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ABSTRACT: A new theorem is applied to the
Kuramoto-Sivashinsky equation with L-periodic
boundary conditions, proving the existence of an
asymptotically complete inertial manifold
attracting all initial data. Combining this result
with a new estimate of the size of the globally
absorbing set yields an improved estimate of the
dimension, N ∼ L2.46.
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1. Introduction

The Kuramoto-Sivashinsky equation

vt + vxxxx + vxx + 1
2v2

x = 0 (0.1)

with periodic boundary conditions

v(x + L, t) = v(x, t)

has attracted much attention recently as a paradigm of finite-dimensional
behaviour in a partial differential equation (see [7],[8], and [10] for numerical
studies).

One way to show rigorously that such an equation can be reduced to a
set of ordinary differential equations is to prove the existence of an “inertial
manifold” [6]. An inertial manifold is a finite dimensional Lipschitz manifold
which attracts all orbits exponentially, and is positively invariant under the
flow. Restricting the equation to this manifold yields a finite dimensional
dynamical system describing the asymptotic dynamics.

The analytical work of [11] culminated in an existence proof of inertial
manifolds for (1) in [4], the dimension N being bounded by cL3.75. These
analytical results were only valid for the case of even initial data with Neu-
mann boundary conditions. Since the first result, many different methods of
proof have been advocated ([2], [3], [5], [15]), and the dimension estimates
improved (see section 5). In this paper a new theorem of the author’s [13]
and a new result from [1] are applied to prove the existence of an inertial
manifold for the Kuramoto-Sivashinsky equation attracting all initial data,
with a dimension N ∼ L2.46.

The possibility of the existence of inertial manifolds for general initial
conditions follows from the results of [9] and is suggested therein; however,
the results of that paper would not give the improvement in the dimension
bound that is obtained here.

2. The functional setting of the equation

It is convenient to work with the equation for the derivative u = vx,

ut + uxxxx + uxx + uux = 0 (0.2)
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u(x + L, t) = u(x, t). (0.3)

Previous work has been for odd solutions of this equation, which integrate
up to give even solutions of (1).

Defining a positive linear operator A as the unique extension to L2 of

Au = uxxxx (0.4),

the equation can be rewritten as

du/dt + Au−A1/2u + uux = 0, (0.5)

as in [5]. A has two sets of mutually orthogonal eigenfunctions

w0
k = sin(2πkx/L) w1

k = cos(2πkx/L) (0.6)

corresponding to the eigenvalues Λk = (2πk/L)4.

Define Pn as the projector onto the first 2n eigenfunctions of A,

Pnu =
1∑

i=0

n∑
j=1

(u, wi
j)w

i
j , (0.7)

and Qn as its orthogonal complement in H, Qn = I − Pn. Clearly, the
dimension of PnH is 2n.

Solutions are contained in the Hilbert space H which is the closure in
L2 of the space generated by the two sets of eigenfunctions w0

k and w1
k. The

closure of the same space in the Sobolev space H1 is denoted by V , and is
equal to D(A1/4), the domain of A1/4 in H.

For the norm in H write | · | and for the inner product (·, ·). The norm
in V is denoted ‖v‖, and is equal to |vx| for functions that are differentiable.

It is a standard result [15] that the equation (2) together with the bound-
ary condition (3) generates a continuous semigroup S(·) so that the solution
through initial condition u0 at time t is u(t) = S(t)u0.

3. Absorbing sets

The first step in proving the existence of an inertial manifold to show
that the equation is dissipative, i.e. that it possesses an absorbing set B s.t.
S(t)W ⊂ B for t ≥ t0(W ) for any bounded set W ⊂ H.
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Previous published results have only been valid for odd initial conditions;
the result of [9], valid for all initial conditions, has only recently appeared
in print but was known as early as 1980. However, it is a very coarse result,
and gives an absorbing set with radius ∼ L72. The new result of [1] gives a
significantly improved bound on the size of this absorbing set. It is shown
that

lim sup
t→∞

|u(·, t)| ≤ cL8/5 (0.8)

which beats the “previous best” of [12], which was cL5/2.

The method of [5] can be used to convert this absorbing set in H into
an absorbing set in V ; if {|u| ≤ ρ0} is absorbing in H, then {‖u‖ ≤ ρ1} is
absorbing in V , where ρ1 = cρ

7/5
0 . When ρ0 = c1L

α then ρ1 = c2L
7α/5.

It is therefore possible to “prepare” the equation by truncating the term
(−A1/2u + uux) so that it is zero for ‖u‖ ≥ 6ρ1, and still preserve all the
asymptotic dynamics. Defining θ(r) by

θ(r) = max(0,min(1, 2(3− r))),

the prepared Kuramoto-Sivashinsky equation is

du/dt + Au + θ(‖u‖/ρ1)(−A1/2u + uux) = 0. (0.9)

Importantly, an inertial manifold for (9) implies an inertial manifold for (2),
as is shown in [5] (proposition 2.3).

4. The strong squeezing property and inertial manifolds

The formal definition of an inertial manifold is [6]

Definition 1 An inertial manifold M in X is a finite-dimensional
Lipschitz manifold, which is positively invariant and attracts all orbits expo-
nentially, that is

distX(S(t)u0,M) ≤ C(W )e−kt for all u0 ∈ W,

where W is a bounded set in X.

Often of central importance in the proof of the existence of inertial
manifolds is the strong squeezing property [5]. This is a cone invariance
property coupled with an exponential decay for solutions outside the cone;
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Definition 2 The strong squeezing property holds in a space X if for
some l,n the cone

Cn
l = {w(t) ≡ u1(t)− u2(t) : ‖Qnw(t)‖X ≤ l‖Pnw(t)‖X} (0.10)

is strictly invariant under the flow, that is if u1 and u2 are two solutions of
equation (1) and u1(0)−u2(0) ∈ Cn

l , then u1(t)−u2(t) ∈ int Cn
l for all t ≥ 0,

and furthermore, if w(t0) /∈ Cn
l then

‖Qnw(t)‖X ≤ e−kt‖Qnw(0)‖X (0.11)

for some k > 0 and all 0 ≤ t ≤ t0. ‖u‖X is the norm of u in X.

It is unsurprising that this property is often important in existence
proofs due to the following theorem [13].

Theorem 3 The strong squeezing property in X ensures the existence
of an inertial manifold in X. Furthermore the inertial manifold is asymptot-
ically complete, in other words for all initial conditions u0 ∈ W ⊂ X there
exists a trajectory ū(t) lying on M such that

‖S(t)u0 − ū(t)‖X ≤ C(W )e−kt.

The inertial manifold is given as the graph of a Lipschitz function from PnX

into QnX.

5. Inertial manifolds for the KSE

The existence of inertial manifolds for the Kuramoto-Sivashinsky equa-
tion, and a comparison of dimension estimates, is complicated by the fact
that such manifolds can be shown to exist in a variety of spaces. The clearest
example of this is in [15], where a similar analysis shows that existence of a
manifold in both H and V , with NH ∼ Lα+2 and NV ∼ L7α/5+2. The man-
ifold in V is more regular, but the estimate of the dimension of the manifold
in H is smaller. Indeed, the apparent “improvement” from the estimate L7/2

in [5] to L3 in [3] arises since the former is for an inertial manifold in V and
the latter for a manifold in H; the estimate L3 is already contained in [5], as
will now be shown.

The analysis of [5] proceeds via the strong squeezing property in both
H and V and a fixed point argument (which is standard [4],[5],[6],[15]). The
important results can be summarised as
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Theorem 4 [5, theorems 3.2 & corollary 3.7] For the prepared equation
(9) there exist

NH ∼ L3α/5+3/2 and NV ∼ L7α/10+7/4

such that for N > NH the strong squeezing property holds in H, and for
N > NV the strong squeezing property holds in V .

The expressions for NH and NV are obtained by following the analysis
of [5] with ρ0 ∼ Lα. Using theorem 3, and the comments in section 3, an
immediate corollary is

Corollary 5 The Kuramoto-Sivashinsky equation has inertial manifolds
in both H and V , with NH ∼ L3α/5+3/2 and NV ∼ L7α/10+7/4. The inertial
manifolds are asymptotically complete.

This result is an improvement on previous results in three ways. Its proof
(theorem 2 of [13]) makes clear the central position of the strong squeezing
property, and the manifold is shown to be asymptotically complete. Although
this follows from properties in [5] and could be shown by adapting a method
in [3], this is the first time that is has been explicitly proven. Furthermore
the explicit dependence of the dimension on the size of the absorbing set
enables new estimates to be easily incorporated. Using the new result of [1],
the asymptotic expressions

NH ∼ L2.46 NV ∼ L2.89 (0.12)

are obtained.

6. Some comments on lower bounds

It is remarked in [4] that a lower bound on the number of Fourier modes
spanning the attractor NF obeys NF ≥ cL2. Since the form of the inertial
manifold sought here (and throughout the literature) is dependent on the
Fourier (eigenfunction) expansion, its dimension can be no smaller than cL2.
It may however be possible to decrease this dimension by searching for an
inertial manifold that cannot be expressed as a graph.

That the dimension of the inertial manifold is bounded below in this
way implies further results. In particular, the two estimates

NF ≥ cL2 NH ≤ c1L
3α/5+3/2
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are not compatible unless α ≥ 5/6. This gives a lower bound on the “best
possible” result for the size of the absorbing set.

Another possible approach to obtaining lower bounds on the dimension
of the inertial manifold is to restrict attention to asymptotically complete
manifolds. The counterexample in [14] shows that unless the rate of attrac-
tion µ towards the manifold is greater than the rate of backwards separation
β of trajectories on the manifold, it need not be asymptotically complete.
Tight estimates of µmax and βmin, satisfying

µ ≤ µmax β ≥ βmin

could be used to obtain lower bounds from the condition µmax > βmin.

7. Conclusion

Solutions of the Kuramoto-Sivashinksy equation soon mimic the be-
haviour of a finite system of ordinary differential equations, as is shown
in [7], [8], and [10]. This is due to the asymptotic completeness property,
proved here explicitly for the first time. The dimension of the manifold in
H, NH ∼ L2.46 is slowly being lowered towards its optimal value of cL2.
Short of new analytical methods to prove the existence of inertial manifolds,
improvements will come from further refining of the bound on the size of the
absorbing set.

A future paper will investigate the bifurcation structure of these mani-
folds as L increases.
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