0 and s ∈ [0, k − 1/2) such that Φ : H^s → ℝ⁺ and, ∀u ∈ H^s, N ∈ ℕ,

$$\|\partial^2 \Phi(u)\|_{\mathcal{L}(X^s,X^{-s})} + \|\partial^2 \Phi^{\mathsf{N}}(u)\|_{\mathcal{L}(X^s,X^{-s})} \leq \mathsf{M}.$$

• Potential Assumptions II: behaviour out at infinity.

Approximation Error

$$\mu(du) \propto \exp(-\Phi(u))\mu_0(du), \ \mu^N(du) \propto \exp(-\Phi^N(u))\mu_0(du).$$

Theorem

Cotter, Dashti and AMS, SINUM, 2010. Assume that

$$|\Phi(u) - \Phi^{N}(u)| \le K \exp(\epsilon \|u\|_{X}^{2})\psi(N)$$

where $\psi(N) \rightarrow 0$ as $N \rightarrow \infty$. Then there is a constant *C*, independent of *N*, and such that

$$d_{\text{Hell}}(\mu,\mu^{N}) \leq C\psi(N).$$

A D > A P > A D > A D >

See also Marzouk/Xiu CCP 2009.

Implications

$$\left\|\mathbb{E}^{\mu}u-\mathbb{E}^{\mu^{N}}u\right\|_{X}\leq C\psi(N).$$

Covariance

$$\left\|\mathbb{E}^{\mu} u \otimes u - \mathbb{E}^{\mu^{N}} u \otimes u\right\|_{X \to X} \leq C \psi(N)$$

1 THE SETTING

- 2 RANDOM WALKS OLD AND NEW
- 3 DIFFUSION LIMITS
- 4 SPECTRAL GAP
- 5 CONCLUSIONS

Old Random Walk Algorithm

Metropolis et al. Chem. Phys. 1953.

- Set k = 0 and Pick $u^{(0)}$.
- Propose $v^{(k)} = u^{(k)} + \beta \xi^{(k)}$, $\xi^{(k)} \sim N(0, C_0)$.
- Set $u^{(k+1)} = v^{(k)}$ with proability $a(u^{(k)}, v^{(k)})$.
- Set $u^{(k+1)} = u^{(k)}$ otherwise.
- $k \rightarrow k + 1$.

Here

$$a(u, v) = \min\{1, \exp(l(u) - l(v))\}.$$

$$l(w) = \frac{1}{2} \|\mathcal{C}_0^{-\frac{1}{2}}w\|^2 + \Phi(w).$$

New Random Walk Algorithm

Neal, 1999. Beskos, Roberts, AMS and Voss Stoch. and Dyn., 2010. Cotter, Roberts, AMS and White, arXiv 2012.

• Set
$$k = 0$$
 and Pick $u^{(0)}$.

• Propose $v^{(k)} = \sqrt{(1 - \beta^2)} u^{(k)} + \beta \xi^{(k)}, \quad \xi^{(k)} \sim N(0, C_0).$

- Set $u^{(k+1)} = v^{(k)}$ with proability $a(u^{(k)}, v^{(k)})$.
- Set $u^{(k+1)} = u^{(k)}$ otherwise.
- $k \rightarrow k + 1$.

Here $a(u, v) = \min\{1, \exp(\Phi(u) - \Phi(v))\}$.

1 THE SETTING

- PANDOM WALKS OLD AND NEW
- **3** DIFFUSION LIMITS
- 4 SPECTRAL GAP
- 5 CONCLUSIONS

Langevin Equation

M. Hairer, AMS and J. Voss: Ann. App. Prob. 2007.

Define the Langevin SDE:

$$rac{du}{dt} = -u + \mathcal{C}_0 D \Phi(u) + \sqrt{2} rac{dW}{dt}.$$

Theorem

The Langevin equation has a global X^s -valued strong solution which is μ -reversible and satisfies

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T\varphi(u(t))dt=\int_{H^s}\varphi(u)\mu(du)$$

in probability for every u(0) in the support of μ and every bounded $\varphi: X^s \to \mathbb{R}$ with bounded derivative.

Diffusion Limit for Old Random Walk

J. Mattingly, N. Pillai and AMS 2011

Let
$$\delta = \beta^2/2$$
.
$$u^{\delta}(t) := u^{(k)} + \frac{1}{\delta} (t - k\delta) (u^{(k+1)} - u^{(k)}), \quad t \in [k\delta, (k+1)\delta).$$

Theorem

The Old Random Walk Markov chain is μ^N – reversible on X^N and, if $\delta = O(N^{-1})$, and $u^{(0)} \sim \mu^N$ then $u^{\delta} \Rightarrow u$ in $C([0, T]; X^s)$ as $N \to \infty$ (and hence $\delta \to 0$).

Number of MCMC steps is $\mathcal{O}(N)$.

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Diffusion Limit for New Random Walk

N. Pillai, AMS and A. Thiery 2011

Let $\delta = \beta^2/2$.

$$u^{\delta}(t) := u^{(k)} + \frac{1}{\delta} (t - k\delta) (u^{(k+1)} - u^{(k)}), \quad t \in [k\delta, (k+1)\delta).$$

Theorem

The New Random Walk Markov chain is μ - reversible on X^N and, for any fixed $u^{(0)} \in X^N$, $u^{\delta} \Rightarrow u$ in $C([0, T]; X^s)$ as $\delta \to 0$.

Number of MCMC steps is $\mathcal{O}(1)$.

1 THE SETTING

PANDOM WALKS OLD AND NEW

3 DIFFUSION LIMITS

- 4 SPECTRAL GAP
- **5** CONCLUSIONS

L² Spectral Gap

• $L^2_{\mu} = \{f: X \to \mathbb{R} : \|f\|^2_2 := \mathbb{E}^{\mu} |f(u)|^2 < \infty\}.$

•
$$L_0^2 = \{ f \in L_\mu^2 : \mu(f) = 0. \}$$

• Define the Markov kernel $(Pf)(u) = \mathbb{E}(f(u^{(1)})|u^{(0)} = u)$.

•
$$\|P\|_{L^2_0 \to L^2_0} := \sup_{f \in L^2_0} \frac{\|Pf\|_2^2}{\|f\|_2^2}$$

- We have L^2_{μ} spectral gap γ if $\|P\|_{L^2_0 \to L^2_0} < 1 \gamma$.
- $\gamma \in (0, 1)$: the bigger the better.

Standard RWM Theorem

The standard method behaves poorly under refinement:

Theorem

(Hairer, AMS, Vollmer, arXiv 2012.)

For the standard Random walk algorithm:

- If β = N^{-a} with a ∈ [0, 1) then the spectral gap is bounded above by C_pN^{-p} for any positive integer p.
- If β = N^{-a} with a ∈ [1,∞) then the spectral gap is bounded above by CN^{-^a/₂}.

Hence spectral gap is bounded above by $CN^{-\frac{1}{2}}$.

New RWM Theorem

The new method behaves well under refinement:

Theorem

(Hairer, AMS, Vollmer, arXiv 2012.) For the new Random walk algorithm the spectral gap is bounded below independently of N. Hence CLT and, for $u^{(0)} \sim v$ and C independent of N,

$$\mathbb{E}^{\nu}\Big|\frac{1}{K}\sum_{k=1}^{K}f(u^{(k)})-\mathbb{E}^{\mu^{N}}f\Big|^{2}\leq CK^{-1}.$$

(日)

1 THE SETTING

- PANDOM WALKS OLD AND NEW
- **3 DIFFUSION LIMITS**
- 4 SPECTRAL GAP

What We Have Shown

We have shown that:

- **Applications:** Many inverse problems in differential equations can be formulated in the framework of Bayesian statistics on function space.
- **Common Structure:** These problems share a common mathematical structure leading to *well-posed* inverse problems for measures.
- **Approximation:** This well-posedness leads to a transfer of approximation properties from the forward problem to the inverse problem, in the Hellinger metric.
- Algorithms: MCMC methods can be defined on function space. Results in new algorithms robust to discretization.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

http://www.maths.warwick.ac.uk/~ masdr/

- A.M. Stuart. "Inverse Problems: A Bayesian Perspective." Acta Numerica **19**(2010).
- S.L.Cotter, M. Dashti, A.M.Stuart. "Approximation of Bayesian Inverse Problems." SIAM Journal of Numerical Analysis 48(2010) 322–345.
- S.L. Cotter, G.O. Roberts, A.M. Stuart and D. White.
 "MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster." http://arxiv.org/abs/1202.0709
- M. Hairer, A.M.Stuart and S. Vollmer. "Spectral Gaps for a Metropolis-Hastings Algorithm in Infinite Dimensions." http://arxiv.org/abs/1112.1392

http://www.maths.warwick.ac.uk/~ masdr/

- M. Hairer, A.M.Stuart and J. Voss. "Analysis of SPDEs Arising in Path Sampling. Part 2: The Nonlinear Case." Ann. Appl. Prob. 17(2007), 1657–1706.
- A. Beskos, G. Roberts, A.M.Stuart and J. Voss. "An MCMC method for diffusion bridges." Stochastics and Dynamics 8 (2008), 319-350.
- J.C. Mattingly, N. Pillai and A.M. Stuart, "Diffusion limits of random walk Metropolis algorithms in high dimensions." (To appear Ann. Appl. Prob.). http://arxiv.org/abs/1003.4306
- N. Pillai, A.M. Stuart and A. Thiery "Optimal proposal design for random walk type Metropolis algorithms with Gaussian random field priors."

http://arxiv.org/abs/1108.1494

