
[65]  

M. Hairer, A.M. Stuart, J. Voss and P. Wiberg,  

Analysis of SPDEs arising in path sampling part I: the Gaussian 
case.  

Communications in Mathematical Sciences 3(4)  

(2005) 587603. 

 

First published in Communications in Mathematical Sciences  

Vol 3 (No4) (2005) by International Press 

 



COMM. MATH. SCI. c© 2005 International Press

Vol. 3, No. 4, pp. 587–603

ANALYSIS OF SPDES ARISING IN PATH SAMPLING PART I: THE
GAUSSIAN CASE∗

M. HAIRER† , A. M. STUART‡ , J. VOSS§ , AND P. WIBERG¶

Abstract. In many applications it is important to be able to sample paths of SDEs conditional
on observations of various kinds. This paper studies SPDEs which solve such sampling problems.
The SPDE may be viewed as an infinite dimensional analogue of the Langevin SDE used in finite
dimensional sampling. Here the theory is developed for conditioned Gaussian processes for which
the resulting SPDE is linear. Applications include the Kalman-Bucy filter/smoother. A companion
paper studies the nonlinear case, building on the linear analysis provided here.
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1. Introduction
An important basic concept in sampling is Langevin dynamics: suppose a target

density p on Rd has the form p(x)= cexp
(
−V (x)

)
. Then the stochastic differential

equation (SDE)

dx

dt
=−gradV (x)+

√
2

dW

dt
(1.1)

has p as its invariant density. Thus, assuming that (1.1) is ergodic, x(t) produces
samples from the target density p as t→∞. (For details see, for example, [10].)

In [13] we give an heuristic approach to generalising the Langevin method to
an infinite dimensional setting. We derive stochastic partial differential equations
(SPDEs) which are the infinite dimensional analogue of (1.1). These SPDEs sample
from paths of stochastic differential equations, conditional on observations. Observa-
tions which can be incorporated into this framework include knowledge of the solution
at two points (bridges) and a set-up which includes the Kalman-Bucy filter/smoother.
For bridge sampling the SPDEs are also derived in [12], their motivation being to un-
derstand the invariant measures of SPDEs through bridge processes. The Girsanov
transformation is used to study the connection between SPDEs and bridge processes
in [12]; it is also used to study Gibbs measures on R in [2]. However the results
concerning bridges in this paper are not a linear subcase of those papers because we
consider non-symmetric drifts (which are hence not gradient) and covariance of the
noise which is not proportional to the identity. Furthermore the nonlinear results
in [6] include the results stated in [12] as a subset, both because of the form of the
nonlinearity and noise, and because of the wide-ranging forms of conditioning that
we consider.
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588 SPDES AND CONDITIONED GAUSSIAN DIFFUSIONS

In the current paper we give a rigorous treatment of this SPDE based sampling
method when the processes to be sampled are linear and Gaussian. The resulting
SPDEs for the sampling are also linear and Gaussian in this case. We find it useful
to present the Gaussian theory of SPDE based sampling for conditioned diffusions in
a self-contained fashion for the following reasons.

• For nonlinear problems the SPDE based samplers can be quite competitive. A
companion article [6] will build on the analysis in this paper to analyse SPDEs
which sample paths from nonlinear SDEs, conditional on observations. The
mathematical techniques are quite different from the Gaussian methods used
here and hence we present them in a separate paper. However the desired
path-space measures there will be characterised by calculating the density
with respect to the Gaussian measures calculated here.

• We derive an explicit description of the Kalman/Bucy smoother via the so-
lution of a linear two-point boundary value problem. This is not something
that we have found in the existing literature; it is strongly suggestive that
for off-line smoothing of Gaussian processes there is the potential for applica-
tion of a range of fast techniques available in the computational mathematics
literature, and different from the usual forward/backward implementation of
the filter/smoother. See section 4.

• For Gaussian processes, the SPDEs studied here will not usually constitute
the optimal way to sample, because of the time correlation inherent in the
SPDE; better methods can be developed to generate independent samples
by factorising the covariance operator. However these better methods can
be viewed as a particular discretisation of the SPDEs written down in this
paper, and this connection is of both theoretical interest and practical use,
including as the basis for algorithms in the nonlinear case. See section 5 and
[11].

In section 2 of this article we will develop a general MCMC method to sample from
a given Gaussian process. It transpires that the distribution of a centred Gaussian
process coincides with the invariant distribution of the L2-valued SDE

dx

dt
=Lx−Lm+

√
2

dw

dt
∀t∈ (0,∞), (1.2)

where L is the inverse of the covariance operator, m is the mean of the process and
w is a cylindrical Wiener process.

The first sampling problems we consider are governed by paths of the Rd-valued
linear SDE

dX

du
(u)=AX(u)+B

dW

du
(u) ∀u∈ [0,1] (1.3)

subject to observations of the initial point X(0), as well as possibly the end-
point X(1). Here we have A,B∈Rd×d and W is a standard d-dimensional Brownian
motion. Since the SDE is linear, the solution X is a Gaussian process. Section 3
identifies the operator L in the case where we sample solutions of (1.3), subject to
end-point conditions. In fact, L is a second order differential operator with boundary
conditions reflecting the nature of the observations and thus we can write (1.2) as
an SPDE.

In section 4 we study the situation where two processes X and Y solve the linear
system of SDEs

dX

du
(u)=A11X(u)+B11

dWx

du
(u)
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dY

du
(u)=A21X(u)+B22

dWy

du
(u)

on [0,1] and we want to sample paths from the distribution of X (the signal) con-
ditioned on Y (the observation). Again, we identify the operator L in (1.2) as a
second order differential operator and derive an SPDE with this distribution as its
invariant distribution. We also give a separate proof that the mean of the invariant
measure of the SPDE coincides with the standard algorithmic implementation of the
Kalman-Bucy filter/smoother through forward/backward sweeps.

Section 5 contains some brief remarks concerning the process of discretising
SPDEs to create samplers, and section 6 contains our conclusions.

To avoid confusion we use the following naming convention. Solutions to SDEs
like (1.3) which give our target distributions are denoted by upper case letters. So-
lutions to infinite dimensional Langevin equations like (1.2) which we use to sample
from these target distributions are denoted by lower case letters.

2. Gaussian Processes
In this section we will derive a Hilbert space valued SDE to sample from arbitrary

Gaussian processes.

Recall that a random variable X taking values in a separable Hilbert space H is
said to be Gaussian if the law of 〈y,X〉 is Gaussian for every y∈H (Dirac measures
are considered as Gaussian for this purpose). It is called centred if E〈y,X〉=0 for
every y∈H. Gaussian random variables are determined by their mean m=EX ∈H
and their covariance operator C : H→H defined by

〈y,Cx〉=E
(
〈y,X−m〉〈X−m,x〉

)
.

For details see e.g. [4, section 2.3.2]. The following lemma (see [4, proposition 2.15])
characterises the covariance operators of Gaussian measures.

Lemma 2.1. Let X be a Gaussian random variable on a separable Hilbert space. Then
the covariance operator C of X is self-adjoint, positive and trace class.

A Gaussian random variable is said to be non-degenerate if 〈y,Cy〉>0 for every y∈
H\{0}. An equivalent characterisation is that the law of 〈y,X〉 is a proper Gaussian
measure (i.e. not a Dirac measure) for every y∈H\{0}. Here we will always consider
non-degenerate Gaussian measures. Then C is strictly positive definite and we can
define L to be the inverse of −C. Since C is trace class, it is also bounded and thus
the spectrum of L is bounded away from 0.

We now construct an infinite dimensional process which, in equilibrium, samples
from a prescribed Gaussian measure. Denote by w the cylindrical Wiener process
on H. Then one has formally

w(t)=
∞∑

n=1

βn(t)φn ∀t∈ (0,∞), (2.1)

where for n∈N the βn are i.i.d. standard Brownian motions and φn are the (ortho-
normal) eigenvectors of C. Note that the sum (2.1) does not converge in H but that
one can make sense of it by embedding H into a larger Hilbert space in such a way
that the embedding is Hilbert-Schmidt. The choice of this larger space does not affect
any of the subsequent expressions (see also [4] for further details).



590 SPDES AND CONDITIONED GAUSSIAN DIFFUSIONS

Given C and L as above, consider the H-valued SDE given by (1.2), interpreted
in the following way:

x(t)=m+eLt
(
x(0)−m

)
+
√

2
∫ t

0
eL(t−s)dw(s). (2.2)

If x∈C
(
[0,T ],H

)
satisfies (2.2) it is called a mild solution of the SDE (1.2). We have

the following result.

Lemma 2.2. Let C be the covariance operator and m the mean of a non-degenerate
Gaussian random variable X on a separable Hilbert space H. Then the corresponding
evolution equation (1.2) with L=−C−1 has continuous H-valued mild solutions. Fur-
thermore, it has a unique invariant measure µ on H which is Gaussian with mean m
and covariance C and there exists a constant K such that for every initial condition
x0∈H one has

∥∥law
(
x(t)

)
−µ

∥∥
TV
≤K

(
1+‖x0−m‖H

)
exp

(
−‖C‖−1

H→Ht
)
,

where ‖ ·‖TV denotes the total variation distance between measures.

Proof. The existence of a continuous H-valued solution of the SDE (1.2) is estab-
lished in [7]. The uniqueness of the invariant measure and the convergence rate in the
total variation distance follow by combining Theorems 6.3.3 and 7.1.1 from [5]. The
characterisation of the invariant measure is established in [5, Thm 6.2.1].

We can both characterise the invariant measure, and explain the exponential rate
of convergence to it, by using the Karhunen-Loève expansion. In particular we give an
heuristic argument which illustrates why Lemma 2.2 holds in the case m=0: denote by
(φn)n∈N an orthonormal basis of eigenvectors of C and by (λn)n∈N the corresponding
eigenvalues. If X is centred it is possible to expand X as

X =
∞∑

n=1

αn

√
λnφn, (2.3)

for some real-valued random variables αn. (In contrast to the situation in (2.1) the
convergence in (2.3) actually holds in L2(Ω,P,H), where (Ω,P) is the underlying prob-
ability space.) A simple calculation shows that the coefficients αn are i.i.d. N (0,1)
distributed random variables. The expansion (2.3) is called the Karhunen-Loève ex-
pansion. Details about this construction can be found in [1].

Now express the solution x of (1.2) in the basis (φn) as

x(t)=
∞∑

n=1

γn(t)φn.

Then a formal calculation using (2.1) and (1.2) leads to the SDE

dγn

dt
=−γn

λn
+
√

2
dβn

dt

for the time evolution of the coefficients γn and hence γn is ergodic with stationary
distribution N (0,λn) for every n∈N. Thus the stationary distribution of (1.2) has the
same Karhunen-Loève expansion as the distribution of X and the two distributions
are the same. Furthermore, the fact that the rate of convergence to stationarity is
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bounded independently of n is a manifestation of the exponential rate of convergence
to stationarity stated in Lemma 2.2.

In this article, the Hilbert space H will always be the space L2
(
[0,1],Rd

)
of

square integrable Rd-valued functions and the Gaussian measures we consider will
be distributions of Gaussian processes. In this case the operator C has a kernel
C : [0,1]2→Rd×d such that

(Cx)(u)=
∫ 1

0
C(u,v)x(v)dv. (2.4)

If the covariance function C is Hölder continuous, then the Kolmogorov continuity
criterion (see e.g. [4, Thm 3.3]) ensures that X is almost surely a continuous function
from [0,1] to Rd. In this case C is given by the formula

C(u,v)=E
((

X(u)−m(u)
)(

X(v)−m(v)
)∗)

and the convergence of the expansion (2.3) is uniform with probability one.

Remark 2.1. The solution of (1.2) may be viewed as the basis for an MCMC method
for sampling from a given Gaussian process. The key to exploiting this fact is the
identification of the operator L for a given Gaussian process. In the next section we
show that, for a variety of linear SDEs, L is a second order differential operator and
hence (1.2) is a stochastic partial differential equation. If C has a Hölder continuous
kernel C, it follows from (2.4) and the relation C=(−L)−1 that it suffices to find a
differential operator L such that C(u,v) is the Green’s function of −L.

3. Conditioned Linear SDEs
In this section we apply our sampling technique from section 2 to Gaussian mea-

sures which are given as the distributions of a number of conditioned linear SDEs.
We condition on, in turn, a single known point (subsection 3.1), a single point with
Gaussian distribution (subsection 3.2) and finally a bridge between two points (sub-
section 3.3).

Throughout we consider the Rd-valued SDE

dX

du
(u)=AX(u)+B

dW

du
(u), ∀u∈ [0,1], (3.1)

where A,B∈Rd×d and W is the standard d-dimensional Brownian motion. We assume
that the matrix BB∗ is invertible. We associate to (3.1) the second order differential
operator L formally given by

L=(∂u +A∗)(BB∗)−1(∂u−A). (3.2)

When equipped with homogeneous boundary conditions through its domain of def-
inition, we will denote the operator (3.2) by L. We will always consider boundary
conditions of the general form D0x(0)=0 and D1x(1)=0, where Di =Ai∂u +bi are
first-order differential operators.

Remark 3.1. We will repeatedly write Rd-valued SPDEs with inhomogeneous bound-
ary conditions of the type
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∂tx(t,u)=Lx(t,u)+g(u)+
√

2∂tw(t,u) ∀(t,u)∈ (0,∞)× [0,1],
D0x(t,0)=a, D1x(t,1)= b ∀t∈ (0,∞),

x(0,u)=x0(u) ∀u∈ [0,1] (3.3)

where g : [0,1]→Rd is a function, ∂tw is space-time white noise, and a,b∈Rd. We
call a process x a solution of this SPDE if it solves (2.2) with x(0)=x0 where L is L
equipped with the boundary conditions D0f(0)=0 and D1f(1)=0, and m : [0,1]→Rd

is the solution of the boundary value problem −Lm=g with boundary conditions
D0m(0)=a and D1m(1)= b.

To understand the connection between (3.3) and (2.2) note that, if w is a smooth
function, then the solutions of both equations coincide.

3.1. Fixed Left End-Point. Consider the problem of sampling paths of (3.1)
subject only to the initial condition

X(0)=x−∈Rd. (3.4)

The solution of this SDE is a Gaussian process with mean

m(u)=E
(
X(u)

)
=euAx− (3.5)

and covariance function

C0(u,v)=euA
(∫ u∧v

0
e−rABB∗e−rA∗

dr
)
evA∗

(3.6)

(see e.g. [8, section 5.6] for reference). Let L denote the differential operator L
from (3.2) with the domain of definition

D(L)=
{
f ∈H2([0,1],Rd)

∣∣f(0)=0,
d

du
f(1)=Af(1)

}
. (3.7)

Lemma 3.1. With L given by (3.2) and (3.7) the function C0 is the Green’s function
for −L. That is

LC0(u,v)=−δ(u−v)I

and

C0(0,v)=0, ∂uC0(1,v)=AC0(1,v) ∀v∈ (0,1).

Proof. From (3.6) it is clear that the left-hand boundary condition C0(0,v)=0 is
satisfied for all v∈ [0,1]. It also follows that, for u ,=v, the kernel is differentiable with
derivative

∂uC0(u,v)=

{
AC0(u,v)+BB∗e−uA∗

evA∗
, for u<v, and

AC0(u,v) for u>v.
(3.8)

Thus the kernel C0 satisfies the boundary condition ∂uC0(1,v)=AC0(1,v) for all
v∈ [0,1).
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Equation (3.8) shows

(BB∗)−1
(
∂u−A

)
C0(u,v)=

{
e−uA∗

evA∗
, for u<v, and

0 for u>v
(3.9)

and thus we get

LC0(u,v)=
(
∂u +A∗

)
(BB∗)−1

(
∂u−A

)
C0(u,v)=0 ∀u ,=v.

Now let v∈ (0,1). Then we get

lim
u↑v

(BB∗)−1
(
∂u−A

)
C0(u,v)= I

and

lim
u↓v

(BB∗)−1
(
∂u−A

)
C0(u,v)=0.

This shows LC0(u,v)=−δ(u−v)I for all v∈ (0,1).

Now that we have identified the operator L=(−C)−1 we are in the situation of 2.2
and can derive an SPDE to sample paths of (3.1), subject to the initial condition (3.4).
We formulate this result precisely in the following theorem.

Theorem 3.2. For every x0∈H the Rd-valued SPDE

∂tx(t,u)=Lx(t,u)+
√

2∂tw(t,u) ∀(t,u)∈ (0,∞)×(0,1) (3.10a)

x(t,0)=x−, ∂ux(t,1)=Ax(t,1) ∀t∈ (0,∞) (3.10b)
x(0,u)=x0(u) ∀u∈ [0,1] (3.10c)

where ∂tw is space-time white noise has a unique mild solution. The SPDE is ergodic
and in equilibrium samples paths of the SDE (3.1) with initial condition X(0)=x−.

Proof. The solution of SDE (3.1) with initial condition (3.4) is a Gaussian process
where the mean m is given by (3.5). The mean m solves the boundary value prob-
lem Lm(u)=0 for all u∈ (0,1), m(0)=x− and m′(1)=Am(1). From Remark 3.1 we
find that x is a solution of the Hilbert space valued SDE (1.2) for this function m.

Lemma 3.1 shows that L, given by (3.2) with the boundary conditions
from (3.10b), is the inverse of −C where C is the covariance operator of the dis-
tribution we want to sample from (and with covariance function given by (3.6)).
Lemma 2.2 then shows that the SPDE (3.10) is ergodic and that its stationary dis-
tribution coincides with the distribution of solutions of the SDE (3.1) with initial
condition X(0)=x−.

3.2. Gaussian Left End-Point. An argument similar to the one in sec-
tion 3.1 deals with sampling paths of (3.1) where X(0) is a Gaussian random variable
distributed as

X(0)∼N (x−,Σ) (3.11)

with an invertible covariance matrix Σ∈Rd×d and independent of the Brownian mo-
tion W .
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Theorem 3.3. For every x0∈H the Rd-valued SPDE

∂tx(t,u)=Lx(t,u)+
√

2∂tw(t,u) ∀(t,u)∈ (0,∞)×(0,1) (3.12a)

∂ux(t,0)=Ax(t,0)+BB∗Σ−1(x−x−), ∂ux(t,1)=Ax(t,1) ∀t∈ (0,∞) (3.12b)
x(0,u)=x0(u) ∀u∈ [0,1] (3.12c)

where ∂tw is space-time white noise has a unique mild solution. The SPDE is er-
godic and in equilibrium samples paths of the SDE (3.1) with the Gaussian initial
condition (3.11).

Proof. The solution X of SDE (3.1) with initial condition (3.11) is a Gaussian
process with mean (3.5) and covariance function

C(u,v)=euAΣevA∗
+C0(u,v), (3.13)

where C0 is the covariance function from (3.6) for the case X(0)=0 (see Problem 6.1
in Section 5.6 of [8] for a reference). The mean m from (3.5) solves the boundary
value problem Lm(u)=0 for all u∈ (0,1) with boundary conditions m′(0)=Am(0)+
BB∗Σ−1(m(0)−x−) and m′(1)=Am(1).

In order to identify the inverse of the covariance operator C we can use (3.8) to
find

∂uC(u,v)=

{
AC(u,v)+BB∗e−uA∗

evA∗
, for u<v, and

AC(u,v) for u>v

and, since C(0,v)=ΣevA∗
, we get the boundary conditions

∂uC(0,v)=AC(0,v)+BB∗Σ−1C(0,v)

and

∂uC(1,v)=AC(1,v).

From (∂u−A)euAΣevA∗
=0 we also get

LC(u,v)=LeuAΣevA∗
+LC0(u,v)=0

for all u ,=v and LC(u,v)=LC0(u,v)=−δ(u,v)I for all u,v∈ (0,1).
Thus C is again the Green’s function for −L and the claim follows from Remark 2.1
and Lemma 2.2.

Remark 3.2. If A is negative-definite symmetric, then the solution X of SDE (3.1)
has a stationary distribution which is a centred Gaussian measure with covariance
Σ=− 1

2A−1BB∗. Choosing this distribution in (3.11), the boundary condition (3.12b)
becomes

∂ux(t,0)=−Ax(t,0), ∂ux(t,1)=Ax(t,1) ∀t∈ (0,∞).
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3.3. Bridge Sampling. In this section we apply our sampling method to
sample from solutions of the linear SDE (3.1) with fixed end-points, i.e. we sample
from the distribution of X conditioned on

X(0)=x−, X(1)=x+. (3.14)

The conditional distribution transpires to be absolutely continuous with respect to
the Brownian bridge measure satisfying (3.14).

Let m and C0 be the mean and covariance of the unconditioned solution X of the
SDE (3.1) with initial condition X(0)=x−. As we will show in Lemma 4.3 below, the
solution conditioned on X(1)=x+ is again a Gaussian process. The mean and co-
variance of the conditioned process can be found by conditioning the random variable(
X(u),X(v),X(1)

)
for u≤v≤1 on the value of X(1). Since this is a finite dimensional

Gaussian random variable, mean and covariance of the conditional distribution can
be explicitly calculated. The result for the mean is

m̃(u)=m(u)+C0(u,1)C0(1,1)−1
(
x+−m(1)

)
(3.15)

and for the covariance function we get

C̃(u,v)=C0(u,v)−C0(u,1)C0(1,1)−1C0(1,v). (3.16)

Theorem 3.4. For every x0∈H the Rd-valued SPDE

∂tx=Lx+
√

2∂tw ∀(t,u)∈ (0,∞)×(0,1) (3.17a)

x(t,0)=x−, x(t,1)=x+ ∀t∈ (0,∞) (3.17b)
x(0,u)=x0(u) ∀u∈ [0,1] (3.17c)

where ∂tw is white noise has a unique mild solution. The SPDE is ergodic and in
equilibrium samples paths of the SDE (3.1) subject to the bridge conditions (3.14).

Proof. The solution of the SDE (3.1) with boundary conditions (3.14) is a
Gaussian process where the mean m̃ is given by (3.15) and the covariance function C̃ is
given by (3.16). From formula (3.9) we know LC0(u,1)=0 and thus m̃ satisfies Lm̃=
Lm=0. Since m̃(0)=x− and m̃(t)=m(1)+C0(1,1)C0(1,1)−1

(
x+−m(1)

)
=x+, the

mean m̃ solves the boundary value problem Lm̃(u)=0 for all u∈ (0,1) with boundary
conditions m̃(0)=x− and m̃(1)=x+.

It remains to show that C̃ is the Green’s function for the operator L with homo-
geneous Dirichlet boundary conditions: we have C̃(0,v)=0,

C̃(1,v)=C0(1,v)−C0(1,1)C0(1,1)−1C0(1,v)=0

and using LC0(u,1)=0 we find

LC̃(u,v)=LC0(u,v)=−δ(u−v)I.

This completes the proof.

4. The Kalman-Bucy Filter/Smoother
Consider (3.1) with X replaced by the Rm×Rn-valued process (X,Y ) and A,B∈

R(m+n)×(m+n) chosen so as to obtain the linear SDE

d

du

(
X(u)
Y (u)

)
=

(
A11 0
A21 0

)(
X(u)
Y (u)

)
+

(
B11 0
0 B22

)
d

du

(
Wx(u)
Wy(u)

)
. (4.1a)
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We impose the conditions

X0∼N (x−,Λ), Y0 =0 (4.1b)

and try to sample from paths of X given paths of Y . We derive an SPDE whose
invariant measure is the conditional distribution of X given Y . Formally this SPDE
is found by writing the SPDE for sampling from the solution (X,Y ) of (4.1) and
considering the equation for the evolution of x, viewing y≡Y as known. This leads
to the following result.

Theorem 4.1. Given a path Y sampled from (4.1) consider the SPDE

∂tx=
(
(∂u +A∗11)(B11B

∗
11)

−1(∂u−A11)
)
x

+A∗21(B22B
∗
22)

−1
(dY

du
−A21x

)
+
√

2∂tw, (4.2a)

equipped with the inhomogeneous boundary conditions

∂ux(t,0)=A11x(t,0)+B11B
∗
11Λ

−1
(
x(t,0)−x−

)
,

∂ux(t,1)=A11x(t,1) (4.2b)

and initial condition

x(0,u)=x0(u) ∀u∈ [0,1]. (4.2c)

Then for every x0∈H the SPDE has a unique mild solution and is ergodic. Its sta-
tionary distribution coincides with the conditional distribution of X given Y for X,Y
solving (4.1).

The proof of this theorem is based on the following three lemmas concerning con-
ditioned Gaussian processes. After deriving these three lemmas we give the proof of
Theorem 4.1. The section finishes with a direct proof that the mean of the invari-
ant measure coincides with the standard algorithmic implementation of the Kalman-
Bucy filter/smoother through forward/backward sweeps (this fact is implicit in The-
orem 4.1).

Lemma 4.2. Let H=H1⊕H2 be a separable Hilbert space with projectors Πi : H→Hi.
Let C : H→H be a positive definite, bounded, linear, self-adjoint operator and denote
Cij =ΠiCΠ∗j . Then C11−C12C−1

22 C21 is positive definite and if C11 is trace class then

the operator C12C
− 1

2
22 is Hilbert-Schmidt.

Proof. Since C is positive definite, one has

2|〈C21x,y〉|≤〈x,C11x〉+〈y,C22y〉,

for every (x,y)∈H. It follows that

|〈C21x,y〉|2≤〈x,C11x〉〈y,C22y〉, (4.3)

and so

|〈C21x,C−1/2
22 y〉|2≤〈x,C11x〉‖y‖2 (4.4)
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for every y ,=0 in the range of C1/2
22 . Equation (4.3) implies that C21x is orthogonal

to kerC22 for every x∈H1. Therefore the operator C−1/2
22 C21 can be defined on all of

H1 and thus is bounded. Taking y =C−1/2
22 C21x in (4.4) gives ‖C−1/2

22 C21x‖2≤〈x,C11x〉
and thus 〈x,(C11−C12C−1

22 C21)x〉≥0 for every x∈H1. This implies that C−
1
2

22 C21 and
C12C

− 1
2

22 are both Hilbert-Schmidt, and completes the proof.

Remark 4.1. Note that C being strictly positive definite is not sufficient to imply that
C11−C12C−1

22 C21 is also strictly positive definite. A counter-example can be constructed
by considering the Wiener measure on H=L2([0,1]) with H1 being the linear space
spanned by the constant function 1.

Lemma 4.3. Let H=H1⊕H2 be a separable Hilbert space with projectors Πi : H→Hi.
Let (X1,X2) be an H-valued Gaussian random variable with mean m=(m1,m2) and
positive definite covariance operator C and define Cij =ΠiCΠ∗j . Then the conditional
distribution of X1 given X2 is Gaussian with mean

m1|2 =m1 +C12C−1
22

(
X2−m2

)
(4.5)

and covariance operator

C1|2 =C11−C12C−1
22 C21. (4.6)

Proof. Note that by Lemma 2.1 the operator C is trace class. Thus C11 and C22

are also trace class. Let µ be the law of X2 and let H0 be the range of C1/2
22 equipped

with the inner product

〈x,y〉0 = 〈C−1/2
22 x,C−1/2

22 y〉.

If we embed H0 ↪→H2 via the trivial injection i(f)=f , then we find i∗(f)=C22f .
Since i◦ i∗=C22 is the covariance operator of µ, the space H0 is its reproducing
kernel Hilbert space. From Lemma 4.2 we know that C12C−1/2

22 is Hilbert-Schmidt
from H2 to H1 and hence bounded. Thus we can define

A=C12C−1/2
22 C−1/2

22 =C12C−1
22

as a bounded operator from H0 to H1.
Let (φn)n be an orthonormal basis of H2. Then ψn =C1/2

22 φn defines an ortho-
normal basis on H0 and we get

∑

n∈N
‖Aψn‖2H1

=
∑

n∈N
‖C12C−1

22 C1/2
22 φn‖2H1

=
∑

n∈N
‖C12C−1/2

22 φn‖2H1
<∞,

where the last inequality comes from Lemma 4.2. This shows that the operator A is
Hilbert-Schmidt on the reproducing kernel Hilbert space H0. Theorem II.3.3 of [3]
shows that A can be extended in a measurable way to a subset of H2 which has full
measure, so that (4.5) is well-defined.

Now consider the process Y defined by
(

Y1

Y2

)
=

(
IH1 −A
0H2 IH2

)(
X1

X2

)
.
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This process is also Gaussian, but with mean

mY =
(

IH1 −A
0H2 IH2

)(
m1

m2

)
=

(
m1−Am2

m2

)

and covariance operator

CY =
(

IH1 −A
0H2 IH2

)(
C11 C12

C21 C22

)(
IH1 0H2

−A∗ IH2

)
=

(
C11−C12C−1

22 C21 0
0 C22

)
.

This shows that Y1 =X1−C12C−1
22 X2 and Y2 =X2 are uncorrelated and thus indepen-

dent. So we get

E
(
X1

∣∣X2

)
=E

(
X1−C12C−1

22 X2

∣∣X2

)
+E

(
C12C−1

22 X2

∣∣X2

)

=E
(
X1−C12C−1

22 X2

)
+C12C−1

22 X2

=m1−C12C−1
22 m2 +C12C−1

22 X2.

This proves (4.5) and a similar calculation gives equality (4.6).

Remark 4.2. If we define as above L=(−C)−1 and formally define Lij =ΠiLΠ∗j
(note that without additional information on the domain of L these operators may
not be densely defined), then a simple formal calculation shows that m1|2 and C1|2
are expected to be given by

m1|2 =m1−L−1
11 L12

(
X2−m2

)
, C1|2 =−L−1

11 . (4.7)

We now justify these relations in a particular situation which is adapted to the case
that will be considered in the remaining part of this section.

Lemma 4.4. Consider the setup of 4.3 and 4.2 and assume furthermore that the
following properties are satisfied:

a. The operator L can be extended to a closed operator L̃ on Π1D(L)⊕Π2D(L).
b. Define the operators Lij =ΠiL̃Π∗j . Then, the operator L11 is self-adjoint and

one has kerL11 ={0}.
c. The operator −L−1

11 L12 can be extended to a bounded operator from H2 into
H1.

Then C12C−1
22 can be extended to a bounded operator from H2 into H1 and one has

C12C−1
22 =−L−1

11 L12. Furthermore, C21 maps H1 into the range of C22 and one has

L−1
11 x=

(
C11−C12C−1

22 C21

)
x,

for every x∈H1.

Proof. We first show that C12C−1
22 =−L−1

11 L12. By property a. and the definition
of L, we have the equality

L̃Π∗1Π1Cx+ L̃Π∗2Π2Cx=−x (4.8)

for every x∈H, and thus L11C12x=−L12C22x for every x∈H2. It follows immediately
that L11C12C−1

22 x=−L12x for every x∈R(C22). Since R(C22) is dense in H2, the
statement follows from assumptions b. and c.

Let us now turn to the second equality. By property a. the operator C21 maps
H1 into the domain of L12 so that

x=x−L12C21x+L12C21x=L11C11x+L12C21x, (4.9)
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for every x∈H1 (the second equality follows from an argument similar to the one that
yields (4.8)). Since the operator C−1

22 is self-adjoint, we know from [14, p. 195] that
(C12C−1

22 )∗=C−1
22 C21. Since the left hand side operator is densely defined and bounded,

its adjoint is defined on all of H1, so that C21 maps H1 into the range of C22. It follows
from (4.9) that

x=L11C11x+L12C22C−1
22 C21x,

for every x∈H1. Using (4.8), this yields x=L11C11x−L11C12C−1
22 C21x, so that L−1

11 is
an extension of C11−C12C−1

22 C21. Since both of these operators are self-adjoint, they
must agree.

Corollary 4.5. Let (X,Y ) be Gaussian with covariance C and mean m on a separa-
ble Hilbert space H=H1⊕H2. Assume furthermore that C satisfies the assumptions
of Lemmas 4.3 and 4.4. Then, the conditional law of X given Y is given by the
invariant measure of the ergodic SPDE

dx

dt
=L11x−L11Π1m+L12

(
Y −Π2m

)
+
√

2
dw

dt
, (4.10)

where w is a cylindrical Wiener process on H1 and the operators Lij are defined as
in 4.4. SPDE (4.10) is again interpreted in the mild sense (2.2).

Proof. Note that L−1
11 L12 can be extended to a bounded operator by assumption

and the mild interpretation of (4.10) is

xt =M +eL11t(x0−M)+
√

2
∫ t

0
eL11(t−s)dw(s), (4.11)

with M =Π1m−L−1
11 L12

(
Y −Π2m

)
. The result follows by combining Lemma 4.3 and

Lemma 4.4 with Lemma 2.2.
These abstract results enable us to prove the main result of this section.

Proof. [of Theorem 4.1] Consider a solution (X,Y ) to the SDE (4.1). Introducing
the shorthand notations

Σ1 =(B11B
∗
11)

−1, Σ2 =(B22B
∗
22)

−1,

it follows by the techniques used in the proof of Theorem 3.3 that the operator L
corresponding to its covariance is formally given by

(
L11 L12

L21 L22

)
:=

(
∂u +A∗11 A∗21

0 ∂u

)(
B11B∗

11 0
0 B22B∗

22

)−1(
∂u−A11 0
−A21 ∂u

)

=
(

(∂u +A∗11)Σ1(∂u−A11)−A∗21Σ2A21 A∗21Σ2∂u

−∂uΣ2A21 ∂uΣ2∂u

)
.

In order to identify its domain, we consider (3.12b) with

Σ=
(

Λ 0
0 Γ

)

and we take the limit Γ→0. This leads to the boundary conditions

∂ux(0)=A11x(0)+(ΛΣ1)−1(x(0)−x−), ∂ux(1)=A11x(1),

y(0)=0, ∂uy(1)=A21x(1).
(4.12a)
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The domain of L is thus H2([0,1],Rm×Rn), equipped with the homogeneous
version of these boundary conditions.

We now check that the conditions of 4.4 hold. Condition a. is readily verified, the
operator L̃ being equipped with the boundary conditions

∂ux(0)=A11x(0)+(ΛΣ1)−1x(0), ∂ux(1)=A11x(1),

y(0)=0, Π∂uy(1)=0,
(4.12b)

where Π is the projection on the orthogonal complement of the range of A21. Note
that the operator L̃ is closed, but no longer self-adjoint (unless A21 =0). The operator
L11 is therefore given by

L11 =
(
∂u +A∗11

)
Σ1

(
∂u−A11

)
−A∗21Σ2A21,

equipped with the boundary condition

∂ux(0)=A11x(0)+(ΛΣ1)−1x(0), ∂ux(1)=A11x(1).

It is clear that this operator is self-adjoint. The fact that its spectrum is bounded
away from 0 follows from the fact that the form domain of L contains Π∗1Π1D(L) and
that there is a c>0 with 〈a,La〉≤−c‖a‖2 for all a∈D(L). Thus condition b. holds.

The operator L12 is given by the first-order differential operator A∗21Σ2∂u whose
domain is given by functions with square-integrable second derivative that vanish at
0. Since the kernel of L−1

11 has a square-integrable derivative, it is easy to check that
L−1

11 L12 extends to a bounded operator on H, so that condition c. is also verified.
We can therefore apply Lemma 4.4 and Lemma 2.2. The formulation of the

equation with inhomogeneous boundary conditions is an immediate consequence of
Remark 3.1: a short calculation to remove the inhomogeneity in the boundary con-
ditions (4.2b) and change the inhomogeneity in the PDE (4.2a) shows that (4.2) can
be written in the form (4.10) or (4.11) with the desired value for M , the conditional
mean. Since L11 is indeed the conditional covariance operator, the proof is complete.

Remark 4.3. For Y solving (4.1) the derivative dY
du only exists in a distributional

sense (it is in the Sobolev space H−1/2−ε for every ε>0). But the definition (2.2) of
a mild solution which we use here applies the inverse of the second order differential
operator L11 to dY

du , resulting in an element of H3/2−ε in the solution.

Remark 4.4. Denote by x(t,u) a solution of the SPDE (4.2) and write the mean
as x̄(t,u)=Ex(t,u). Then, as t→∞, x̄(t,u) converges to its limit x̃(u) strongly in
L2([0,1],Rm) and x̃(u) must coincide with the Kalman-Bucy filter/smoother. This
follows from the fact that x̃ equals E(X |Y ). It is instructive to demonstrate this
result directly and so we do so.

The mean x̃(u) of the invariant measure of (4.2) satisfies the linear two point
boundary value problem

(
d

du
+A∗11)(B11B

∗
11)

−1(
d

du
−A11)x̃(u)

+A∗21(B22B
∗
22)

−1
(dY

du
−A21x̃(u)

)
=0 ∀u∈ (0,1),

(4.13a)

d

du
x̃(0)=A11x̃(0)+B11B

∗
11Λ

−1
(
x̃(0)−x−

)
, (4.13b)

d

du
x̃(1)=A11x̃(1). (4.13c)
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The standard implementation of the Kalman filter is to calculate the conditional
expectation X̂(u)=E

(
X(u)

∣∣Y (v),0≤v≤u
)

by solving the initial value problem

d

du
S(u)=A11S(u)+S(u)A∗11−S(u)A∗21(B22B

∗
22)

−1A21S(u)+B11B
∗
11

S(0)=Λ (4.14)

and
d

du
X̂(u)=

(
A11−S(u)A∗21(B22B

∗
22)

−1A21

)
X̂ +S(u)A∗21(B22B

∗
22)

−1 dY

du

X̂(0)=x−. (4.15)

The Kalman smoother X̃, designed to find X̃(u)=E
(
X(u)

∣∣Y (v),0≤v≤1
)
, is then

given by the backward sweep

d

du
X̃(u)=A11X̃(u)+B11B

∗
11S(u)−1

(
X̃(u)−X̂(u)

)
∀u∈ (0,1)

X̃(1)= X̂(1). (4.16)

See [9, section 6.3 and exercise 6.6] for a reference. We wish to demonstrate that
x̃(u)= X̃(u).

Equation (4.16) evaluated for u=1 gives equation (4.13c). When evaluating (4.16)
at u=0 we can use the boundary conditions from (4.14) and (4.15) to get equa-
tion (4.13b). Thus it remains to show that X̃(u) satisfies equation (4.13a). We
proceed as follows: equation (4.16) gives

(
d

du
+A∗11)(B11B

∗
11)

−1(
d

du
−A11)X̃

=(
d

du
+A∗11)(B11B

∗
11)

−1B11B
∗
11S

−1
(
X̃−X̂

)

=(
d

du
+A∗11)S

−1
(
X̃−X̂

)

and so
( d

du
+A∗11

)
(B11B

∗
11)

−1(
d

du
−A11)X̃

=
(
A∗11S

−1 +
d

du
S−1

)(
X̃−X̂

)
+S−1 d

du

(
X̃−X̂

)
. (4.17)

We have
d

du
S−1 =−S−1 dS

du
S−1

and hence, using equation (4.14), we get

d

du
S−1 =−S−1A11−A∗11S

−1 +A∗21(B22B
∗
22)

−1A21−S−1B11B
∗
11S

−1. (4.18)

Subtracting (4.15) from (4.16) leads to

S−1 d

du

(
X̃−X̂

)
=S−1A11

(
X̃−X̂

)
+S−1B11B

∗
11S

−1
(
X̃−X̂

)

−A∗21(B22B
∗
22)

−1
(dY

du
−A21X̂

)
. (4.19)
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By substituting (4.18), (4.19) into (4.17) and collecting all the terms we find

(
d

du
+A∗11)(B11B

∗
11)

−1(
d

du
−A11)X̃ =−A∗21(B22B

∗
22)

−1
(dY

du
−A21X̃

)

which is equation (4.13a).
We note in passing that equations (4.14) to (4.16) constitute a factorisation of the

two-point boundary value problem (4.13) reminiscent of a continuous LU-factorisation
of L11.

5. Numerical Approximation of the SPDEs and Sampling
A primary objective when introducing SPDEs in this paper, and in the nonlinear

companion [6], is to construct MCMC methods to sample conditioned diffusions. In
this section we illustrate briefly how this can be implemented.

If we discretise the SDE (1.2) in time by the θ-method, we obtain the following
implicitly defined mapping from (xk,ξk) to x":

x"−xk

∆t
=

(
θLx∗+(1−θ)Lxk

)
−Lm+

√
2

∆t
ξk,

where ξk is a sequence of i.i.d Gaussian random variables in H with covariance opera-
tor I (i.e. white noise in in H). The Markov chain implied by the map is well-defined
on H for every θ∈ [ 12 ,1]. This Markov chain can be used as a proposal distribution for
an MCMC method, using the Metropolis-Hastings criterion to accept or reject steps.
To make a practical algorithm it is necessary to discretise in the Hilbert space H, as
well as in time t. This idea extends to nonlinear problems.

Straightforward calculation using the Karhunen-Loève expansion, similar to the
calculations following Lemma 2.2, shows that the invariant measure of the SPDE (1.2)
is preserved if the SPDE is replaced by

dx

dt
=−x+m+

√
2C dw

dt
. (5.1)

Such pre-conditioning of Langevin equations can be beneficial algorithmically because
it equalises convergence rates in different modes. This in turn allows for optimisation
of the time-step choice for a Metropolis-Hastings algorithm across all modes simulta-
neously. We illustrate this issue for the linear Gaussian processes of interest here.

Equation (5.1) can be discretised in time by the θ-method to obtain the following
implicitly defined mapping from (xk,ξk) into x":

x"−xk

∆t
=−

(
θx" +(1−θ)xk

)
+m+

√
2

∆t
ξk.

Now ξk is a sequence of i.i.d. Gaussian random variables in H with covariance op-
erator C. Again, this leads to a well-defined Markov chain on H for every θ∈ [ 12 ,1].
Furthermore the invariant measure is C/(1+(θ− 1

2 )∆t). Thus the choice θ = 1
2 has a

particular advantage: it preserves the exact invariant measure, for all ∆t>0. (These
observations can be justified by using the Karhunen-Loève expansion). Note that

(
1+θ∆t

)
x" =

(
1−(1−θ)∆t

)
xk +

√
2∆tξk.

When θ = 1
2 , choosing ∆t=2 generates independent random variables which therefore

sample the invariant measure independently. This illustrates in a simple Gaussian
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setting the fact that it is possible to choose a globally optimal time-step for the
MCMC method. To make a practical algorithm it is necessary to discretise in the
Hilbert space H, as well as in time t. The ideas provide useful insight into nonlinear
problems.

6. Conclusions
In this text we derived and exploited a method to construct linear SPDEs which

have a prescribed Gaussian measure as their stationary distribution. The fundamental
relation between the diffusion operator L in the SPDE and the covariance operator C
of the Gaussian measure is L=(−C)−1 and, using this, we showed that the kernel of
the covariance operator (the covariance function) is the Green’s functions for L. We
illustrated this technique by constructing SPDEs which sample from the distributions
of linear SDEs conditioned on several different types of observations.

These abstract Gaussian results were used to produce some interesting results
about the structure of the Kalman-Bucy filter/smoother. Connections were also made
between discretisations of the resulting SPDEs and MCMC methods for the Gaussian
processes of interest.

In the companion article [6] we build on the present analysis to extend this tech-
nique beyond the linear case. There we consider conditioned SDEs where the drift
is a gradient (or more generally a linear function plus a gradient). The resulting
SPDEs can be derived from the SPDEs in the present text by the addition of an extra
drift term to account for the additional gradient. The stationary distributions of the
new nonlinear SPDEs are identified by calculating their Radon-Nikodym derivative
with respect to the corresponding stationary distributions of the linear equations as
identified in the present article; this is achieved via the Girsanov transformation.
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H. Poincaré, 39, 877-889, 2003.
[3] Yu. L. Dalecky and S. V. Fomin, Measures and Differential Equations in Infinite-Dimensional

Space, Kluwer Academic Publishers, Mathematics and Its Applications, 1991.
[4] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Uni-

versity Press, 44, 1992.
[5] G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, Cambridge Uni-

versity Press, London Mathematical Society Lecture Note Series, 229, 1996.
[6] M. Hairer and A. M. Stuart and J. Voss, Analysis of SPDEs arising in path sampling, Part

II: the nonlinear case, In preparation.
[7] I. Iscoe, M. B. Marcus, D. MacDonald, M. Talagrand and J. Zinn, Continuity of L2-valued

Ornstein-Uhlenbeck processes, Ann. Probab., 18, 68-84, 1990.
[8] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, 1991.
[9] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer,

Berlin, Fifth Edition, 1998.
[10] C. P. Robert and G. Casella, Monte Carlo Statistical Methods, Springer, New York, 1999.
[11] G. O. Roberts, A. M. Stuart and J. Voss, Langevin sampling in path space: implicit methods

and pre-conditioning, In preparation.
[12] M. G. Reznikoff and E. Vanden-Eijnden, Invariant measures of SPDEs and conditioned dif-

fusions, C. R. Acad. Sci. Paris, Ser. I, 340, 305-308, 2005.
[13] A. M. Stuart, J. Voss and P. Wiberg, Conditional path sampling of SDEs and the Langevin

MCMC method, Comm. in Math. Sci., 2(4), 685-697, 2004.
[14] K. Yosida, Functional Analysis, Classics in Mathematics, Springer, Berlin, Reprint of the

sixth (1980) edition, 1995.


