Lecture Notes

Reflection Groups

Dr Dmitriy Rumynin

Anna Lena Winstel

Autumn Term 2010
CONTENTS

1 Finite Reflection Groups .. 3

2 Root systems .. 6

3 Generators and Relations ... 14

4 Coxeter group .. 16

5 Geometric representation of $W(m_{ij})$ 21

6 Fundamental chamber .. 28

7 Classification .. 34

8 Crystallographic Coxeter groups 43

9 Polynomial invariants ... 46

10 Fundamental degrees .. 54

11 Coxeter elements .. 57
1 Finite Reflection Groups

\[V = (V, \langle \cdot, \cdot \rangle) \] - Euclidean Vector space where \(V \) is a finite dimensional vector space over \(\mathbb{R} \) and \(\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{R} \) is bilinear, symmetric and positiv definit.

Example: \((\mathbb{R}^n, \cdot) : \langle (\alpha_i), (\beta_i) \rangle = \sum_{i=1}^{n} \alpha_i \beta_i \)

Gram-Schmidt theory tells that for all Euclidean vector spaces, there exists an isometry (linear bijective and \(\forall x, y \in V : T(x) \cdot T(y) = \langle x, y \rangle \)) \(T : V \rightarrow \mathbb{R}^n \).

In \((V, \langle \cdot, \cdot \rangle)\) you can

- measure length: \(||x|| = \sqrt{\langle x, x \rangle} \)
- measure angles: \(\arccos \left(\frac{\langle x, y \rangle}{||x|| \cdot ||y||} \right) \)
- talk about orthogonal transformations

\[O(V) = \{ T \in \text{GL}(V) : \forall x, y \in V : \langle Tx, Ty \rangle = \langle x, y \rangle \} \leq \text{GL}(V) \]

\(T \in \text{GL}(V) \). Let \(V^T = \{ v \in V : Tv = v \} \) the fixed points of \(T \) or the 1-eigenspace.

Definition. \(T \in \text{GL}(V) \) is a reflection if \(T \in O(V) \) and \(\dim V^T = \dim V - 1 \).

Lemma 1.1. Let \(T \) be a reflection, \(x \in (V^T)^\perp = \{ v : \forall w \in V^T : \langle v, w \rangle = 0 \}, \ x \neq 0 \). Then

1. \(T(x) = -x \)
2. \(\forall z \in V : T(z) = z - 2 \frac{\langle z, x \rangle}{\langle x, x \rangle} \cdot x \)

Proof.

1. Pick \(v \in V^T \implies Tv = v \implies \langle Tx, v \rangle = \langle Tx, Tv \rangle = \langle x, v \rangle = 0 \). Hence \(Tx \in (V^T)^\perp \)
 Since \(\dim (V^T)^\perp = \dim V - \dim V^T = 1 : Tx = \alpha \cdot x \) for some \(\alpha \in \mathbb{R} \). Then
 \[\alpha^2 \langle x, x \rangle = \langle \alpha x, \alpha x \rangle = \langle Tx, Tx \rangle = \langle x, x \rangle \]
 Since \(\langle x, x \rangle \neq 0 \), \(\alpha^2 = 1 \implies \alpha \in \{-1, 1\} \).
 If \(\alpha = 1 \implies Tx = x \implies x \in V^T \cap (V^T)^\perp \implies x = 0 \) which is a contradiction.
 So \(\alpha = -1 \).

2. \(\langle z - \frac{\langle x, z \rangle}{\langle x, x \rangle} \cdot x, x \rangle = \langle z, x \rangle - \frac{\langle x, z \rangle}{\langle x, x \rangle} \cdot \langle x, x \rangle = 0 \).
 So \(z - \frac{\langle x, z \rangle}{\langle x, x \rangle} \cdot x \in x^\perp = V^T \) and \(T(z) - \frac{\langle x, z \rangle}{\langle x, x \rangle} x = z - \frac{\langle x, z \rangle}{\langle x, x \rangle} x \). Hence
 \[T(z) = T(z - \frac{\langle x, z \rangle}{\langle x, x \rangle} x) + \frac{\langle x, z \rangle}{\langle x, x \rangle} x = T(z) - \frac{\langle x, z \rangle}{\langle x, x \rangle} x + \frac{\langle x, z \rangle}{\langle x, x \rangle} x \]
 \[= z - \frac{\langle x, z \rangle}{\langle x, x \rangle} x - \frac{\langle x, z \rangle}{\langle x, x \rangle} x = z - 2 \frac{\langle x, z \rangle}{\langle x, x \rangle} x \]
For each \(x \in V, \ x \neq 0 \) define \(S_x(z) = z - 2\frac{\langle x,z \rangle}{\langle x,x \rangle}x \).

Lemma 1.1 implies that

1. any reflection \(T \) is equal to \(S_x \) for \(x \) determined up to a scalar. Any such \(x \in V \) is called a root of \(T \).

2. \(\forall x \in V, \ x \neq 0 : \ S_x \) is a reflection.

3. any reflection \(T \) satisfies \(T^2 = I \).

Definition. A finite reflection group is a pair \((G,V)\) where \(V \) is Euclidean space, \(G \) is a finite subgroup of \(O(V) \) and \(G = \langle \{S_x : S_x \in G\} \rangle \), generated by all reflections in \(G \).

Generation means: if \(G \supseteq X \), then \(X \) generates \(G \) if \(G = \langle X \rangle \) where \(X \) is defined as one of the following equivalent definitions:

1. (semantic) \(\langle X \rangle = \bigcap_{G \supseteq H \supseteq X} H \)

2. (syntactic) \(\langle X \rangle = \{1\} \cup \{a_{i1}^{\pm 1}a_{i2}^{\pm 1} \cdots a_{in}^{\pm 1} : a_i \in X\} \)

Equivalence:
\((G_1,V_1) \sim (G_2,V_2)\) if there is an isometry \(\varphi : V_1 \rightarrow V_2 \) s.t. \(\varphi G_1 \varphi^{-1} = G_2 \) and \(\{\varphi \circ T \varphi^{-1} : T \in G_1\} \).

Problem: Classify all finite reflection groups \((G,V)\) up to \(\sim \).

Example: of finite reflection groups

1. \[
\begin{array}{c}
 x \\
 \downarrow \alpha \\
 y
\end{array}
\]

We want to know \(\langle S_x, S_y \rangle \)
\[
det(S_x, S_y) = 1 \implies S_xS_y \in SO_2(\mathbb{R}) \implies S_xS_y = \text{Rot}_\beta.
\]
Since \(S_x(S_y(y)) = S_x(-y) \implies S_xS_y = 2\alpha \).

- \(\alpha = \frac{\pi}{2} \notin \mathbb{Q} \implies |S_xS_y| = \infty \implies \langle S_x, S_y \rangle \) is not finite
- \(\alpha = \frac{m}{n} \in \mathbb{Q} \) (for \(m,n \) rel. prime) \implies \(|S_xS_y| = |\text{Rot} \frac{2\pi m}{n}| = n \implies \langle S_x, S_y \rangle = D_{2n} \)

Dihedral
\[
I_2(n) = (D_{2n}, \mathbb{R}^2), \ |I_2(n)| = 2n
\]

2. \(S_n \)-symmetric group acting on \(\{1, \ldots, n\} \) extend to action of \(S_n \) on \(\mathbb{R}^n \).

If \(e_i \in \) basis of \(\mathbb{R}^n \), if \(\sigma \in S_n \), then \(T_\sigma : e_i \rightarrow e_{\sigma(i)}, \ T_\sigma \in O_n(\mathbb{R}) \)
4. In Example 3, let $F_0 = \{ \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \}$ has the property that for all $\sigma: T_\sigma(x) = x \implies x \in (\mathbb{R}^n)^S_n$,

$$x^\perp = \{ \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} : \sum \alpha_i = 0 \}$$

$A_{n-1} = (S_n, x^\perp)$

Reflection since $S_n = \langle (i, j) \rangle$ and $T_{(i, j)} = S_{e_i-e_j}$ because $T_{i,j}(e_i-e_j) = -(e_i-e_j)$ and

$$y = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in (e_i-e_j)^\perp \iff \alpha_i = \alpha_j \iff T_{(i, j)}(y) = y$$

In particular, $|A_n| = (m+1)!$ and $A_2 \sim I_2(3)$

3. $F = \mathbb{Z}/2\mathbb{Z} = \{0, 1\}$ - field of two elements. Consider action of S_n on $F^n, \varepsilon_1, \ldots, \varepsilon_n$ basis of F^n.

$$\forall \sigma \in S_n : t_\sigma(\varepsilon_i) = \varepsilon_{\sigma(i)}$$

Consider semidirect product $S_n \ltimes F^n$. As a set: $S_n \ltimes F^n = S_n \times F^n$, the product is

$$(\sigma, a) \cdot (\tau, b) = (\sigma \tau, t_{-1}(a) + b)$$

$S_n \ltimes F^n$ acts on \mathbb{R}^n:

$$T_{(\sigma, a)} : \varepsilon_i \mapsto (-1)^{a_i} \cdot e_{\sigma i}$$

Let us check that this is the action of $S_n \ltimes F^n$:

$$T_{(1, 0)}(T_{(\tau, 0)}(\varepsilon_i)) = T_{(1, 0)}(e_{\tau(i)}) = (-1)^{a_{\tau(i)}} e_{\tau(i)}$$

$$= (-1)^{[t_{-1}(a)]} e_{\tau(i)}$$

$$= T_{(\tau, t_{-1}(a))}(e_i)$$

$$B_n = (S_n \ltimes F^n, \mathbb{R}^n)$$

It is reflection since $S_n \ltimes F^n = \langle ((i, j), 0), (1, \varepsilon_i) \rangle$ and $T_{((i, j), 0)} = S_{e_i-e_j}$, $T_{(1, \varepsilon_i)} = S_{e_i}$.

$|B_n| = n! 2^n$, $B_1 \sim A_1$, $B_2 \sim I_2(4)$

4. In Example 3, let $F_0^n = \{ \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in F^n : \sum \alpha_i = 0 \}$ codim-1 subspace in F^n or index 2 subgroup.

$\sigma \in S_n, \ a \in F_0^n \implies t_\sigma(a) \in F_0^n$, so S_n acts on F_0^n and

$$D_n = (S_n \ltimes F_0^n, \mathbb{R}^n)$$

It is a reflection since $S_n \ltimes F_0^n = \langle ((i, j), 0), (1, \varepsilon_i + \varepsilon_j) \rangle$,

$$T_{((i, j), 0)} = S_{e_i-e_j}, \ T_{(1, \varepsilon_i+\varepsilon_j)} = S_{e_i+e_j}.$$

$$|D_n| = n! \cdot 2^{n-1}, \ D_1 \text{ is trivial } (\{1\}, \mathbb{R}), \ D_2 \sim I_2(2), \ D_3 \sim A_3$$
2 Root systems

Let \((G, V)\) be a finite reflection group. The root system of \((G, V)\) is

\[
\Phi_{(G,V)} := \{ x \in V : \| x \| = 1, \ S_x \in G \}
\]

\(\Phi\) has the following properties:

1. \(x \in \Phi \Rightarrow \mathbb{R}x \cap \Phi = \{ x, -x \}\)
2. \(|\Phi| = 2 \cdot (\text{number of reflections in } G)\)
3. \(T \in G, \ x \in \Phi \Rightarrow T(x) \in \Phi\)

Property 3 follows from

Lemma 2.1. \(T \in O(V), \ x \in V \setminus \{0\} \Rightarrow S_{T(x)} = TS_xT^{-1} \).

Proof. \(\text{RHS: } T(x) \mapsto TS_xT^{-1}Tx = TS_xx = T(-x) = -T(x)\)

\[
\text{RHS} : T(x) \perp y \mapsto TS_x(T^{-1}y) = T(T^{-1}y - 2\frac{\langle x, T^{-1}y \rangle}{\langle x, x \rangle} \cdot x)
\]
\[
= T(T^{-1}y - 2\frac{\langle Tx, y \rangle}{\langle x, x \rangle}x)
\]
\[
= T(T^{-1}y)
\]
\[
= y
\]

Hence \(\text{RHS} = S_{T(x)}. \) \(\square\)

Example: \(I_2(3) \sim A_2\) -dihedral group of order 6, symmetry of regular triangle.

6 roots sitting at the vertices of a regular hexagon.

Definition. A root system is a finite subset \(\Phi \subset V\) s.t.

1. \(0 \notin \Phi\)
2. \(x \in \Phi \Rightarrow \mathbb{R}x \cap \Phi = \{ x, -x \}\)
3. \(x, y \in \Phi \Rightarrow S_x(y) \in \Phi\)
Example:
1. $\Phi_{(G,V)}$ where (G,V) is a finite reflection group
2. $\emptyset = \Phi_{(\{1\},V)}$
3. Φ is a root system, not $\Phi_{(G,V)}$ because there are vectors of 2 different length. Chopping long vectors by $\sqrt{2}$ gives Φ_{B_2}.

Let $\Phi \subset V$ be a root system. Definition. A simple subsystem is $\Pi \subset \Phi$ s.t.
1. Π is linearly independent
2. $\forall x \in \Phi : x = \sum_{y \in \Pi} \alpha_y \cdot y$ where either all $\alpha_y \geq 0$ or all $\alpha_y \leq 0$

Example: In $\alpha \beta \{\alpha, \beta\}$ is a simple system but γ is not simple since $\alpha - \beta \in \Phi$.

Lemma 2.2. $\Pi \subset \Phi$ simple system in a root system. Then $\forall x, y \in \Pi, x \neq y \implies \langle x, y \rangle \leq 0$ (angles in a simple system are obtuse)

Proof. Suppose $x \neq y$, $\langle x, y \rangle > 0$.
$\Phi \ni S_x(y) = y - 2\frac{\langle x, y \rangle}{\langle x, x \rangle} x = y + \alpha x$, $\alpha < 0$. Since Π is lin. independent and $x \neq y$, $S_x(y) = y + \alpha x$ is the only way to write $S_x(y)$ as a linear combination of elements of Π and both positive and negative coefficients are present. This is a contradiction. □

Definition. A total order on \mathbb{R}-vector space V is a linear order on V s.t. (\geq-order, $x > y$ if $x \geq y$ and $x \neq y$)
1. $x \geq y \implies x + z \geq y + z$
2. $x \geq y$, $\alpha > 0 \implies \alpha x \geq \alpha y$
3. $x \geq y$, $\alpha < 0 \implies \alpha x \leq \alpha y$

Example: Phonebook-order on \mathbb{R}^n:

$$
\begin{pmatrix}
\alpha_1 \\
\vdots \\
\alpha_n
\end{pmatrix}
>
\begin{pmatrix}
\beta_1 \\
\vdots \\
\beta_n
\end{pmatrix}
\iff \exists k \in \{1, \ldots, n\} \text{ s.t. } \alpha_i = \beta_i \forall i < k \text{ and } \alpha_k > \beta_k
$$

Given an ordered basis e_1, \ldots, e_n of V we get phonebook order on V by writing $\sum \alpha_i e_i = \begin{pmatrix}
\alpha_1 \\
\vdots \\
\alpha_n
\end{pmatrix}$. If \geq is a total order on V then

$$x \in V \setminus \{0\} \implies \text{ either } x > 0 \text{ or } x < 0$$

and $V = V_+ \cup \{0\} \cup V_-$. where
• $V_+ = \{ x \in V : x > 0 \}$
• $V_- = \{ x \in V : x < 0 \}$

Definition. A positive system in a root system Φ is a subset $\Theta \subset \Phi$ s.t. \exists total order on V s.t. $\Theta = \Phi \cap V_+$.

Example:

1. **Box** $\alpha \beta$. Let \geq be the total order associated to the ordered basis α, β. Then

$$2\alpha + \beta > \alpha + \beta > \alpha > \beta > 0 > -\beta > -\alpha - \beta > -2\alpha - \beta$$

So $\{\alpha, \beta, \alpha + \beta, 2\alpha + \beta\}$ is a positive system.

2. $I_2(n)$-symmetry of n-gon, n reflections, so $2n$ roots, at vertices of regular $2n$-gon.

 (α, β) is simple \iff $\Phi \subset$ the cone \iff $\overline{\alpha, \beta} = \frac{(n-1)}{n} \pi$

 - Every root lies in 2 simple systems
 - number of simple systems $= n$
 - positive systems $= \{\text{vectors between some } \alpha \text{ and } \beta \text{ where } \overline{\alpha, \beta} = \frac{(n-1)}{n} \pi\}$

3. A_n:
 $$\chi_{T_{(a_1, \ldots, a_k)}}(z) = (z^k - 1)(z - 1)^m$$
 (minimal polynomial of $T_{(a_1, \ldots, a_k)}$ is $(z^k - 1)$).

 T_σ reflection \iff $\chi_{T_\sigma} = (1 + z)(1 - z)^m$ \iff $\sigma = (i, j)$

 Reflections are $T_{(i,j)}$, $\exists \frac{n(n-1)}{n}$ of them and $\Phi = \{e_i - e_j : i \neq j \in \{1, \ldots, n+1\}\}$.

 A typical simple system is

 $$e_1 - e_2, e_2 - e_3, \ldots, e_{n-1} - e_n$$

 For $i < j$ we have: $e_i - e_j = (e_i - e_{i+1}) + (e_{i+1} - e_{i+2}) + \ldots + (e_{j-1} - e_j)$.

Notation: Φ - root system, $\Phi_+ \subset \Phi$ - positive system.

Definition. $\Omega \subset \Phi_+$ is a quasisimple system if it satisfies:

1. $\forall x \in \Phi_+ \exists \alpha_t \geq 0$ s.t. $x = \sum_{t \in \Omega} \alpha_t t$

2. No proper subset of Ω satisfies (1).

Hint: simplicity \iff quasisimplicity

Lemma 2.3. Let $\Omega \subset \Phi_+$ be a quasisimple system. Then $\forall x, y \in \Omega$, $x \neq y$ \implies $(x, y) \leq 0$.

Proof. Suppose $x \neq y \in \Omega$ and $(x, y) > 0$. Then:

$$\Phi \ni S_\lambda(y) = y - 2\frac{(x,y)}{(x,x)}x = y - \lambda x, \ \lambda > 0.$$ Consider two cases:
Case 1 $S_x(y) \in \Phi_+$. By (1): $y - \lambda x = \sum_{t \in \Omega} \lambda_t t$, $\lambda_t \geq 0$. What is λ_y?

If $\lambda_y < 1$ then $(1 - \lambda_y)y = \lambda x + \sum_{t \neq y} \lambda_t t$. So y is a positive linear combination of elements of $\Omega \setminus \{y\}$. Hence $\Omega \setminus \{y\}$ satisfies (1), contradiction to (2).

Hence $\lambda_y \geq 1$, then $0 = \lambda x + (\lambda_y - 1)y + \sum_{t \neq y} \lambda_t t$, coefficients in the RHS ≥ 0. Hence RHS ≥ 0. Since RHS $= 0 \implies \lambda = 0$ which is a contradiction.

Case 2 $S_x(y) \in \Phi_- \implies y - \lambda x = \sum_{t \in \Omega} (-\mu_t) t$, $\mu_t \geq 0$.

$\implies \lambda x - y = \sum_{t \in \Omega} \mu_t t$. Similarly to case 1:

- $\mu_x < \lambda \implies (\lambda - \mu_x)x = y + \sum_{t \neq x} \mu_t t$ contradicts (2)
- $\mu_x \geq \lambda \implies 0 = y + (\mu_x - \lambda)x + \sum_{t \neq x} \mu_t t$. RHS has a positive coefficient, hence > 0 which is a contradiction.

\square

Theorem 2.4. 1. Every positive system contains a unique simple system.

2. Every simple system is contained in an unique positive system.
Hence there is a natural bijection between

$$\{\Pi \subset \Phi : \Pi \text{ is simple}\} \text{ and } \{\Phi_+ \subset \Phi : \Phi \text{ is positive}\}$$

Proof.

1. Let $\Phi_+ \subset \Phi$ be a positive system. Consider all subsets of Φ_+ that satisfy condition (1) of the definition of a quasisimple system. A minimal subset Ω among them must satisfy (2), so Ω is a quasisimple system in Φ_+. To prove that Ω is a simple system, it suffices to prove that Ω is linearly independent.

Suppose $\sum_{t \in \Omega} \alpha_t t = 0$. Sorting positive and negative coefficients to two different sides,

$$v = \sum_t \beta_t t = \sum_t \gamma_t t, \quad \beta_t, \gamma_t \geq 0$$

Now we consider

$$\langle v, v \rangle = \left(\sum_t \beta_t t, \sum_t \gamma_t t \right) = \sum_{s,t} \beta_s \gamma_t \langle s, t \rangle \leq 0$$

Hence $v = 0 \implies \beta_t = 0 = \gamma_t \implies \alpha_t = 0$. Hence Ω is linearly independent and simple.

Let $\Pi, \Pi' \subset \Phi$ be two distinct simple systems. Wlog $\exists x \in \Pi' \setminus \Pi$.

Since $x \in \Phi_+$, $x = \sum_{y \in \Pi} \alpha_y y$, $\alpha_y \geq 0$. We know

$$\Pi \ni y = \sum_{z \in \Pi'} \beta_y^z z, \quad \beta_y^z \geq 0$$
\[x = \sum_{z \in \Pi'} \left(\sum_{y \in \Pi} \alpha_y \beta_z y \right) z \]

\[\implies \exists y_0 \in \Pi \setminus \Pi' : \alpha_{y_0} \neq 0 \implies \exists \text{ at least two } z_1, z_2 \text{ s.t. } \beta_{y_0}^{z_1} \neq 0, \beta_{y_0}^{z_2} \neq 0 \text{ which is a contradiction with the linearity independece of } \Pi'. \]

2. Let \(\Pi \subset \Phi \) be a simple system. \(\Pi \) is linearly independent \(\implies \) we can extend \(\Pi \) to a basis \(B \) of \(V \). Choose an order on \(B \) and consider the phonebook total order on \(V \). Clearly, \(\Pi \subset V_+ \implies \Pi \subset \Phi_+ = V_+ \cap \Phi \). Uniqueness follows from the definition of a simple system: Every \(x \in \Phi \) is a nonnegative or nonpositive linear combination of elements of \(\Pi \implies \) nonnegative linear combinations in \(V_+ \), nonpositive linear combinations in \(V_- \). Hence \(\Phi_+ = \{ \sum_{t \in \Pi} \alpha_t t : \alpha_t \geq 0 \} \).

\[\square \]

Proposition 2.5. Let \(\Phi \supset \Phi_+ \supset \Pi \) be a root system, positive system, simple system. Then \(\forall x \in \Pi, \forall y \in \Phi_+, x \neq y \):

\[S_x(y) \in \Phi_+ \]

Note: \(x \neq y \) is essential since \(S_x(x) = -x \in \Phi_- \).

Proof. Let \(y = \sum_{t \in \Pi} \alpha_t t, \alpha_t \geq 0. y \neq x \implies \exists t_0 \in \Pi \text{ s.t. } t_0 \neq x, \alpha_{t_0} > 0. \)

Hence \(S_x(y) = \sum_{t \in \Pi} \alpha_t t - \lambda x \) with \(\alpha_{t_0} > 0. \) Hence \(S_x(y) \in \Phi_+ \).

\[\square \]

Example: Box: simple:

\[\text{simple: } \]

\(\forall g \in G, \) let \(L(g) = \{ x \in \Phi_+ : g(x) \in \Phi_- \} = \Phi_+ \cap g^{-1}(\Phi_-). \) We know that \(L(1) = \emptyset, L(S_x) = \sum_{x \in \Pi} \{ x \}. \)

Define function \(l : G \longrightarrow \mathbb{Z}_{\geq 0} \) called length by \(l(g) = |L(g)|. \) In particular \(l(1) = 0, l(S_x) = 1. \)

Proposition 2.6. The following statements about \(l() \) hold:

1. \(l(g) = l(g^{-1}) \)

2. \(l(S_x g) = \begin{cases}
 l(g) + 1 & \text{if } g^{-1}(x) \in \Phi_+ \\
 l(g) - 1 & \text{if } g^{-1}(x) \in \Phi_-
\end{cases} \)

3. \(l(g S_x) = \begin{cases}
 l(g) + 1 & \text{if } g(x) \in \Phi_+ \\
 l(g) - 1 & \text{if } g(x) \in \Phi_-
\end{cases} \)

Proof.

1. \(x \mapsto -g(x) \) is a bijection between \(L(g) \) and \(L(g^{-1}) \)

\[x \in \Phi_+ \iff -x = g^{-1}(-g(x)) \in \Phi_- \]

\[g(x) \in \Phi_- \iff -g(x) \in \Phi_+ \]

10
2. By 2.5, $\pm x$ is the only root that changes the sign under S_x.

$$g^{-1}(x) \xrightarrow{g} x \xrightarrow{S_x} -x$$

if $g^{-1}(x) \in \Phi_+$ \implies $g^{-1}(x) \notin L(g)$ but $g^{-1}(x) \in L(S_xg)$. So $L(S_xg) = L(g) \cup \{g^{-1}(x)\}$.

if $g^{-1}(x) \in \Phi_-$ \implies $-g^{-1}(x) \in L(g)$ but not in $L(S_xg)$ and $L(S_xg) = L(g) \setminus \{-g^{-1}(x)\}$.

G acts on $V, \Phi, \{\Pi \subset \Phi : \Pi$ is simple $\}$.

Theorem 2.7. Let $\Pi, \Pi' \subset \Phi$ be two simple systems. Then $\exists \ g \in G$ s.t.

$$\Pi' = g(\Pi) = \{gx : \ x \in \Pi\}$$

Note: such g is unique but we need some more tools to prove it.

Proof. Let Φ_+, Φ'_+ be the corresponding positive systems, Φ_-, Φ'_- the corresponding negative systems. Proceed by induction on $|\Phi_+ \cap \Phi'_-|$ (distance between Π and Π').

If $|\Phi_+ \cap \Phi'_-| = 0 \implies \Phi_+ = \Phi'_+ \implies \Pi = \Pi'$.

$|\Phi_+ \cap \Phi'_-| = k$ suppose proved.

$|\Phi_+ \cap \Phi'_-| = k + 1$. Since $k + 1 \geq 1 \implies \Pi \neq \Pi' \implies \Pi \not\subset \Phi'_+ \implies \exists \ x \in \Pi \cap \Phi'_-$. Consider $\tilde{\Pi} = S_x(\Pi)$ corresponding positive system is

$$\tilde{\Phi}_+ = (\Phi_+ \setminus \{x\}) \cup \{-x\}$$

Hence $\tilde{\Phi}_+ \cap \Phi'_+ = (\Phi_+ \cap \Phi'_+) \setminus \{x\}$. In particular $|\tilde{\Phi}_+ \cap \Phi'_+| = k$ and by induction assumption there is a g s.t. $\Pi' = g(\tilde{\Pi})$, hence

$$\Pi' = g(S_x(\Pi)) = gS_x(\Pi)$$

Define a height function $h : \Phi \to \mathbb{R}$ by

$$h \left(\sum_{t \in \Pi} \alpha_t t \right) = \sum_{t \in \Pi} \alpha_t$$

Theorem 2.8. $G, \Phi \supset \Pi$ as before.

1. $\forall \ x \in \Phi \ \exists y \in \Pi \ \exists g \in G$ s.t. $x = gy$.

2. $G = \langle S_x \rangle_{x \in \Pi}$

Proof. Let $H = \langle S_x \rangle_{x \in \Pi} \leq G$. Pick any $t \in \Phi$ let

$$\Sigma_t = Ht \cap \Phi_+$$
By 2.4:

Finally we have shown that all reflections \(S_x \) are in \(H \), so \(H = G \).

(1) follows because if \(x \) is positive this proof shows that \(x \in G \Pi \), if \(x \) is negative we use \(t = -x \) to show that \(S_x \in H, t = -x \in G \Pi \). Hence \(x = S_x(-x) \in G \Pi \).

Finally we have shown that all reflections \(S_x \) are in \(H \), so \(H = G \).

\(l : G \longrightarrow \mathbb{Z}_{\geq 0} \). Now since \(G = \langle S_x \rangle_{x \in \Pi} \), is \(l \) related to group theoretic length in these generators?

Theorem 2.9. YES

\[\forall g \in G : l(g) = \min \{ k : \exists x_1, \ldots, x_k \in \Pi : g = S_{x_1}S_{x_2} \cdots S_{x_k} \} \]

Proof. 2.6: \(l(S_x h) \leq l(h) + 1 \) \(\implies \) if \(g = S_{x_1} \cdots S_{x_k} \) then \(l(g) \leq k \). Hence \(l(g) \leq RHS \).

Note: the opposite direction is based on deletion principle.

Assume that \(g = S_{x_1} \cdots S_{x_k}, x_i \in \Pi \) but \(l(g) < k \). Hence \(\exists j \) s.t.

\[l(S_{x_1} \cdots S_{x_j}) = j \text{ but } l(S_{x_1} \cdots S_{x_{j+1}}) = j - 1 \]

(we pick the position where the length goes down for the first time)

\[\implies S_{x_1} \cdots S_{x_j}(x_{j+1}) \in \Phi_- \text{ and } x_{j+1} \in \Pi \subset \Phi_+. \] Find largest \(i \) s.t. \(i \leq j \) and

\[S_{x_i}(y) = S_{x_i} \cdots S_{x_j}(x_{j+1}) \in \Phi_-, \text{ } y = S_{x_{i+1}} \cdots S_{x_j}(x_{j+1}) \in \Phi_+ \]

\[\implies y = x_i S_{x_{i+1}} \cdots S_{x_j}(x_{j+1}) = T(x_{j+1}). \] Hence \(S_{x_i} = TS_{x_{j+1}}T^{-1} \). Then

\[g = S_{x_1} \cdots S_{x_i} \cdots S_{x_j} \cdots S_{x_k} = S_{x_1} \cdots S_{x_{i-1}}S_{x_i}TS_{x_{j+1}} \cdots S_{x_k} \]

\[= S_{x_1} \cdots S_{x_{i-1}}(TS_{x_{j+1}}T^{-1}TS_{x_{j+1}})S_{x_{j+2}} \cdots S_{x_k} = S_{x_1} \cdots S_{x_{i-1}}TS_{x_{j+2}} \cdots S_{x_k} \]

\[\square \]
Theorem 2.10. If \(\Pi, \Pi' \subset \Phi \) are two simple systems then \(\exists! g \in G \) s.t. \(\Pi' = g(\Pi) \).

Proof. Existence is Theorem 2.7. Suppose \(g, h \in G \) satisfy \(\Pi' = g(\Pi) = h(\Pi) \). Then
\[
\Pi = h^{-1}g\Pi \implies \Pi_+ = h^{-1}g(\Phi_+) \text{ hence } l(h^{-1}g) = 0 \implies h^{-1}g = 1.
\]

Corollary 2.11. Consider action of \(G \) and \(X = \{ \Pi \subset \Phi : \Pi \text{ is simple} \} \). For all \(\Pi \in X \), the orbit map
\[
g_{\Pi} : G \to X : g \mapsto g(\Pi)
\]

is a bijection.

Proof. See orbit-stabiliser Theorem. \(\square \)
3 Generators and Relations

- \langle X \rangle\text{-free group on a set } X
- \langle \emptyset \rangle = C_1
- \langle x \rangle \cong \mathbb{Z}\text{-infinite cyclic group}
- \langle X \rangle = \{ \text{all finite words (including } \emptyset \text{) in alphabet } x^+, x^- \text{ as } x \in X \text{ without subworts } x^+x^- \text{ or } x^-x^+ \}\}
- v \cdot w = \text{Reduction of concatenated word } vw
- \text{It is a Theorem that } \cdot \text{ is well-defined.}
- Universal property:

\[
\begin{array}{c}
\xymatrix{
X \ar[r]^f & G \\
\langle X \rangle \ar[u]^\exists \varphi
}
\end{array}
\]

\forall \text{ groups } G \forall \text{ functions } f : X \to G \exists! \text{ group homomorphism } \\
\varphi : \langle X \rangle \to G \text{ s.t. } \forall a \in X : \varphi(a) = f(a)

- \langle X \mid R \rangle : R \text{ is a set of relations i.e. either words in alphabet } x^\pm : x \in X \text{ or } u = v \text{ where } u, v \text{ are two words. Relation between words and equations:}

\[
\begin{align*}
u &\to u = 1, \ uv^{-1} \to uv^{-1} = 1 &\iff u = v
\end{align*}
\]

\text{E.g. dihedral group } I_2(n) = \left\langle a^{\text{rot}}, b^{\text{refl}} : b^2, a^n, bab^{-1} = a^{-1} \right\rangle.

\textbf{Definition. } \langle X \mid R \rangle = \langle X \rangle / \overline{R}. \text{ If the relations are words } u_1, u_2, \ldots \text{ then } \overline{R} = \bigcap_{\langle X \rangle \subseteq H, \text{ all } u_i \in H} H.

\text{Universal property of } \langle X \mid R \rangle:

\[
\begin{array}{c}
\xymatrix{
\langle X \mid R \rangle \ar[r]^\exists \varphi & G \\
X \ar[u]^q \ar[r]^f
}
\end{array}
\]

\forall \text{ functions } f : X \to G \text{ s.t. relations in } R \text{ hold in } G \text{ for elements } f(x), x \in X \text{ then } \exists! \text{ group homomorphism } \varphi : \langle X \mid R \rangle \to G \text{ s.t. } \forall x \in X : \varphi(x\overline{R}) = f(x).
Example: \(B(2, 5) = \langle x, y \mid w^5 \rangle \) where \(w \) is any word in the alphabet \(x^{\pm 1}, y^{\pm 1} \).

Universal property: \(\forall \) groups \(G \) s.t. \(\forall x \in G : \ x^5 = 1, \ \forall a, b \in G \ \exists! \ \varphi : B(2, 5) \rightarrow G \) s.t. \(\varphi(x) = a, \ \varphi(y) = b. \)

Known: \(B(2, 5) \) is either infinite or of order \(5^{34} \).
4 COXETER GROUP

A Coxeter graph is a non-oriented graph without loops or double edges s.t. each edge is marked by a symbol \(m \in \mathbb{Z}_{\geq 3} \cup \{\infty\} \).

Convention: Draw \(\circ \quad \circ \) instead of \(\circ \quad 3 \quad \circ \)
We will study only graphs with finitely many vertices.

Definition. A Coxeter matrix (on set \(X \)) is an \(X \times X \) matrix \((m_{ij})_{i,j \in X}\) s.t.
- \(m_{ij} \in \mathbb{Z}_{\geq 1} \cup \{\infty\} \)
- \(m_{ij} = m_{ji} \)
- \(m_{ij} = 1 \iff i = j \)

There is a 1:1 correspondence between Coxeter graphs and Coxeter matrices

\[
\text{Graph} \quad \leftrightarrow \quad \text{Matrix} \quad (c_{ij})
\]

\(X = \text{vertices of the graph} \)

\[
i \quad \xrightarrow{m_{ij}} \quad j \quad \mapsto \quad c_{ij} = m_{ij}
\]

\[
i \quad \xrightarrow{} \quad j \quad \mapsto \quad c_{ij} = 2
\]

Example:

\[
\begin{array}{ccc}
1 & \rightarrow \quad 2 & \rightarrow \\
\infty & \rightarrow \quad 77 & \rightarrow \\
3 & \rightarrow \quad 4
\end{array}
\mapsto
\begin{pmatrix}
1 & 3 & \infty & 2 \\
3 & 1 & 3 & 77 \\
\infty & 3 & 1 & 2 \\
2 & 77 & 1 & 1
\end{pmatrix}
\]

Definition 4.1. The Coxeter group of a Coxeter graph (or corresponding \(X \times X\)-matrix \((m_{ij})\)) is

\[W = W(\text{graph}) = (X \mid (ab)^{m_{ab}} = 1)\]

Remark 4.2.
1. \(m_{ab} = \infty \implies \text{no relation} \)
2. \(a = b, m_{aa} = 1 \implies (aa)^1 = 1 \implies a^2 = 1 \)
3. \(\text{no edge} \iff m_{ab} = 2 \implies (ab)^2 = 1 \iff ab = b^{-1}a^{-1} = ba \) Therefore:
 \(\text{no edge} \iff a, b \text{ commute} \)

Lemma 4.3. Let \(G \) be a group generated by \(a_1, \ldots, a_n \), all of order 2. Then \(G \) is a quotient of \(W(m_{ij} = [a_i, a_j]) \).
Proof. \(f: \{1, \ldots, n\} \rightarrow G \) where \(f(i) = a_i \) is a function. Then \(f(i)^2 = a_i^2 = 1 \) and \((f(i)f(j))^{m_{ij}} = (a_ia_j)^{|a_i a_j|} = 1 \). So \(f(i) \) satisfy relations of the Coxeter group and \(\exists! \) group homomorphism \(\varphi: W(m_{ij}) \rightarrow G \) s.t. \(\varphi(i) = a_i \) (by the universal property). \(\text{Im } \varphi \ni a_i \Rightarrow \varphi \) is surjective.

Big monster \(M \) is the largest sporadic simple group,
\[
M \sim 10^{53}, \quad M \cong \frac{W}{H}
\]

Theorem 4.4. \(G \) is a finite reflection group \(\Pi \subset \Phi \)-simple system in the root system. Then the natural surjection for \(\Pi \times \Pi \)-matrix \(m_{x,y} = |S_x S_y| \), \(W((m_{x,y})) \rightarrow G: x \mapsto S_x \) is an isomorphism.

Example: \(O_2(\mathbb{R}) \geq I_2(\infty) = \left\langle \left\{ \begin{array}{c}
S_\alpha, \\
\text{order } 2 \text{ in } \Phi
\end{array} \right\}, \alpha \not\in \mathbb{Q}\right\rangle \cong C_2 \times C_\infty \)
\[W\left(\begin{array}{c}
\infty \\
\end{array} \right) \rightarrow \langle S_a, S_b \rangle \text{ where } \frac{ab}{\pi} \not\in \mathbb{Q}, \qquad \cong \langle S_a, \text{Rot}_\alpha \rangle \]

action of \(W\left(\begin{array}{c}
\infty \\
\end{array} \right) \) is \(I_2(\infty) \) or \(\mathbb{R}^2 \) is a mess.

But \(I_2(\infty) \) has action on \(\mathbb{R}^1 \) with geometric meaning.
\[
\begin{array}{ccc}
\text{ } & S_0 & S_1 \\
-1 & 0 & 1
\end{array}
\]

\(S_0(x) = x, \ S_1(x) = -2-x, \ S_1S_0(x) = 2 + x \rightarrow \text{translation by } 2. \) So \(\langle S_1, S_0 \rangle \) is \(W\left(\begin{array}{c}
\infty \\
\end{array} \right) \) inside the group of motions on \(\mathbb{R} \). \(C_\infty \) is a subgroup of translations \((x \mapsto x + 2n) \). As \(C_2 \leq W\left(\begin{array}{c}
\infty \\
\end{array} \right) \) you can choose any \(\{1, S_n\} \) where \(S_n(x) = 2n - x \). The fundamental domain is \([0,1], \ I_2(\infty) \) tesselates \(\mathbb{R}^1 \) by interval \([0,1]\).

Example: \(W\left(\begin{array}{c}
\end{array} \right) \cong \langle \text{siderelections across the sides of a triangle with angles } \frac{\pi}{\alpha}, \frac{\pi}{\beta}, \frac{\pi}{\gamma} \rangle \).

where \(\alpha = \frac{a}{\pi}, \ \beta = \frac{b}{\pi}, \ \gamma = \frac{c}{\pi} \).
\[
\frac{1}{a} + \frac{1}{b} + \frac{1}{c} > 1 \text{ spherical} \\
= 1 \text{ euclidean} \\
< 1 \text{ hyperbolic}
\]

17
→ tesselation of the space.

In particular, \(W\left(\begin{array}{c} a \\ b \\ c \end{array}\right) \) \(\leftrightarrow\) triangles in tesselation

Lemma 4.5. (Deletion Condition)

\(G \) - finite reflection group, \(\Phi \) - root system, \(\Phi \supset \Pi \) - simple system.

If \(x = S_{a_1} \cdot S_{a_n}, \ a_i \in \Pi \) and \(l(x) < n \) then \(\exists i < j \) s.t.

\[
x = S_{a_1} \cdots \widehat{S}_{a_i} \cdot S_{a_j} \cdot S_{a_n}
\]

Proof. already proved.

Proof. of Theorem 4.3

\[
\langle \Pi \rangle \xrightarrow{\varphi} W(m_{ab}) \xrightarrow{\psi} G
\]

\[
a \mapsto \varphi(a) \mapsto S_a
\]

even we will work in here

It suffices to show that \(\psi \) is injective.

Let \(w = a_1 a_2 \cdots a_n \in \text{Ker } \psi \) \((\alpha_1^2 = 1)\). Then \(\psi(w) = S_{a_1} \cdot S_{a_n} = 1 \). Since \(\det S_{a_i} = -1 \), \((-1)^n = 1 \rightarrow n \) is even, write \(n = 2k \).

Proceed by induction on \(k = \frac{n}{2} \)

- \(k = 1 \quad n = 2 \quad w = a_1 a_2 \)

\[
1 = \psi(w) = S_{a_1} S_{a_2} \rightarrow S_{a_1} = S_{a_2} \rightarrow a_1 = \pm a_2 \quad \implies \quad a_1 = a_2 \rightarrow w = \alpha_1^2 = 1
\]

- \(k \leq m - 1 \): done (induction assumption)

- \(k = m \Rightarrow n = 2m \), \(w = \alpha_1 \cdots \alpha_{2m} \), \(1 = \psi(w) = S_{a_1} \cdots S_{a_{2m}} \). Consider

\[
w_1 = \alpha_1^{-1} w \alpha_1 = \alpha_1 w \alpha_1 = \alpha_2 a_3 \cdots a_{2m} \alpha_1
\]

Repeating conjugation w.r.t. the first symbol, we can consider two cases:

Case 1 \(w = \bar{a} \bar{b} \bar{a} \bar{b} \cdots \bar{a} \bar{b} \) for some \(a, b \in \Pi \), \(w = (\alpha \beta)^m \).

\[
1 = \psi(w) = (S_{a} S_{b})^m \implies |S_{a} S_{b}| = m_{ab} m \implies w = (\alpha \beta)^m = 1 \in W
\]

Case 2 there is a \(v \in W \) s.t. \(w_2 = v^{-1} w v = b_1 b_2 b_3 \cdots b_{2m} \) with all \(b_i \in \Pi \) and \(b_1 \neq b_3 \).

Let us play the trick: Observe that

\[
x = S_{b_1} \cdots S_{b_{m+1}} = S_{b_2 m} \cdots S_{b_{m+2}} = y
\]

Indeed \(y^{-1} = S_{b_{m+2}} \cdots S_{b_{2m}} \) and \(x y^{-1} = S_{b_1} \cdots S_{b_{2m}} = \psi(w) = 1 \). Hence \(x = y \).

By deletion principle (note that \(l(x) \leq m - 1 \)) there are \(1 \leq i < l \leq m + 1 \) s.t.

\[
x = S_{b_1} \cdots \widehat{S}_{b_l} \cdots S_{b_j} \cdots S_{b_{m+1}}
\]

Consider two cases:
Case 2.1 \((i,j) \neq (1, m + 1) \)

\[
S_{b_1} \cdots S_{b_j} = S_{b_{j+1}} \cdots S_{b_{j-1}} \\
S_{b_1} \cdots S_{b_j} S_{b_{j-1}} \cdots S_{b_{j+1}} = 1
\]

Hence \(w_3 = \overline{b_1} \cdots \overline{b_j} \overline{b_{j-1}} \cdots \overline{b_{i+1}} \in \ker \psi \). It has < 2m terms hence by induction assumption \(w_3 = 1 \). Hence

\[
\overline{b_1} \cdots \overline{b_j} = \overline{b_{i+1}} \cdots \overline{b_{j-1}}
\]

So \(w_2 = \overline{b_1} \cdots \hat{\overline{b_i}} \cdots \hat{\overline{b_j}} \cdots \overline{b_{2m}} \). By induction assumption \(w_2 = 1 \) and therefore

\[
w = vv^{-1} = vv^{-1} = 1
\]

Case 2.2 \((i,j) = (1, m + 1) \)

Then \(w_3 = \overline{b_1} \overline{b_2} \cdots \overline{b_{m+1}} \overline{b_m} \cdots \overline{b_2} \in \text{Ker } \psi \) has length \(2m \) and we seem to be stuck. (Hint: eventual contradiction is with \(b_1 \neq b_3 \).

Let \(w_4 = \overline{b_1}^{-1} w_2 \overline{b_1} = \overline{b_2} \cdots \overline{b_4} \overline{b_1} \in \ker \psi \). Let us play the trick on

\[
x_1 = S_{b_2} \cdots S_{b_{m+1}} S_{b_{m+2}} = S_{b_1} \cdots S_{b_{m+3}}
\]

Deletion principle \(\rightarrow x_1 = S_{b_2} \cdots \hat{S}_{b_{i'}} \cdots \hat{S}_{b_{j'}} \cdots S_{b_{m+3}} \). Get 2 cases:

Case 2.2.1 \((i', j') \neq (2, m + 2) \)

\[
S_{b_{i'}} \cdots S_{b_{j'}} = S_{b_{i'+1}} \cdots S_{b_{j'-1}} \\
S_{b_{i'}} \cdots S_{b_{j'}} S_{b_{j'-1}} \cdots S_{b_{i'+1}} = 1
\]

\(w_5 = \overline{b_{i'}} \cdots \overline{b_{j'}} \overline{b_{j'-1}} \cdots \overline{b_{i'+1}} \in \ker \psi \). By induction assumption \(w_5 = 1 \)

\[
\overline{b_{i'}} \cdots \overline{b_{j'}} = \overline{b_{i'+1}} \cdots \overline{b_{j'-1}}
\]

and \(w_2 = \overline{b_1} \cdots \hat{\overline{b_{i'}}} \cdots \hat{\overline{b_{j'}}} \cdots \overline{b_{2m}} \). By induction assumption \(w_2 = 1 \implies w = vv^{-1} = 1 \).

Case 2.2.2 \((i', j') = (2, m + 2) \)

\[
w_5 = \overline{b_2} \cdots \overline{b_{m+1} b_{m+2} b_{m+1}} \overline{b_m} \cdots \overline{b_3} \in \ker \psi
\]

but of length \(n \). Let \(w_6 = \overline{b_3} w_5 b_3^{-1} = \overline{b_3 b_2 b_3} \cdots \overline{b_{m+2} b_{m+1}} \cdots \overline{b_4} \in \ker \psi \)

and repeat the trick on \(\psi(w_6) = 1 \).

\[
x_2 = S_{b_3} S_{b_2} S_{b_3} \cdots S_{b_{m+1}} = S_{b_4} \cdots S_{b_{m+2}}
\]

can delete at \(i'', j'' \). Get 2 cases:

Case 2.2.2.1 \((i'', j'') \neq (1st \text{} incidence \ of \ 3, m + 1) \)

\[
w_7 = b_{i''} \cdots b_{j''} b_{j''-1} \cdots b_{i''+1} \in \ker \psi
\]

Induction assumption \(\implies w_7 = 1 \implies w_6 = 1 \implies w_5 = 1 \implies w_2 = 1 \implies w = 1 \).
Case 2.2.2.2 \((i'', j'') = (\text{first } 3, m + 1)\)

\[w_7 = b_3 b_2 b_3 \cdots b_{m+1} b_m \cdots b_2 \in \ker \psi \]

Remember \(w_3 = b_1 b_2 b_3 \cdot b_{m+1} b_m \cdots b_2\). Then

\[w_7 = \overline{b_3 b_1 w_3} \mapsto \overline{b_3 b_1} = w_7 w_3^{-1} \in \ker \psi \]

\[S_{b_3} S_{b_1} = 1 \implies S_{b_3} = S_{b_1} \implies b_3 = \pm b_1 \implies b_3 = b_1 \]

But this is a contradiction!
5 Geometric representation of $W(m_{ij})$

Recall some geometry of a vector space V with symmetric bilinear form $\langle \cdot, \cdot \rangle$. (the field is \mathbb{R}, dim V - any, $\langle \cdot, \cdot \rangle$ - any)

Still $\forall W \leq V$ we have

- $W^\perp = \{ x \in V : \forall a \in W : \langle a, w \rangle = 0 \}$
- $(W^\perp)^\perp \supset W$

Example: \mathbb{R}^2, $\langle \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} a \\ b \end{pmatrix} \rangle = xa - yb$

$W = \mathbb{R} : \begin{pmatrix} 1 \\ 1 \end{pmatrix} \implies W^\perp = W \implies W + W^\perp = W \neq \mathbb{R}^2$.

Vectors v with $\langle x, x \rangle = 0$ are called isotropic. If $\langle x, x \rangle \neq 0$ (x is not isotropic) then

$$V = \mathbb{R}x \oplus x^\perp$$

and

$$S_x : V \longrightarrow V, \ S_x(a) = a - 2\frac{\langle a, x \rangle}{\langle x, x \rangle}x$$

is well-defined and has usual properties

- $S_x(x) = -x$
- $S_x|_{x^\perp} = id$
- $S_x^2 = id$
- $S_x \in O(V, \langle \cdot, \cdot \rangle)$

Start with $X \times X$ Coxeter matrix (m_{ab}) or its Coxeter graph. Let

$$V(m_{ab}) = \{ \sum_{a \in X} \alpha_a e_a : \alpha_a \in \mathbb{R}, \text{finitely many } \alpha_a \neq 0 \}$$

$e_a, a \in X$ form a basis of $V(m_{ab})$. Symmetric bilinear form $\langle \cdot, \cdot \rangle : V(m_{ab}) \times V(m_{ab}) \longrightarrow \mathbb{R}$ is defined on the basis by

$$\langle e_a, e_b \rangle = -\cos \left(\frac{\pi}{m_{ab}} \right)$$

- $a = b \implies m_{ab} = 1 \implies \langle e_a, e_a \rangle = 1$
- $m_{ab} = 2 \implies \langle e_a, e_b \rangle = 0$
- $m_{ab} = \infty \implies \langle e_a, e_b \rangle = -\cos \left(\frac{\pi}{\infty} \right) = -\cos 0 = -1$
Lemma 5.1. $V(\frac{m}{\pi})$ is euclidean $\iff m \neq \infty$.

Proof. $(e_1, e_2) = -\cos \frac{\pi}{m}$. If $x = \alpha e_1 + \beta e_2$ then
\[
\langle x, x \rangle = \alpha^2 \langle e_1, e_1 \rangle + 2\alpha\beta \langle e_1, e_2 \rangle + \beta^2 \langle e_2, e_2 \rangle
= \alpha^2 + \beta^2 - 2\alpha\beta \cos \left(\frac{\pi}{m}\right)
= (\alpha + \beta)^2 - 2\alpha\beta(1 + \cos \left(\frac{\pi}{m}\right))
\geq 0
\]
and
\[
\langle x, x \rangle = 0 \iff \alpha = \beta = 0 OR m = \infty, \alpha = \beta
\]

\[\square\]

Lemma 5.2. $(V, \langle \cdot, \cdot \rangle) - \mathbb{R}$-vector space with symmetric bilinear form. Let $U \subset V$ be a finite dimensional subspace s.t. $U \cap U^\perp = 0$. Then
\[V = U \oplus U^\perp\]

Note: it breaks down if dim $U = \infty$.

Example: $(V, \langle \cdot, \cdot \rangle)$ Hilbert space with Hilbert base $e_1, \ldots, U = \text{span}(e_i) \subset V$ dense. Then $U^\perp = 0$, so $U \cap U^\perp = 0$ but $U \oplus U^\perp = U \neq V$.

Proof. Pick $v \in V$, basis e_1, \ldots, e_n of U.

It suffices to find $x_1, \ldots, x_n \in \mathbb{R}$ s.t.
\[
v - \sum x_i e_i \in U^\perp \iff \forall j: \langle v - \sum x_i e_i, e_j \rangle = 0 \iff \langle v, e_j \rangle - \sum_i x_i \langle e_i, e_j \rangle = 0
\]

The system of n equations $\sum_i x_i \langle e_i, e_j \rangle = \langle v, e_i \rangle$, $j = 1, \ldots, n$ has a solution. It holds true because $U \cap U^\perp = 0$ which implies that $\langle \cdot, \cdot \rangle|_U$ is non-degenerate which is equivalent to $\text{det} \langle e_i, e_j \rangle \neq 0$.

\[\square\]

Coxeter graph (matrix) $\Gamma = (m_{ab})_{a,b \in X} \rightarrow$ Coxeter group $W(\Gamma) = \langle X : (ab)^{m_{ab}} = 1 \rangle$

\rightarrow vector space with bilinear form
\[V(\Gamma) = \bigoplus_{a \in X} \mathbb{R}e_a, \langle e_a, e_b \rangle = -\cos \left(\frac{\pi}{m_{ab}}\right)\]

Operators
\[\rho_a = S_{e_a} : V(\Gamma) \rightarrow V(\Gamma) : x \mapsto x - 2 \langle e_a, x \rangle e_a\]

Since $\rho : a(e_a) = -e_a, \rho_a|_{e_b} = I, |\rho_a| = 2$.

Proposition 5.3.
\[|\rho_a\rho_b| = m_{ab}\]
Proof.

Case 1 \(m_{ab} \neq \infty \). \(5.1 \) Let \(U = \mathbb{R}e_a \oplus \mathbb{R}e_b \) be a Euclidean vector space w.r.t \(\langle , \rangle \). In particular \(U \cap U^\perp = 0 \) if and only if \(V(\Gamma) = U \oplus U^\perp \). Since \(U^\perp \subset e_a^\perp, \rho_a|_{U^\perp} = I \). Similarly, \(\rho_b|_{U^\perp} = I \) since \(\rho_b(U^\perp) \subset U^\perp \), \(\rho_a|_{U^\perp} \cdot \rho_b|_{U^\perp} = \rho_a|_{U^\perp} \cdot \rho_b|_{U^\perp} = I \cdot I = I \). On \(U \), we can do explicit calculation.

Hence \(\rho_a|_U \cdot \rho_b|_U = \text{Rot} by \ \frac{2\pi}{m_{ab}} \) and \(|\rho_a\rho_b|_U = |\rho_a\rho_b|_U = m_{ab} \).

Case 2 Exercise: show that in \(e_a, e_b \) basis

\[
\rho_a|_U \cdot \rho_b|_U = \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
\]

so \(|\rho_a\rho_b|_U = \infty \rightarrow |\rho_a\rho_b|_U = \infty \).

Hence we have a group homomorphism

\[
\rho : W(\Gamma) \rightarrow GL(V(\Gamma)) : (a \in X) \mapsto \rho_a
\]

\(\rho \) is called the geometric representation of \(W(\Gamma) \).

Suppose \(\Gamma = \Gamma_1 \cup \Gamma_2 \) (disjoint union of 2 graphs). On the level of Coxeter matrices

\[
X = X_1 \cup X_2, \ X_1 \cap X_2 = \emptyset
\]

and for all \(a \in X_1, \ b \in X_2 : m_{ab} = 2 \).

Proposition 5.4. \(W(\Gamma) \cong W(\Gamma_1) \times W(\Gamma_2) \)

Proof. Construct inverse group homomorphism \(\psi : W(\Gamma) \rightarrow W(\Gamma_1) \times W(\Gamma_2), \ \varphi : W(\Gamma_1) \times W(\Gamma_2) \rightarrow W(\Gamma) \).

If \(a \in X_1 \), let

\[
\psi(\bar{a}) = \begin{cases} (\pi, 1) & \text{if } a \in X_1 \\ (1, \bar{a}) & \text{if } a \in X_2 \end{cases}
\]

Since all relations of \(W(\Gamma) \) hold in \(W(\Gamma_1) \times W(\Gamma_2) \) such \(\psi \) uniquely extends to a group homomorphism.

If \(a \in X_i \subset X, \ \varphi_i(\bar{a}) = \bar{a} \) extends to a group homomorphism \(\varphi_i : W(\Gamma_i) \rightarrow W(\Gamma) \) (all relations of \(W(\Gamma_i) \) hold in \(W(\Gamma) \))

Notice that generators of the image of \(\varphi_1 \) commute with generators of \(Im \varphi_2 \). Hence subgroups \(Im \varphi_1, \ Im \varphi_2 \) commute. Hence \(\varphi(x, y) = \varphi_1(x)\varphi_2(y) \) is a well-defined group homomorphism.

Since \(\forall \ a \in W(\Gamma), \ \varphi(\psi(a)) = a, \ \varphi\psi = I_{W(\Gamma)} \). Similarly \(\psi\varphi = I_{W(\Gamma_1) \times W(\Gamma_2)} \).
\[\Gamma\text{ is connected if }\Gamma = \Gamma_1 \cup \Gamma_2 \implies \Gamma_1 = \emptyset \text{ or } \Gamma_2 = \emptyset.\]

Each \(\Gamma\) has connected components \(\Gamma_1, \Gamma_2, \ldots\) s.t.
\[\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \ldots\]

Corollary 5.5. *In this case* \(W(\Gamma) \cong W(\Gamma_1) \times W(\Gamma_2) \times \ldots\) and \(V(\Gamma) = V(\Gamma_1) \oplus V(\Gamma_2) \oplus \ldots\) with \(V(\Gamma_i) \perp V(\Gamma_j)\) for \(i \neq j\).

Proof. Exercise (use transfinite induction).

A representation of a group \(G\) is the pair \((V, \rho)\), where \(V\) is a vector space and \(\rho : G \to GL(V)\).

Example: Take a Reflection group \((G, V)\), then \((V, i : G \to GL(V))\) is a representation.

If \(\Gamma\) is a Coxeter graph, then \((V(\Gamma), \rho)\) is a representation of \(W(\Gamma)\).

A subrepresentation of \((V, \rho)\) is a subspace \(U \subset V\) s.t. \(\forall g \in G : \rho(g)(U) \subset U\). So \((U, \rho^{GL(U)})\) is a representation.

\(V\) is irreducible if \(V \neq 0\) and \(0, V\) are the only subrepresentations. \(V\) is called completely irreducible if for all subrepresentations \(U \subset V\) there exists a subrepresentation \(W \subset V\) s.t. \(V = U \oplus W\).

Convention: The Coxeter graph \(\emptyset\) is not connected.

Proposition 5.6. If \(\Gamma\) is connected, then any proper \(W(\Gamma)\)-subrepresentation of \(V(\Gamma)\) lies in \((V(\Gamma))^{\perp}\).

Exercise: \((V(\Gamma))^{\perp}\) is a subrepresentation of \(V(\Gamma)\).

Proof. Let \(U \subset V = V(\Gamma)\) be a subrepresentation. Then \(\forall a \in X (\Gamma = (m_{ab})_{a,b \in X}), \rho_a(U) \subset U\). Observe that \(e_a \notin U\). Otherwise: \(\forall b \in X, m_{ab} \neq 2\) holds:
\[U \ni \rho_b(e_a) = e_a + 2 \cos \frac{\pi}{m_{ab}} e_b \implies e_b \in U\]

Since \(\Gamma\) is connected, this would imply that \(e_b \in U\) for all \(b \in X\). So \(U = V\) and not a proper subrepresentation which is a contradiction.

By 5.7, \(V = \mathbb{R}e_a \oplus \mathbb{R}e_a^{\perp}\). Pick any \(z \in U\) and write \(z = \alpha e_a + z'\) where \(z' \in \mathbb{R}e_a^{\perp}\). Then
\[U \ni \rho_a(z) = z - 2 \langle e_a, z \rangle e_a = \alpha e_a + z' - 2 \alpha \langle e_a, e_a \rangle e_a = 2 \langle e_a, z' \rangle e_a = -\alpha e_a + z'\]

Hence \(z' = \frac{1}{2}(z + \rho_a(z)) \in U\) and \(2\alpha e_a \in U\) \(\implies \alpha = 0\). Hence \(z = z' \in \mathbb{R}e_a^{\perp}\) and therefore \(U \subset \mathbb{R}e_a^{\perp}\) and \(U \cap \bigcap \mathbb{R}e_a^{\perp} = V^{\perp}\).

Corollary 5.7. If \(\Gamma\) is connected and \(V(\Gamma)\) nonsingular (\(V(\Gamma)^{\perp} = 0\)), then \(V(\Gamma)\) is irreducible.

Theorem 5.8. *(Maschke)*

If \(G\) is a finite group and \(\mathbb{F}\) a field s.t. char \(\mathbb{F}\) \(\nmid |G|\) and \(V\) is a representation of \(G\) over \(\mathbb{F}\), then \(V\) is completely irreducible.
Proof. Pick a subrepresentation \(U \subset V \).

Observe that direct sum representations \(V = U \oplus W \) are in bijection with linear operators \(p \in \text{End}_F(V) \) s.t. \(p^2 = p \) and \(\text{Im}(p) = U \):

\[
V = U \oplus W \rightarrow p(v) = u \quad \text{where} \quad v = u + w \quad \text{is the unique decomposition with} \quad u \in U, w \in W
\]

\[
V = \text{Im}(p) \oplus \ker(p) \leftarrow p
\]

Pick any vector space decomposition and let \(p \) be the corresponding operator, \(\rho : G \rightarrow \text{GL}(X) \).

Define \(\tilde{p} = \frac{1}{|G|} \sum_{x \in G} \rho(x)p\rho(x^{-1}) \)

- if \(t \in U \)

\[
\tilde{p}(t) = \frac{1}{|G|} \sum_{x \in G} \rho(x)(p\rho(x^{-1})(t)) = \frac{1}{|G|} \sum_{x \in G} \rho(x)\rho(x^{-1})(t) = t
\]

So \(\tilde{p}|_U = I \).

- since \(\tilde{p}(t) = t \) for \(t \in U \), \(\text{Im}(\tilde{p}) \supset U \)

- by definition of \(\tilde{p} \), \(\text{Im}(\tilde{p}) \subset \text{Im}(p) \subset U \). Hence \(\text{Im}(\tilde{p}) = U \implies \tilde{p}^2 = \tilde{p} \)

- \(\tilde{p} \) is a homomorphism of representations (commutes with any \(\rho(x), x \in G \)):

\[
\rho(x)\tilde{p} = \frac{1}{|G|} \sum_{y \in G} \rho(x)\rho(y)p\rho(y^{-1})
\]

\[
= \frac{1}{|G|} \sum_{y \in G} \rho(xy)p\rho((xy)^{-1})\rho(x)
\]

\[
= \frac{1}{|G|} \sum_{z \in G} \rho(z)p\rho(z^{-1})\rho(x)
\]

\[
= \tilde{p}\rho(x)
\]

Hence \(\ker \tilde{p} \) is a \(G \)-subrepresentation and \(V = U \oplus \ker \tilde{p} \).

\[\square\]

Corollary 5.9. If \(\Gamma \) is connected and \(|W(\Gamma)| < \infty \) then \(V(\Gamma) \) is nonsingular (w.r.t \(\langle , \rangle \)) and irreducible (as \(W(\Gamma) \)-representation).

Proof. Irreducibility follows from nonsingularity by Corollary 5.?. Suppose \(V^\perp \neq 0 \) (\(V = V(\Gamma) \)). By 5.8, \(V = V^\perp \oplus U \) for some \(G \)-subrepresentation \(U \). By 5.6, \(U \subset V^\perp \Rightarrow U = 0 \Rightarrow V = V^\perp \Rightarrow \langle , \rangle = 0 \). Nonsense since \(\langle e_a, e_a \rangle = 1 \) and \(\Gamma \) is non-empty.

\[\square\]

Proposition 5.10. (Schur’s Lemma)

If \(\Gamma \) is connected and \(|W(\Gamma)| < \infty \) then \(\text{End}_{W(\Gamma)}V(\Gamma) = \mathbb{R} \).

\[25\]
Hence \(\langle e_a, z \rangle \Theta(e_a) = \langle e_a, \Theta(z) \rangle e_a \) by definition.

Hence all \(\Theta \) is symmetric since \(2 \Theta(u, v) = \langle u, v \rangle + \langle v, u \rangle \).

By 5.9, \(\ker \Theta - \lambda I = 0 \) is a subrepresentation of \(V(G) \).

\(\Theta \) is euclidean.

\[\langle u, v \rangle_2 = \sum_{x \in \Gamma} \langle \rho_x(u), \rho_x(v) \rangle_1 \]

- \(\langle \cdot, \cdot \rangle_2 \) is symmetric since \(\langle \cdot, \cdot \rangle_1 \) is.
- \(u \neq 0, \langle u, u \rangle_2 = \sum_{x \neq 0} \langle \rho_x(u), \rho_x(u) \rangle_1 \) hence \(\langle \cdot, \cdot \rangle_2 \) is euclidean.
- \(\forall y \in \Gamma: \]

\[\langle \rho_y(u), \rho_y(v) \rangle_2 = \sum_x \langle \rho_x \rho_y(u), \rho_x \rho_y(v) \rangle_1 \]

\[= \sum_x \langle \rho_{xy}(u), \rho_{xy}(v) \rangle_1 \]

\[= \sum_x \langle \rho_x(u), \rho_x(v) \rangle_1 \]

\[= \langle u, v \rangle_2 \]

Hence all \(\rho_y \in O(V(G), \langle \cdot, \cdot \rangle_2) \). Remember that all \(\rho_a \in O(V(G), \langle \cdot, \cdot \rangle) \) and consider \(\Theta : V \to V \) defined by \(\langle \Theta(u), v \rangle = \langle u, v \rangle \) for all \(u \neq 0 \).

\(\Theta \) is euclidean.

\[\langle \rho_x(\Theta(u)), v \rangle_2 = \langle \Theta(u), \rho_x^{-1}(v) \rangle_2 \]

\[= \langle u, \rho_x^{-1}(v) \rangle_2 \]

\[= \langle \rho_x(u), v \rangle \]

\[= \langle \Theta(\rho_x(u)), v \rangle_2 \]

\[\Theta \in End_{W(G)} V(G) \]
This implies $\rho_x \Theta = \Theta \rho_x$. By 5.10, $\Theta = \lambda I$ for some $\lambda \in \mathbb{R}$, so for all u, v:

$$
\lambda \langle u, v \rangle_2 = \langle u, v \rangle
$$

Since $\langle e_a, e_a \rangle = 1 = \lambda \langle e_a, e_a \rangle_2 \implies \lambda = \frac{1}{\langle e_a, e_a \rangle_2} > 0.

$$
\square
$$

Section 4 \implies Finite Reflection group \cong Coxeter group
Section 5 \implies Finite Coxeter group \longrightarrow Reflection group $(V(\Gamma), \rho(W(\Gamma)))$
Problem: ρ could have a kernel. Section 6 rules this out.

Example: Exercise: $D_{4n} \cong C_2 \times D_{2n}$ when n is odd.

Hence distinct reflection groups $I_2(2n) = W \begin{array} {c} 2n \end{array}$ and $A_1 \times I_2(n) = W \begin{array} {c} n \end{array}$ are isomorphic as groups.
6 Fundamental chamber

Aim: \(\rho : W(\Gamma) \rightarrow Im(\rho) \) is isomorphic (at least for finite Coxeter groups)
Define \(l : W(\Gamma) \rightarrow \mathbb{Z}_{\geq 0} : l(x) = \min \{ n : x = \bar{a}_1 \cdots \bar{a}_n, \ a_i \in X(\Gamma) \} \).
In particular: \(l(1) = 0, \ l(\bar{a}_i) = 1 \).

Lemma 6.1. For all \(a \in X, \ g \in W \) holds: \(l(\bar{a}g) \) is either \(l(g) + 1 \) or \(l(g) - 1 \).

Proof. \(g = \bar{a}_1 \cdots \bar{a}_n \) with \(l(g) = n \), then \(\bar{a}g = \bar{a}_1 \cdots \bar{a}_n \) so \(l(\bar{a}g) \leq l(g) + 1 \). Since \(g = \bar{a}(\bar{a}g), \ l(g) \leq l(\bar{a}g) + 1 \) so \(l(\bar{a}g) \geq l(g) - 1 \).

Need to rule out \(l(\bar{a}g) = l(g) \). Consider sign representation:

\[sgn : W \rightarrow GL_1(\mathbb{R}) : sgn(\bar{a}) = (-1) \]

Since relations of \(W \) hold in \(GL_1(\mathbb{R}) \) \(((\bar{a}b)m_{ab} = 1 \rightarrow ((-1)(-1))m_{ab} = 1 \) ok \) \(sgn \) is well-defined.

If \(l(x) = n \) then \(x = \bar{a}_1 \cdots \bar{a}_n \) and \(sgn(x) = sgn(\bar{a}_1) \cdots sgn(\bar{a}_n) = (-1)^n = (-1)^{l(x)} \).

If \(l(\bar{a}g) = l(g) \) then \(sgn(\bar{a}g) = sgn(g), \ sgn(\bar{a})sgn(g) = sgn(g) \Rightarrow sgn(\bar{a}) = 1 \) which is a contradiction. \(\square \)

For each \(a \in X(\Gamma) \) consider half spaces

- \(H^+_a = \{ u \in V(\Gamma) : \langle u, e_a \rangle > 0 \} \)
- \(H^-_a = \{ u \in V(\Gamma) : \langle u, e_a \rangle < 0 \} \)

the dividing hyperplane \(H_a = \{ u \in V(\Gamma) : \langle u, e_a \rangle = 0 \} \)
and the cone \(C = \bigcap_{a \in X(\Gamma)} H^+_a \) which we call the fundamental chamber.

Idea: Let \(x \in W : \)
Lemma 6.2.

Proof. If \(\Gamma = (m_{ab})_{a,b \in X} \) and denote \(W = W(\Gamma), V = V(\Gamma) \)
\(|W| < \infty, a, b \in X \). Then \(\forall g \in \langle \bar{a}, \bar{b} \rangle \leq W : \) either

- \(g(H^+_a \cap H^+_b) \subset H^+_a \) OR
- \(g(H^+_a \cap H^+_b) \subset H^-_a \) and \(l(\pi g) = l(g) - 1 \)

Pick \(z \in g(H^+_a \cap H^+_b) \cap H_a \). Then \(z \in H_a \implies \langle z, e_a \rangle = 0 \)
\(z \in g(H^+_a \cap H^+_b) \implies g^{-1}(z) \in H^+_a \cap H^+_b \implies \langle g^{-1}(z), e_a \rangle > 0, \langle g^{-1}(z), e_b \rangle > 0 \)

On the other hand \(\langle g^{-1}(z), g^{-1}(e_a) \rangle = \langle z, e_a \rangle = 0 \).

As \(g \in \langle \bar{a}, \bar{b} \rangle \):
\[g^{-1}(e_a) = \alpha e_a + \beta e_b \quad \alpha, \beta \in \mathbb{R} \]

We denote by \(\Phi(\Gamma) \) a root system of \(\rho(W) \in V(\Gamma) \) and since \(e_a, e_b \) form a simple system of \(\Phi(\Gamma) \cap \text{span}(e_a, e_b) \), either

- \(\alpha \geq 0, \beta \geq 0 \) s.t. not both are 0 and then
\[\langle g^{-1}(z), g^{-1}(e_a) \rangle = \langle g^{-1}(z), \alpha e_a + \beta e_b \rangle = \alpha \langle g^{-1}(z), e_a \rangle + \beta \langle g^{-1}(z), e_b \rangle > 0 \]
which is a contradiction

- OR \(\alpha \leq 0, \beta \leq 0 \) s.t. not both are 0 and therefore
\[\langle g^{-1}(z), g^{-1}(e_a) \rangle < 0 \]
which is a contradiction too.

It remains to prove the length statement if \(g(H^+_a \cap H^+_b) \subset H^-_a \). Inspect \(U = \text{span}(e_a, e_b) \) and \(L = U \cap H^+_a \cap H^+_b \). This is a dihedral group of order \(2m_{ab} \).

![Diagram](image)

\[gL \subset H^+_a \cap U \iff g = a \text{ or } g = ab \text{ or } \ldots \text{ or } g = abab\ldots b^{m_{ab}} \]

All such \(g \) admit a reduced expression starting with \(a \). Hence \(l(ag) = l(g) - 1 \). \(\square \)
Remark 6.3. There are 2 finiteness assumptions:

1. W is finite
2. Γ is finite, i.e. $|X| < \infty$ and $\forall a, b \in X : m_{ab} < \infty$.

Exercise: W is finite $\implies \Gamma$ is finite.

Hint: $a \neq b \in X \implies \rho_a \neq \rho_b \in GL(V(\Gamma)) \implies \pi \neq \overline{\tau} \in W(\Gamma)$. Then one needs to show that $m_{ab} < \infty$. This follows from $\rho_a \rho_b \mapsto \text{span}(e_a, e_b) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

Note: Lemma 6.2 holds under assumption that Γ is finite.

Proposition 6.4. Let Γ be finite and let C be the fundamental chamber. Then:

1. For all $w \in W$ and for all $u \in X$: either
 - $w(C) \subset H_a^+$ OR
 - $w(C) \subset H_a^-$ and $l(aw) = l(w) - 1$

2. for all $w \in W$ and for all $a \neq b \in X$ there is a $g \in \langle \pi, \overline{\tau} \rangle$ s.t.
 $$w(C) \subset g(H_a^+ \cap H_b^+) \text{ and } l(w) = l(g) + l(g^{-1}w)$$

Proof. Simultaneous induction on $l(w)$:

Base $l(w) = 0 \implies w = 1 \implies w(C) = C \subset H_a^+$ and $g = 1$ works for (2).

Assumption if $l(w) = k - 1$ then (1) and (2) are assumed to have been proved

Step Let $l(w) = k$.

1. Write $w = dw', d \in X, l(w') = k - 1$. Consider two cases:
 - Case 1: $a = d$.
 Statement (1) for w' gives either $w'(C) \subset H_a^+$ or $w'(C) \subset H_a^-$.
 - $w'(C) \subset H_a^- \implies w(C) = \overline{a}(w'(C)) \subset \overline{a}(H_a^-) = H_a^+$
 - $w'(C) \subset H_a^+ \implies w(C) = \overline{a}(w'(C)) \subset \overline{a}(H_a^+) = H_a^-$
 - Case 2: $a \neq d$.
 By (2) for w' there is a $g \in \langle \pi, \overline{\tau} \rangle$ s.t. $w'(C) \subset g(H_a^+ \cap H_b^+)$ and $l(w') = l(g) + l(g^{-1}w)$. Then
 $$w(C) = \overline{a}(w'(C)) \subset dg(H_a^+ \cap H_b^+)$$

By Lemma 6.2 either $dg(H_a^+ \cap H_b^+) \subset H_a^+$ ($\implies w(C) \subset H_a^+$) or
$$dg(H_a^+ \cap H_b^+) \subset H_a^- \text{ and } l(adg) = l(dg) - 1.$$

Then $w(C) \subset dg(H_a^+ \cap H_b^+) \subset H_a^-$ and
$$l(aw) = l(adg^{-1}w) \leq l(adg) + l(g^{-1}w') \leq l(g) + l(g^{-1}w') = l(w') = k - 1$$
$$\implies l(aw) = l(w) - 1$$
2. Now assume (1) and (2) for \(l(w) = k - 1 \) and note that (1) for \(l(w) = k \) is established.

Consider two Cases:

Case 1: \(wC \subset H^+_a \cap H^+_b \). Then \(g = 1 \) satisfies (2).

Case 2: \(wC \not\subset H^+_a \cap H^+_b \).

Observe that \(wC \cap H_a = \emptyset \). \(wC \subset w(H^+_a \cap H^+_b) \) is in either \(H^+_a \) or \(H^-_a \) by 6.2.

Wlog \(wC \subset H^-_a \).

By part (1): \(l(aw) = l(w) - 1 \).

Use part (2) on \(w' = aw \) (by induction assumption) then there is \(g' \in \langle a, b \rangle \) s.t. \(w'C \subset g'(H^+_a \cap H^+_b) \) and \(l(w') = l(g') + l((g')^{-1}w) \).

Claim: \(g = \pi g' \) satisfies (2) for \(w \).

\[
\begin{array}{c|c|c|c|c}
H^-_a \cap H^+_b & H^+_a \cap H^+_b & H^-_b & H^+_b \cap H^-_a & H_a \\
\hline
H^-_a \cap H^-_b & H^+_a \cap H^-_b & & & \\
\end{array}
\]

Hence \(l(w) = l(g) + l(g^{-1}w) \).

Theorem 6.5.

1. \(W \) is finite \(\implies V = \bigcup_{g \in W} gC \)

2. \(\Gamma \) is finite, then: \(\forall \: g, x \in W : gC \cap xC \neq \emptyset \implies g = x \)

Note: If \(W \) is infinite \(\bigcup_{g \in W} gC \) is called Tits cone which is a proper subset of \(V \).

Proof.

1. \(\overline{C} = \{ \alpha \in W : \forall \: a \in X : \langle \alpha, a \rangle \geq 0 \} \).

Recall the height function \(h : V \to \mathbb{R} : v = \sum_{a \in X} \beta_a e_a \mapsto \sum_{a \in X} \beta_a \).

Pick any \(v \in V \). Since \(W \) is finite, the height achieves a maximum on the set \(Wv = \{ g(v) : g \in W \} \). Let \(z = g(v) \) be such a maximum.
Claim: \(z \in C \) and this implies that \(v = g^{-1}(z) \in g^{-1}(C) \) and \(V = \bigcup gC \).

Indeed, otherwise there is an \(a \in X \) s.t. \(\langle z, e_a \rangle < 0 \). Then:

\[
\rho_a(z) = h(z) - 2 \langle z, e_a \rangle e_a
\]

has height

\[
h(\rho_a(z)) = h(z) - 2 \langle z, e_a \rangle > h(z)
\]

which is a contradiction to the maximality.

2. Assume \(gC \cap xC \neq \emptyset \). Then \(C \cap g^{-1}xC \neq \emptyset \). If \(g^{-1}x = 1 \) then \(g = x \) and we are done. If \(g^{-1}x \neq 1 \) then there is an \(a \in X \) s.t. \(l(ag^{-1}x) = l(g^{-1}x) - 1 \).

Set \(w = ag^{-1}x \), then \(l(aw) = l(w) + 1 \). By 6.3 \(ag^{-1}xC = wC \subset H_a^+ \implies g^{-1}xC \subset H_a^- \).

Then \(C \cap g^{-1}xC \subset H_a^+ \cap H_a^- = \emptyset \) which is a contradiction.

\[\square \]

Corollary 6.6. \(\Gamma \) is finite. Then \(\rho: W \to GL(V) \) is injective.

Proof. Suppose \(\rho(g) = \rho(w) \). Then \(gC = wC \). Hence \(g = w \) by 6.4. \[\square \]

Let \((G, V)\) be a reflection group, \(G \leq O(V) \), \(V \) is Euclidean. Let \(V_1 = \text{span}(x : x \in \Phi(G)) \).

Say \((G, V)\) is essential if \(V_1 = V \).

Corollary 6.7.

\[\Gamma \leftrightarrow (W(\Gamma), V(\Gamma)) \]

is a bijection between isomorphism classes of Coxeter graphs with finite \(W(\Gamma) \) and equivalence classes of essential reflection groups.

Proof.

\[\Gamma \to (W(\Gamma), V(\Gamma)) \]

\[X = \Pi \text{ is a simple system in } \Phi(G), \ m_{ab} = |S_a S_b| \leftrightarrow (G, V) \]

By definition, \((W(\Gamma), V(\Gamma))\) is essential. Going \(\Gamma \to (W(\Gamma), V(\Gamma)) \to (X \text{ with } m_{ab} = |S_a S_b|) \) gives \(\Gamma \) back by 6.5 and 4.3 (?).

\((G, V) \to \Gamma = (X, m_{ab}) \to (W(\Gamma), V(\Gamma)) \).

Then

\[
V(\Gamma) \to V
\]

\[
\sum_{x \in X} \alpha_x e_x \leftrightarrow \sum_{x \in X} \alpha_x x
\]

\[
W(\Gamma) \to G
\]

\[
\pi_1 \pi_2 \cdots \pi_n \leftrightarrow S_{a_1} \cdots S_{a_n}
\]

This is an isomorphism by 4.3 and 6.5. \[\square \]

Some fun bits:

- \(\mathbb{R}^n \setminus \mathbb{R}^{n-1} \): disjoint union of 2 contractible half-spaces
\(\mathbb{C}^n \setminus \mathbb{C}^{n-1} \): is connected with fundamental group \(\mathbb{Z} \)

Try \(\mathbb{C}C = \mathbb{C} \otimes_R V \supset \mathbb{C}H^a = \mathbb{C} \otimes_R H^a \). Then \(\mathbb{C}V^0 = \mathbb{C}V \setminus \bigcup_{g \in W, a \in X} g(\mathbb{C}H^a) \) is connected.

\(W \) acts freely on \(\mathbb{C}V^0 \) and the universal cover of \(\mathbb{C}V^0 \) is simply connected (if \(W \) is finite).

One can draw the fundamental group of \(\mathbb{C}V^0/W \):

\[
\begin{array}{c}
\bullet \rho_a(x) \\
\bullet x \\
\hline
T_a \\
\hline
H_a
\end{array}
\]

\[C \subset \mathbb{C} \mathbb{V}^0 \]

\([x] = [\rho_a(x)] \in \mathbb{C}V^0/W \).

\(T_a \) is a loop in \(\mathbb{C}V^0/W \). In fact:

\[
B(\Gamma) = \pi_1(\mathbb{C}V^0/W) = \left\langle T_a, a \in X : \underbrace{T_aT_b\cdots}_m = \underbrace{T_bT_a\cdots}_m \right\rangle
\]

\(V^0 \rightarrow V^0/W \) gives

\[
1 \rightarrow \underbrace{PB(\Gamma)}_{\text{pure Braid group}} \leftrightarrow B(\Gamma) \rightarrow W \rightarrow 1
\]

33
7 Classification

Let \((V, \langle \cdot, \cdot \rangle)\) be an Euclidean vector space. Therefore it has a norm

\[\|v\| = \sqrt{\langle v, v \rangle} \]

It induces a norm on \(\text{Lin}_R(V, V)\):

\[\|T\| = \sup_{v \in V \setminus \{0\}} \frac{\|Tv\|}{\|v\|} \]

1. \(\|Tx\| \leq \|T\| \cdot \|x\|\)
2. \(\|T\| \geq 0\) and \(\|T\| = 0 \iff T = 0\]
3. \(\|T + S\| \leq \|T\| + \|S\|\)
4. \(T \in O(V) \implies \|Tv\| = \|v\| \implies \|T\| = 1\)
5. \(O(V)\) is a closed bounded subset of \(\text{Lin}_R(V, V)\).

Theorem 7.1. Let \(\Gamma\) be finite. Then \(W(\Gamma)\) is finite \(\iff V(\Gamma)\) is Euclidean.

Proof.

"\(\Rightarrow\)" Theorem 5.9

"\(\Leftarrow\)" short version: By 6.4 \(W(\Gamma)\) acts discretely on the unit sphere in \(V(\Gamma)\). Hence it must be finite.

Long version: pick \(v \in C\) s.t. \(\|v\| = 1\). Pick \(\varepsilon > 0\) s.t. \(B_\varepsilon(v) \subset C\).

\[g \neq x \in W \implies gC \cap xC = \emptyset \implies B_\varepsilon(gv) \cap B_\varepsilon(xv) = \emptyset \]

\[\implies \|gv - xv\| > \varepsilon \implies \|\rho(g) - \rho(x)\| > \varepsilon \]

By fact 5, \(O(V)\) is compact. Suppose \(W\) is infinite, \(W \subset O(V)\) compact. Then there is a convergent sequence \(T_1, T_2, \ldots, T_n\) in \(W\) s.t. \(T_i \neq T_j\) for \(i \neq j\).

Hence \(T_i \to T \in O(V)\), so there is a \(N\) s.t. \(\forall\ i, j > N: \|T_i - T_j\| < \varepsilon\).

But \(T_i, T_j \in \rho(W)\) with \(T_i \neq T_j\), so this is a contradiction.

\(\square\)

\(\Gamma\) is positive definite if \(V(\Gamma)\) is Euclidean. This is equivalent to \(W(\Gamma)\) being finite. From what we proved, we may conclude that any finite reflection group has a form

\[(W(\Gamma_1) \times \ldots \times W(\Gamma_n), V(\Gamma_1) \oplus \ldots \oplus V(\Gamma_n) \oplus \mathbb{R}^k) \]

where the \(\Gamma_i\) are connected positive definite Coxeter graphs and each \(W(\Gamma_i)\) acting trivially on \(V(\Gamma_j)\) with \(i \neq j\) and \(\mathbb{R}^k\).

Problem: What are the connected positive definite Coxeter graphs?
Proposition 7.2. $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$ symmetric matrix over \mathbb{R}.

A is positive definite $\iff \forall j \in \{1, \ldots, n\} : \det \begin{pmatrix} a_{11} & \cdots & a_{1j} \\ \vdots & \ddots & \vdots \\ a_{j1} & \cdots & a_{jj} \end{pmatrix} > 0$.

Proof. Induction on n:

$n=1$ obvious

$n-1$ we assume to be done

$n \implies n$ $A = \begin{pmatrix} B \\ \vdots \\ a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$ where B is $(n-1) \times (n-1)$ matrix.

B represents the same bilinear form restricted to $U = \left\{ \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} : \alpha_n = 0 \right\}$ in the standard basis of U.

In particular: for all $x \in U \setminus \{0\} : x^T B x > 0$. By induction assumption:

$\begin{pmatrix} a_{11} & \cdots & a_{1j} \\ \vdots & \ddots & \vdots \\ a_{j1} & \cdots & a_{jj} \end{pmatrix} > 0$

for $j < n$. Since there exists an orthogonal Q s.t.

$QAQ^{-1} = \begin{pmatrix} \lambda_1 & \cdots \\ \vdots & \ddots \\ \lambda_n \end{pmatrix}$

and A is positive definite \iff all $\lambda_i > 0$, we conclude that $\det(A) = \lambda_1 \cdots \lambda_n > 0$.

$n \implies$ By induction assumption B is positive definite, so $(U, \langle x, y \rangle = x^T B y)$ is Euclidean. By Lemma ??:

$\mathbb{R}^n = U \oplus \overset{\text{under } x^T A y}{U^\perp}$

Any $x \in \mathbb{R}^n$ can be written as $x = y + z$, $y \in U$, $z \in U^\perp$ and

$\langle x, x \rangle = \langle y + z, y + z \rangle = \langle y, y \rangle + \langle z, z \rangle$

So it suffices to check that for $z \in U^\perp$, $z \neq 0$ and $\langle z, z \rangle > 0$.

Let f_1, \ldots, f_{n-1} be an orthonormal basis of U, $f_n \in U^\perp$, $f_n \neq 0$. $x^T A y$ in the basis
Let \(\Gamma = (X, m_{ab}) \). We say that \(\Gamma' = (Y, n_{ab}) \) is a subgraph of \(\Gamma \) if

- \(Y \subset X \)
- \(\forall a, b \in X : n_{ab} \leq m_{ab} \)

Lemma 7.3. If \(\Gamma' \) is a Coxeter subgraph of \(\Gamma \) and \(\Gamma \) is positive definite then \(\Gamma' \) is positive definite.

Proof.

\[
2 \leq n_{ab} \leq m_{ab} \implies -\cos \frac{\pi}{n_{ab}} \geq -\cos \frac{\pi}{m_{ab}}
\]

Pick any \(v = \sum_{a \in Y} \alpha_a e_a \in V(\Gamma') \) and suppose \(\langle v, v \rangle \leq 0 \). Let \(w = \sum_{a \in Y} |\alpha_a| e_a \). Then:

\[
\langle w, w \rangle_{V(\Gamma)} = \sum_{a, b \in Y} |\alpha_a| \cdot |\alpha_b| (-\cos \frac{\pi}{m_{ab}}) \\
\leq \sum_{a, b \in Y} |\alpha_a| \cdot |\alpha_b| (-\cos \frac{\pi}{n_{ab}}) \\
\leq \sum_{a, b \in Y} \alpha_a \alpha_b (-\cos \frac{\pi}{n_{ab}}) \\
\leq 0
\]

Since \(V(\Gamma) \) is Euclidean, \(w = 0 \). Then all \(\alpha_a = 0 \) and \(v = 0 \).

Let \(d(\Gamma) = \det(2 \langle e_a, e_n \rangle)_{X \times X} = \det(-2 \cos \frac{\pi}{m_{ab}})_{a, b \in X} \).

Note: \(d(\Gamma) \) is independent of the order on \(X \) one chooses to write a matrix.

Lemma 7.4. Let \(\Gamma \) be of the following form:

Then \(d(\Gamma) = 2d(\Gamma_1) - d(\Gamma_2) \).
Proof. Let $|X| = n$, call the two vertices n and $n - 1$. Then the matrix $C(\Gamma)$ looks like
\[
\begin{pmatrix}
* & 0 \\
\vdots & \vdots \\
C(\Gamma_2) & \vdots \\
* & 0 \\
* \cdots * & 2 \ -1 \\
0 \cdots 0 & -1 \ 2
\end{pmatrix}
\]
Expanding the last row:
\[
d(\Gamma) = 2d(\Gamma_1) + (-1)^{n+1}(n-1)(-1)det \begin{pmatrix}
0 \\
\vdots \\
C(\Gamma_2) \\
0 \\
\cdots & -1
\end{pmatrix} = 2d(\Gamma_1) - d(\Gamma_2)
\]
\hfill \square

Lemma 7.5. The following Coxeter graphs Γ have $d(\Gamma) > 0$:

\begin{itemize}
 \item $A_n \quad \circ \circ \cdots \circ \circ \circ$
 \item $B_n \quad \circ \quad 4 \circ \cdots \circ \circ$
 \item $D_n \quad \circ \cdots \circ \circ \circ \\
 \quad \circ$
 \item $E_6 \quad \circ \circ \circ \circ \circ \circ \\
 \quad \circ$
 \item $E_7 \quad \circ \circ \circ \circ \circ \circ \circ \\
 \quad \circ$
 \item $E_8 \quad \circ \circ \circ \circ \circ \circ \circ \circ \circ \\
 \quad \circ$
 \item $F_4 \quad \circ \circ \quad 4 \circ \circ
 \item $H_2 \quad \circ \quad 5 \circ$
 \item $H_3 \quad \circ \quad 5 \circ \circ$
 \item $H_4 \quad \circ \quad 5 \circ \circ \circ
 \item $I_2(m) \quad \circ \quad m \circ$
\end{itemize}

Note: $A_2 = I_2(3), B_2 = I_2(4), H_2 = I_2(5)$. Sometimes $G_2 = I_2(6)$ is used.

Proof. Let x_n denote $d(X_n)$.
\begin{itemize}
 \item $i_2(m) = det \begin{pmatrix}
2 & -2 \cos \frac{\pi}{m} \\
-2 \cos \frac{\pi}{m} & 2
\end{pmatrix} = 4 - 4(\cos \frac{\pi}{m})^2 > 0$
\end{itemize}
• $a_1 = \det(2) = 2$
 $a_2 = i_2(3) = 4 - 4(\cos \frac{\pi}{3})^2 = 3$

• Lemma 7.4 allows us to compute a_n by

\[
\begin{array}{c}
A_n \\
\circ \\
\bigcirc \\
\circ \\
\cdots \\
\bigcirc \\
A_{n-2} \\
\bigcirc \\
A_{n-1} \\
\bigcirc
\end{array}
\]

Then $a_n = 2(a_{n-1}) - a_{n-2}$ and by induction $a_n = n + 1$.

• $b_2 = i_2(4) = 2$

\[
\begin{array}{c}
B_3 \\
\circ \\
\bigcirc \\
\circ \\
\bigcirc \\
4 \\
\bigcirc \\
A_1 \\
\bigcirc \\
B_2 \\
\bigcirc
\end{array}
\]

$b_3 = 2b_2 - a_1 = 2 \cdot 2 - 2 = 2$
And for B_n:

\[
\begin{array}{c}
B_n \\
\circ \\
\bigcirc \\
\circ \\
\bigcirc \\
\bigcirc \\
\bigcirc \\
\cdots \\
\bigcirc \\
\bigcirc \\
\bigcirc \\
B_{n-2} \\
\bigcirc \\
\bigcirc \\
B_{n-1} \\
\bigcirc
\end{array}
\]

$\iff b_n = 2b_{n-1} - b_{n-2} \iff b_n = 2$

• Before computing D_n notice that:

\[
d(\Gamma_1 \cup \Gamma_2) = d(\Gamma_1) \cdot d(\Gamma_2)
\]

The decomposition for D_n is:

\[
\begin{array}{c}
\circ \\
\bigcirc \\
\cdots \\
\bigcirc \\
\bigcirc \\
\bigcirc \\
\bigcirc \\
\bigcirc \\
\bigcirc \\
A_1 \cup A_{n-3} \\
\bigcirc \\
A_{n-1} \\
\bigcirc
\end{array}
\]

Therefore $d_n = 2a_{n-1} - a_1a_{n-3} = 2n - 2(n - 3 + 1) = 4$.

Similarly: $e_n = 2a_{n-1} - a_2a_{n-4} = 9 - n$. Hence e_n is positive for $n \leq 8$.

- $h_2 = i_2(5) = 4 - 4\cos^2 \frac{\pi}{5} = \frac{5 - \sqrt{5}}{2}$
- $h_3 = 2h_2 - a_1 = 2\frac{5 - \sqrt{5}}{2} = 3 - \sqrt{5} > 0$
- $h_4 = 3h_3 - h_2 = 2(3 - \sqrt{5}) - \frac{5 - \sqrt{5}}{2} = \frac{7 - 3\sqrt{5}}{2} > 0$
- Notice that $h_5 = 3h_4 - h_3 = 5 - 2\sqrt{5} < 0$.

\[\square\]

Lemma 7.6. The following Coxeter graphs have $d(\Gamma) < 0$:

- \tilde{A}_n
- \tilde{B}_n
- \tilde{C}_n
- \tilde{B}_n
- \tilde{E}_6
- \tilde{E}_7
- \tilde{E}_8
\[
\begin{align*}
\tilde{F}_4 & \quad \circ \quad \circ \quad \circ \quad \circ \quad 4 \quad \circ \quad \circ \quad \circ \\
\tilde{G}_2 & \quad \circ \quad \circ \quad \circ \quad \circ \quad 6 \\
\tilde{H}_3 & \quad \circ \quad \circ \quad \circ \quad \circ \quad 5 \\
\tilde{H}_4 & = H_5 \quad \circ \quad \circ \quad \circ \quad \circ \quad \circ \\
\end{align*}
\]

Proof.

- We have computed \(\tilde{c}_8 = \tilde{e}_9 = 9 - 9 = 0\).
- \(\tilde{h}_4 = h_5 = 4 - 2\sqrt{5} < 0\)
- \(\tilde{a}_n = \text{det} \begin{pmatrix} 2 & -1 & \cdots & 0 \\ -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & 2 \end{pmatrix} = 0\) because the sum of the rows is zero
- \(\tilde{b}_n = 2b_n - a_1b_{n-2} = 4 - 4 = 0\)
- \(\tilde{d}_n = 2d_n - a_1d_{n-2} = 2 \cdot 4 - 2 \cdot 4 = 0\)
- \(\tilde{e}_6 = 2e_6 - a_5 = 0\)
- \(\tilde{e}_7 = 2e_7 - d_6 = 0\)
- \(\tilde{f}_4 = 2f_4 - b_3 = 0\)
- \(\tilde{g}_2 = 2i_2(6) - a_1 = 0\)
- \(\tilde{h}_3 = 2h_3 - a_2 = 3 - 2\sqrt{5} < 0\)
- \(c(\tilde{C}_n)\) looks like \[
\begin{pmatrix}
\ast & 0 \\
\ast & 0 \\
\ast & 2 & -2 \\
0 & -2 & 2
\end{pmatrix}
\]

Similarly to Lemma 7.4, expanding the last row gives
\[
d(\tilde{C}_n) = 2d(B_n) - 2d(B_{n-1}) = 2 \cdot 2 - 2 \cdot 2 = 0
\]

\[
\square
\]
Theorem 7.7. The connected Coxeter graphs Γ which give a finite $W(\Gamma)$ are precisely the graphs listed in Lemma 7.5.

Proof. The graphs on 7.5 are closed under taking connected Coxeter subgraphs. Therefore 7.2 tells us that all $c(\Gamma)$ are positive definite in 7.5 and 7.1 tells us that all $W(\Gamma)$ are finite in 7.5.

Now let Γ be a connected graph with finite $W(\Gamma)$. Then $c(\Gamma)$ is positive definite by 7.1. In particular, Γ contains no subgraphs in 7.6

- No $\tilde{A}_n \implies \Gamma$ has no cycles
- No $\tilde{D}_4 \implies \Gamma$ has no vertex with ≥ 4 edges
- No \tilde{D}_n, $n \geq 5 \implies \Gamma$ contains at most one vertex with 3 edges.

Case 1 No vertex has 3 edges, hence Γ looks like this:

$$
\circ \overset{x_1}{\cdots} \overset{x_m}{\circ}
$$

If Γ has ≤ 2 vertices it is either A_1 or $I_2(m)$, both in Lemma 7.5.

Let Γ contain ≥ 3 vertices ($m \geq 2$).

- No $\tilde{G}_3 \implies$ edges may have multiplicity at most 5
- No $\tilde{C}_n \implies$ at most one edge has multiplicity ≥ 4.

Case 1.1 No edge of multiplicity $\geq 4 \implies \Gamma = A_n$

Case 1.2 There is one edge of multiplicity 4:

- if it is on a side, $\Gamma = B_n$
- if it is in the middle then no $\tilde{F}_4 \implies \Gamma = F_4$

Case 1.3 There is one edge of multiplicity 5:

- No $\tilde{H}_3 \implies$ the multiple edge is on a side and no $\tilde{H}_4 \implies \Gamma = H_3$ or H_4

Case 2 there is a vertex with 3 edges. Then Γ look like this:

$$
\circ \\
| \\
\circ \\
\cdots \circ \overset{b}{\cdots} \overset{a}{\circ} \overset{c}{\cdots} \overset{\circ}{\cdots} \\
\circ \\
$$

Let b denote the vertices going up, a the vertices going left and c the vertices going right. Then we have $a + b + c + 1$ vertices in total and wlog $a \geq b \geq c$.

- No $\tilde{B}_n \implies \Gamma$ has no multiple edges.
- No $\tilde{E}_6 \implies c = 1$
- No $\tilde{E}_7 \implies b \leq 2$
- if $b = c = 1 \implies \Gamma = D_{a+3}$
- if $b = 2$, $c = 1$, then no $\tilde{E}_8 \implies a < 5$. As $a \geq b = 2$ there are 3 cases:
 1. $a = 2 \implies \Gamma = E_6$
2. $a = 3 \implies \Gamma = E_7$
3. $a = 4 \implies \Gamma = E_8$

<table>
<thead>
<tr>
<th>Crystallographic</th>
<th>NON Crystallographic</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_n, B_n, D_n, F_4, E_n, G_2 = I_2(6)$</td>
<td>$I_2(m)$ for $m = 5, m \geq 7, H_3, H_4$</td>
</tr>
<tr>
<td>$d(\Gamma) \in \mathbb{Z}$</td>
<td>$d(\Gamma) \notin \mathbb{Z}$</td>
</tr>
<tr>
<td>The character table of Γ is integral</td>
<td>Non-integral</td>
</tr>
<tr>
<td>All but one representation of $W(\Gamma)$ can be realised by integral matrices</td>
<td></td>
</tr>
</tbody>
</table>
8 Crystallographic Coxeter Groups

Let V be a vector space over \mathbb{R}. A lattice in V is an abelian subgroup L of V s.t. $L = \langle e_1, \ldots, e_n \rangle$ where e_1, \ldots, e_n is a basis of V. Informally, L is \mathbb{Z}^n inside \mathbb{R}^n.

Definition. $W(\Gamma)$ is crystallographic if there is a lattice $L \subset V(\Gamma)$ s.t.

$$\forall g \in W(\Gamma) : g(L) \subset L$$

Informally this means that there is a basis e_1, \ldots, e_n of $V(\Gamma)$ s.t. $\rho(g)$ is an integer matrix for each $g \in W(\Gamma)$.

Lemma 8.1. Let $|X| < \infty$. If $W(\Gamma)$ is crystallographic then $\forall a, b \in X$:

$$m_{ab} \in \{2, 3, 4, 6, \infty\}$$

Proof. Assume $W(\Gamma)$ is crystallographic. Then $\forall g \in W : \rho(g)$ can be written as an integer matrix, in particular $Tr(\rho(\Gamma)) \in \mathbb{Z}$.

If $m_{ab} = \infty$ then we are done.

Suppose $m_{ab} = \infty \implies U = \text{span}(e_a, e_b)$ is Euclidean $\implies W(\Gamma) = U \oplus U^\perp$.

In the basis e_a, e_b, any basis of U^\perp:

$$\rho(S_aS_b) = \begin{pmatrix} \cos \frac{2\pi}{m_{ab}} & \pm \sin \frac{2\pi}{m_{ab}} & 0 \\ \mp \sin \frac{2\pi}{m_{ab}} & \cos \frac{2\pi}{m_{ab}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$Tr(\rho(S_aS_b)) = |X| - 2 + 2 \cos \frac{2\pi}{m_{ab}} \text{ hence}$$

$$2 \cos \frac{2\pi}{m_{ab}} \in \mathbb{Z} \iff \cos \frac{2\pi}{m_{ab}} \in \frac{1}{2} \mathbb{Z} \iff m_{ab} \in \{2, 3, 4, 6\}$$

Note: \iff is true but the proof is harder unless $W(\Gamma)$ is finite.

Theorem 8.2. Let $W(\Gamma)$ be a finite Coxeter group. Then $W(\Gamma)$ is crystallographic $\iff \forall a, b \in X : m_{ab} \in \{2, 3, 4, 6\}$.

Proof.

"\Rightarrow" Lemma 8.1
Let us choose a new basis $\alpha_a = c_a e_a$, $a \in X$, $c_a \in \mathbb{R} \setminus \{0\}$. Then

$$\rho_a(\alpha_b) = \alpha_b - 2 \langle \alpha_b, e_a \rangle e_a = \alpha_b - 2 \frac{\langle \alpha_a, \alpha_b \rangle}{\langle \alpha_a, \alpha_a \rangle} \alpha_a$$

Since $\rho_a = S_{c_a} = S_{\alpha_a}$ and $\rho(\pi_1 \cdots \pi_n) = \rho_{a_1} \cdots \rho_{a_n}$ it suffices to ensure that for all $a, b \in X$:

$$2 \frac{\langle \alpha_a, \alpha_b \rangle}{\langle \alpha_a, \alpha_a \rangle} \in \mathbb{Z}$$

Wlog Γ is connected.

- $m_{ab} = 2 \implies \langle \alpha_a, \alpha_b \rangle = 0 \implies 2 \frac{\langle \alpha_a, \alpha_b \rangle}{\langle \alpha_a, \alpha_a \rangle} = 0$
- $m_{ab} = 3 \implies \langle \alpha_a, \alpha_b \rangle = c_a c_b (c_a, c_b) = c_a c_a - \cos \frac{\pi}{m_{ab}} = -\frac{c_a c_b}{2}$
 $$\implies 2 \frac{\langle \alpha_a, \alpha_b \rangle}{\langle \alpha_a, \alpha_a \rangle} = -\frac{c_a c_b}{c_a} = -\frac{c_b}{c_a}$$

Need in this case $c_a = \pm c_b$

- $m_{ab} = 4 \implies \langle \alpha_a, \alpha_b \rangle = c_a c_b (-\cos \frac{\pi}{4}) = -\frac{c_a c_b}{\sqrt{2}}$
 $$\implies 2 \frac{\langle \alpha_a, \alpha_b \rangle}{\langle \alpha_a, \alpha_a \rangle} = -\sqrt{2} \frac{c_b}{c_a}$$

Need $c_a = \sqrt{2} c_b$ or $c_b = \sqrt{2} c_a$

- $m_{ab} = 6 \implies \langle \alpha_a, \alpha_b \rangle = -\sqrt{3} c_a c_b$
 $$\implies 2 \frac{\langle \alpha_a, \alpha_b \rangle}{\langle \alpha_a, \alpha_a \rangle} = 2 \frac{-c_a c_b \sqrt{3}}{c_a c_a} = -\sqrt{3} \frac{c_b}{c_a}$$

Need $c_a = \pm \sqrt{3} c_b$ or $c_b = \pm \sqrt{3} c_a$

In each component of Γ we choose

Case 1 A_n, D_n, E_n: choose all $c_a = 1$.

Case 2 B_n, F_4

$$\begin{array}{c}
\Gamma_1 \\
\text{choose } c_a = 1
\end{array} \quad \begin{array}{c}
4 \\
\text{choose } c_a = \sqrt{2}
\end{array}$$

Case 3 $G_2 = I_2(6)$:

$$a \quad 6 \quad b$$

$\alpha_a = \sqrt{3} e_a$, $\alpha_b = e_b$

□

Corollary 8.3. The finite crystallographic reflection groups are $W(\Gamma)$ where Γ is either
• A_n, $n \geq 1$
• B_n, $n \geq 2$
• D_n, $n \geq 4$
• E_n, $6 \leq n \leq 8$
• F_4
• G_2

Note: In B_n, $n \geq 3$ there are 2 non-isomorphic choices of crystallographic structure

\[
\begin{array}{cccccccc}
1 & 4 & 2 & 3 & \cdots & \cdots & \cdots & n
\end{array}
\]

• $\alpha_1 = e_1$, $\alpha_2 = \sqrt{2}e_2, \ldots, \alpha_k = \sqrt{2}e_k$ which is called the crystallographic reflection group B_n

• $\alpha_1 = \sqrt{2}e_1$, $\alpha_2 = e_2, \ldots, \alpha_k = e_k$ which is called the crystallographic reflection group C_n

We have seen $A_n, B_n, D_n, I_2(m)$ explicitly.
Can we compute $|W(\Gamma)|, |\Phi(\Gamma)|$ for all Γ?
9 Polynomial invariants

Let G be a finite group acting on V, $\dim V < \infty$. Let $S = \mathbb{R}[V]$, algebra of all polynomial functions on V. Let e_1, \ldots, e_n be a basis of V and $X_i : V \to \mathbb{R}$ the linear maps which form the dual basis. Then $X_i(e_j) = \delta_{ij}$. In fact, $S = \mathbb{R}[X_1, \ldots, X_n]$. G acts on the algebra S: $g \in G, F \in S, v \in V : g \cdot F(v) = F(g^{-1}v)$.

Exercise: check that G acts on S by algebra automorphisms.

Note: for $F \in S$ the following are equivalent:

1. $\forall \ g \in G: gF = F$
2. F is constant on G-orbits in V.

We call such functions invariant and they form a subalgebra S^G.

We will prove that $S^G \cong \mathbb{R}[z_1, \ldots, z_k]$ (when G is a reflection group). In fact

$$S^G \cong \mathbb{R}[z_1, \ldots, z_k] \iff G \text{ is a reflection group}$$

(no proof)

S is a graded algebra, i.e. $S = \bigoplus_{k=0}^{\infty} S_k$ where S_k consists of polynomials where each monomial has degree k.

Example:

- $2010 \in S_0$
- $x_1^2 + x_2^2 + x_1x_3 \in S_2$
- $1 + x_1 \in S_0 \oplus S_1$ but not in any S_i

If $F \in S_i$ we say $\deg F = i$.

Lemma 9.1. Let $F \in S^G$, $F = \sum_{j=0}^{m} F_j$, $F_j \in S_j$. Then $\forall j$: $F_j \in S^G$.

Proof. $G \times \mathbb{R}^*$ acts on V: $(g, \alpha)v = g(\alpha v) = \alpha g(v)$. Hence $G \times \mathbb{R}^*$ also acts on S:

$$(g, \alpha) \cdot F : v \mapsto F(g^{-1}\alpha^{-1}v)$$

In particular, $f \in S_j$: $(1, \alpha) \cdot f = \alpha^{-j} \cdot f$.

Since actions of G and \mathbb{R}^* commutes, $\forall \alpha \in \mathbb{R}^*$:

$$(1, \alpha)F = \sum_{j=0}^{m} \alpha^{-j}F_j \in S^G$$

$1, \ldots, m+1 : m+1$ different real numbers
1. \(F = F_0 + \ldots + F_{m+1} \in S^G \)
2. \(F = F_1 + \frac{1}{2} F_1 + \ldots + \frac{1}{2^{m+1}} F_{m+1} \in S^G \)

\[F = F_0 + \ldots + F_{m+1} \in S^G \]

\[m+1 \cdot F = F_0 + \frac{1}{m+1} F_1 + \ldots + \frac{1}{(m+1)^{m+1}} F_{m+1} \in S^G \]

If \(M = \begin{pmatrix}
1 & \ldots & 1 \\
\frac{1}{2} & \ldots & \left(\frac{1}{2}\right)^{m+1} \\
\vdots & \vdots & \vdots \\
\frac{1}{m+1} & \ldots & \left(\frac{1}{m+1}\right)^{m+1}
\end{pmatrix} \in \mathbb{R}^{(m+1)\times (m+1)} \) is a VanderMonde matrix then

\[M \cdot \begin{pmatrix}
F_0 \\
\vdots \\
F_m
\end{pmatrix} \in (S^G)^{m+1} \]

Since \(M \) is invertible, \(\begin{pmatrix}
F_0 \\
\vdots \\
F_m
\end{pmatrix} = M^{-1} \begin{pmatrix}
H_0 \\
\vdots \\
H_m
\end{pmatrix} \) where \(H_i \in S^G \).

Hence all \(F_i \in S^G \).

Lemma 9.1 means that \(S^G \) is a graded subalgebra of \(S \), i.e.

\[S^G = \bigoplus_{k=0}^{\infty} (S^G \cap S_k) \quad \text{and} \quad S_k^G = S^G \cap S_k \]

Let \(S_k^G = \bigoplus_{k=1}^{\infty} S_k^G \) be the invariants of positive degree. Let \(I = (S^G_+) \) be the ideal of \(S \) generated by \(S^G_+ \). By Hilbert’s Basis Theorem, any ideal in \(S \) is generated by finitely many elements.

Say \(I = (f_1, \ldots, f_k)_S \), \(f_i \in S^G \). Write \(f_i = \sum_j f_{ij} \) where \(f_{ij} \in S_j \). With Lemma 9.1:

\(f_{ij} \in S_j \), \(j < 0 \).

Hence \(I = (I_1, \ldots, I_r)_S \) where \(I_j \in S^G_j \). If for any \(k \): \(I_k \in (I_1, \ldots, I_{k-1}, I_{k+1}, \ldots, I_r)_S \) we throw \(I_k \) away. Wlog, \(I_1, \ldots, I_r \) is a minimal system of such generators.

Definition. \(I_1, \ldots, I_r \) are called fundamental invariants if they are a minimal system of homogeneous invariant generators of \((S^G_+)_S\).

- Coinvariants: \(S_G = S / I \)
- Integral: \(\int : S \rightarrow S^G \)

\[\int F = \frac{1}{|G|} \sum_{g \in G} gF \]
Note that $F \in S^G \implies gF = F \implies \int_G F = F$ and $\forall H \in S:\$

$$\int_G (FH) = \frac{1}{|G|} \sum_g (gF)(gH) = F \frac{1}{|G|} \sum_g gH = F \int_G H$$

So \int is an S^G-linear map $S \to S^G$.

Proposition 9.2. Let G be any finite group acting on V, $I_1, \ldots, I_r \in S^G = \mathbb{R}[V]^G$ fundamental invariants. Then:

$$\forall F \in S^G \exists p(z_1, \ldots, z_r) \in \mathbb{R}[z_1, \ldots, z_r] \text{ s.t. } F = p(I_1, \ldots, I_r)$$

Proof. Lemma 9.1: we may restrict to homogeneous F. We do induction on $d = \deg(F)$.

$d = 0$: $\implies F = \text{const} \implies p = \text{const} \cdot 1$ does the job.

$d < N$: is done

$d = N > 0$: $F \in S^G \implies F \in (S^G)_S \implies F = \sum_{j=1}^r H_jI_j, \ H_j \in S$. Since $d = \deg(F)$, $d_j = \deg(I_j)$:

$$F = \sum_{j=1}^r (H_j)^{d-d_j}I_j$$

and therefore

$$F = \int_G F = \sum_{j=1}^r I_j \int_G (H_j)^{d-d_j}$$

By induction assumption $\forall j \exists p_j \in \mathbb{R}[z_1, \ldots, z_r] \text{ s.t. } \int_G (H_j)^{d-d_j} = p_j(I_1, \ldots, I_r)$. Hence

$$p = \sum_{j=1}^r z_jp_j$$

does the job.

So for any real representation V of any finite group G the algebra map

$$\mathbb{R}[z_1, \ldots, z_r] \to S^G, \ z_i \mapsto I_i$$

is surjective.

1. Injectivity holds only for reflection groups
2. Hilbert’s 14-th problem is that S^G is a finitely generated algebra for any group
3. $S^G_0 = \mathbb{R} \cdot 1$ constant functions
4. \(f \in S^G_1, f \neq 0 \implies V = \text{Ker}(f) \oplus \mathbb{R} \). Hence \(S^G_1 \neq 0 \iff gV \) has a trivial constituent

5. if \(\langle , \rangle \) is a Euclidean form on \(V \) then \([x,y] = \int G \langle x,y \rangle \) makes \(G \) orthogonal. Hence \(F(x) = [x,x] \) defined \(F \in S^G_2 \).

Lemma 9.3. Let \(P \in S, L \in S_1 \setminus \{0\} \), if \(\forall x \in V: L(x) = 0 \implies P(x) = 0 \) then \(L|P \).

Proof. \(S = \mathbb{R}[x_1, \ldots, x_n] \). Wlog \(L = \alpha x_n + b(x_1, \ldots, x_{n-1}) \) with \(\alpha \neq 0 \). Let us divide \(P \) by \(L \) with remainder by replacing every \(x_n \) with \(-\frac{1}{\alpha} b(x_1, \ldots, x_{n-1}). \) \(x_n = \frac{1}{\alpha} L - \frac{1}{\alpha} b(x_1, \ldots, x_{n-1}). \)

Example: \(L = x_1 - x_2 \)

\[
P = x_1^2 = x_1 \cdot x_1 = x_1(L + x_2)
\]

\[
= x_1 L + x_1 x_2 = x_1 L + (L + x_2)x_2
\]

\[
= (x_1 + x_2) L + x_2^2
\]

\(P = AL + B \), \(A \in \mathbb{R}[x_1, \ldots, x_n], B \in \mathbb{R}[x_1, \ldots, x_{n-1}] \). If \(B = 0 \) we are done. If \(B \neq 0 \) pick \(a_1, \ldots, a_{n-1} \in \mathbb{R} \) s.t. \(B(a_1, \ldots, a_{n-1}) \neq 0 \).

Let \(a_n = -\frac{1}{\alpha} b(a_1, \ldots, a_{n-1}) \implies L(a_1, \ldots, a_n) = 0 \implies P(a_1, \ldots, a_n) = 0. \)

But \(P(a_1, \ldots, a_n) = B(a_1, \ldots, a_{n-1}) \neq 0 \) which is a contradiction. \(\square \)

Proposition 9.4. Let \(G = W \) be a finite reflection group. Let \(J_1, \ldots, J_k \in S^W \) s.t. \(J_1 \notin (J_2, \ldots, J_k)_S \). If \(P_1 \in S_h \) s.t. \(\sum_{i=1}^k P_i J_i = 0 \) then \(P_1 \in (S^W_+) \).

Proof. Observe that \(J_1 \notin (J_2, \ldots, J_k)_S \): if \(J_1 = \sum_{i=2}^k H_i J_i \) with \(H_i \in S \) then

\[
J_1 = \int J_1 = \sum_{i=2}^k \int H_i \in (J_2, \ldots, J_k)_S
\]

Proceed by induction on \(\text{deg}(P_1) \):

\[
\text{deg}(P_1) = 0: \implies P_1 = c \cdot 1 \implies c \cdot J_1 = \sum_{i=2}^k (-P_i) J_i \implies c = 0 \text{ because } J_1 \notin (J_2, \ldots, J_k)_S \implies P_1 = 0 \in (S^W_+) \]

\(\text{deg}(P_1) < N \): done

\(\text{deg}(P_1) = N \): Let \(\Phi \subset W \) be the root system of \(G \). \(\forall \alpha \in V \) let \(L_\alpha \in S_1 \) be \(L_\alpha(v) = \langle \alpha, v \rangle \).

\(L_\alpha = 0 \implies \alpha \perp v \implies S_\alpha(v) = v \)

\[
\implies \forall j: (S_\alpha P_j - P_j)(v) = P_j(S_\alpha^{-1} v) - P_j(v) = 0
\]

With Lemma 9.3: \(S_\alpha P_j - P_j = L_\alpha \overline{P_j} \) for some \(\overline{P_j} \in S \).

Note that \(\text{deg}(\overline{P_j}) < \text{deg}(P_j) \)

- \(P_1 J_1 + \ldots + P_k J_k = 0 \)
- \((S_\alpha P_1) J_1 + \ldots + (S_\alpha P_k) J_k = 0 \)

49
\[(P_1 - S_a P_1)J_1 + \ldots + (P_k - S_a P_k)J_k = 0 \]

Hence \(\alpha_0 (\mathcal{P}_1 J_1 + \ldots + \mathcal{P}_k J_k) = 0 \). Since \(S \) is a domain \(\mathcal{P}_1 J_1 + \ldots \mathcal{P}_k J_k = 0 \). By induction assumption, \(\mathcal{P}_1 \in (S^W_+) \). Hence \(S_a P_1 - P_1 = L_a \mathcal{P}_1 \in (S^W_+) \).

For each polynomial \(F \), denote \(\hat{F} = F + (S^W_+)S \in S_W \). Hence \(\forall \alpha \in \Phi : S_a \hat{P}_1 = \hat{P}_1 \).

Since \(W \) is generated by \(S_a \), \(\forall g : g \hat{P}_1 = \hat{P}_1 \). Hence \(\int_W \hat{P}_1 = \hat{P}_1 \) (\(W \) acts on \(S_W \) and \(\int \hat{F} = \int F \))

So \(P_1 \in \int P_1 + (S^W_+)S \subset (S^W_+) \).

\[\square \]

Lemma 9.5. (Euler’s formula)

\(F \in S_k = \mathbb{R}[x_1, \ldots, x_n]_k \), then

\[
\sum_{j=1}^{n} x_j \frac{\partial F}{\partial x_j} = kF
\]

Proof. Both sides are linear in \(F \), hence it suffices to verify the formula on monomials. Let \(F = x_1^{a_1} \ldots x_n^{a_n}, \sum a_i = k \). Then

\[
x_j \frac{\partial F}{\partial x_j} = a_j F
\]

Hence \(\sum_{j=1}^{n} \frac{\partial F}{\partial x_j} = (\sum a_i) F = kF \).

\[\square \]

Proposition 9.6. \(I_1, \ldots, I_r \) fundamental invariants for a (finite) reflection group \((W, V) \). If \(P(I_1, \ldots, I_r) = 0 \) for some \(P \in \mathbb{R}[z_1, \ldots, z_r] \) then \(P = 0 \).

Note: \(I_1, \ldots, I_r \) are algebraically independent.

Proof. Consider a grading on \(\mathbb{R}[z_1, \ldots, z_r] \) with \(\deg z_i = d_i = \deg I_i \). Let \(P = \sum P_j, P_j \) homogeneous of degree \(j \). Then

\[P(I_1, \ldots, I_r) = \sum_{j \in S_j} P_j(I_1, \ldots, I_r) = 0 \]

Hence \(P_j(I_1, \ldots, I_r) = 0 \). WLOG, we assume \(P \) is homogeneous.

Let \(P_{ij} = \frac{\partial P}{\partial z_j} \) and \(f_j = P_{ij}(I_1, \ldots, I_r) \in S^W \) is homogeneous. Let us fiddle around with the ideal

\[K = (f_1, \ldots, f_r)S_W \triangleleft S^W \]

WLOG, \(f_1, \ldots, f_m \) is a minimal system of generators of \(K, m \leq r \). Note that \(\deg f_i = \deg P - \deg I_i \) and \(f_i \) is homogeneous. If \(i \geq m + 1: f_i \in K = (f_1, \ldots, f_m)S_W \) so there are \(Q_{ij} \in S^W, Q_{ij} \) homogeneous of degree \(\deg I_i - \deg I_j \) s.t. \(f_i = \sum_{j=1}^{m} Q_{ij} f_j \).

\[
P(I_1, \ldots, I_r) = 0 \implies 0 = \frac{\partial P(I_1, \ldots, I_r)}{\partial x_k} = \sum_{i=1}^{r} \frac{\partial P}{\partial z_i}(I_1, \ldots, I_r) \frac{\partial I_i}{\partial x_k} \forall k \in \{1, \ldots, n\}
\]
Hence:

\[\forall k : \sum_{i=1}^{m} f_i \frac{\partial I_i}{\partial x_k} + \sum_{i=m+1}^{r} \sum_{j=1}^{m} Q_{ij} f_j \frac{\partial I_i}{\partial x_k} = 0 \]

\[\forall k : \sum_{i=1}^{m} f_i \left(\frac{\partial I_i}{\partial x_k} + \sum_{j=m+1}^{r} Q_{ji} \frac{\partial I_j}{\partial x_k} \right) = 0 \]

By 9.4, for all \(i \in \{1, \ldots, m\} \):

\[\frac{\partial I_i}{\partial x_k} + \sum_{j=m+1}^{r} Q_{ji} \frac{\partial I_j}{\partial x_k} \in (S^W \cap S) \]

Hence for some \(H^k_i \in S \):

\[\forall i, k : \frac{\partial I_i}{\partial x_k} + \sum_{j=m+1}^{r} Q_{ji} \frac{\partial I_j}{\partial x_k} = \sum_{t=1}^{r} I_t H^k_i \]

Multiply each equality by \(x_k \) and sum over \(k \). By Euler’s formula:

\[\forall i : d_i I_i + \sum_{j=m+1}^{r} d_j Q_{ji} I_j = \sum_{t=1}^{r} I_t \tilde{H}_t \]

where \(\tilde{H}_t \) have no free terms (\(\tilde{H}_t = \sum x_k H^k_i \)). \(I_i \) enters both sides of the equality. If we consider the homogeneous degree \(d_i \) parts of both sides, then

\[d_i I_i + \sum_{j=m+1}^{r} c_j I_j = \sum_{t=1}^{r} I_t b_t \]

where \(b_t \) has to be zero because \(\tilde{H}_t \) has no free terms. Therefore

\[I_i = \sum_{j \neq i} I_j G_j \implies I_i \in (I_1, \ldots, I_{i-1}, I_{i+1}, \ldots, I_r) \]

which is a contradiction. Therefore all \(\frac{\partial P}{\partial x_k} = 0 \implies P = 0. \]

\[\square \]

Example: \(S_n \) acting on \(\mathbb{R}^n \) by permutations.

\[\mathbb{R}^n = U \oplus \mathbb{R} \text{ where } U = \left\{ \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} : \sum \alpha_i = 0 \right\} \text{ and } \mathbb{R} = \mathbb{R} \cdot \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \]

\((S_n, U)\) is then a type \(A_{n-1} \) essential reflection group with elementary symmetric functions:

\[\sigma_1(x_1, \ldots, x_n) = x_1 + \ldots + x_n \]
\[\sigma_2(x_1, \ldots, x_n) = x_1 x_2 + x_1 x_3 + \ldots + x_{n-1} x_n \]
\[\ldots \]
\[\sigma_n(x_1, \ldots, x_n) = x_1 \cdot \ldots \cdot x_n \]
is a system of fundamental invariants. The power functions $\pi_j = x_1^j + \ldots + x_n^j$, $j = 1, \ldots, n$ is another fundamental system.

A_{n-1}: $\sigma_1|_U = 0$
$\sigma_2|_U, \ldots, \sigma_n|_U$ are fundamental invariants with fundamental degrees $2, 3, \ldots, n$.

B_n: group has more transformations $x_i \mapsto \pm x_i$, $S^W(B_n) = (S^S_n)^C_2 = \mathbb{R}[\sigma_1, \ldots, \sigma_n]^C_2$.
Hence the fundamental invariants are $\sigma_j(x_1^2, \ldots, x_n^2)$ with degrees $2 \cdot 1, 2 \cdot 2, \ldots, 2 \cdot n$.

D_n: in D_n, instead of the full group C_2^n, it is a subgroup of index 2. So $\sigma_n = x_1 \cdots x_n \in S^W(D_n)$.
So the fundamental invariants are $\sigma_1(x_1^2), \ldots, \sigma_{n-1}(x_1^2), \sigma_n(x_i)$ with degrees $2 \cdot 1, 2 \cdot 2, \ldots, 2 \cdot (n-1), n$.

Theorem 9.7. Let (G, V) be a finite reflection group, $n = \dim V$, $S = \mathbb{R}[V]$, I_1, \ldots, I_r fundamental invariants. Then

$$S^G = \mathbb{R}[I_1, \ldots, I_r] \quad \text{and} \quad r = n$$

Proof. The natural algebra homomorphism

$$\psi : \mathbb{R}[z_1, \ldots, z_r] \longrightarrow S^G, \ F(z_1, \ldots, z_r) \mapsto F(I_1, \ldots, I_r)$$

is surjective by 9.2 and injective by 9.6. Hence ψ is an isomorphism. It remains to show that $n = r$.
Consider the field of rational functions

$$F = \mathbb{R}(x_1, \ldots, x_n) = \{ \frac{f}{g} : f, g \in S, \ g \neq 0 \}$$

Transcendence degree is $\text{trdeg}_\mathbb{R} F = n$. The smaller field $A = \mathbb{R}(I_1, \ldots, I_r) \leq F$, $\text{trdeg}_\mathbb{R} A = r$.
From Galois theory, $\text{trdeg}_A F = \text{trdeg}_\mathbb{R} F - \text{trdeg}_\mathbb{R} A = n - r$. It suffices to show that $\text{trdeg}_A F = 0$, i.e. every element of F is algebraic over A.
Pick $f \in F$, G acts on F with $F^G = A$. Consider $h(z) \in F[z]$ defined by

$$h(z) = \prod_{g \in G} (z - g.f)$$

Since \(\forall t \in G, t.h = \prod_{g \in G} (z - tg.f) = h \) \(\implies h \in A[z] \).

$$h(f) = \prod_{g \in G} (f - g.f) = (f - f) \prod_{g \neq 1} (f - g.f) = 0$$

Hence f is algebraic over A. \(\square \)

Let d_1, \ldots, d_n with $d_i = \deg I_i$ be the fundamental degrees.

Theorem 9.8. If I'_1, \ldots, I'_n is another system of fundamental invariants with degrees d'_1, \ldots, d'_n, $d'_j = \deg I'_j$ then $\exists \ \sigma \in S_n$ s.t.

$$\forall j : d_j = d'_{\sigma(j)}$$

52
Proof. By 9.7 there are $F_1, \ldots, F_n, G_1, \ldots, G_n \in \mathbb{R}[z_1, \ldots, z_n]$ s.t.

$$I_j = F_j(I_1', \ldots, I_n') \quad \text{and} \quad I_j' = G_j(I_1, \ldots, I_n) \quad \forall \ j$$

Then $\forall \ j: \ I_j = F_j(G_1(I_1, \ldots, I_n), \ldots, G_n(I_1, \ldots, I_n))$. Hence, since I_1, \ldots, I_n are algebraically independent:

$$z_j = F_j(G_1(z_1, \ldots, z_n), \ldots, G_n(z_1, \ldots, z_n))$$

and therefore

$$\frac{\partial z_j}{\partial z_k} = \sum_{s=1}^{n} \frac{\partial F_j}{\partial z_s}(G_1(z_1, \ldots, z_n), \ldots, G_n(z_1, \ldots, z_n)) \frac{\partial G_s}{\partial z_k}(z_1, \ldots, z_n)$$

And on matrix level:

$$I_n = \left(\frac{\partial F_i}{\partial z_s} \right)_{I_1', \ldots, I_n'} \left(\frac{\partial G_s}{\partial z_k} \right)_{I_1, \ldots, I_n} \in Mat_n(S)$$

Hence $\det \left(\frac{\partial F_i}{\partial z_s} \right)$ is invertible in $S = \mathbb{R}[x_1, \ldots, x_n]$. Hence $\exists \ \sigma \in S_n$ s.t.

$$\frac{\partial F_1}{\partial z_{\sigma(1)}} \cdots \frac{\partial F_n}{\partial z_{\sigma(n)}} = c \cdot 1 + \text{higher degree terms, } c \neq 0$$

Since $\deg I'_i = \deg z_i = d'_i$, $\deg F_i = \deg I_i = d_i$:

$$\forall \ i: \ d_i = d'_i$$

\[\square\]
10 Fundamental Degrees

Discuss the role of \(d_1, \ldots, d_n\).

Lemma 10.1. A finite group \(G\) acts in a finite dimensional vectorspace over \(\mathbb{C}\) (by \(\rho : G \rightarrow GL_n(\mathbb{C})\)). Then \(\forall x \in G: \rho(x)\) is diagonalisable with eigenvalues of absolute value 1.

Proof. \(|G| = n < \infty \implies x^n = 1 \implies \rho(x)^n = I_n\).

Hence the minimal polynomial of \(\rho(x)\), \(\mu_x(z)\) divides \(z^n - 1\). Therefore eigenvalues \(\lambda\) satisfy \(\lambda^n - 1 = 0\), hence \(\lambda^n = 1 \implies |\lambda|^n = 1 \implies |\lambda| = 1\).

Further, since \(z^n - 1\) has no multiple roots, \(\mu_x(z)\) has no multiple roots and all Jordan blocks of \(\rho(x)\) have size 1.

Let \(\mathbb{C}[z] = \{ \sum_{n=0}^{\infty} \alpha_n z^n \}\) be the ring of formal power series. If \(V = \bigoplus_{n=0}^{\infty} V_n\) is a graded vector space with \(\dim V_n < \infty\), the "right" notion of dimension of \(V\) is the Poincaré polynomial

\[p_V(t) = \sum_{n=0}^{\infty} \dim V_n \cdot t^n \]

Example:

- \(p_{\mathbb{C}[z]}(t) = 1 + t^d + t^{2d} + t^{3d} + \ldots = \frac{1}{1-t^d}\) where \(\deg z = d\).
- \(p_{V \oplus W}(t) = p_V(t) + p_W(t)\)
- \(p_{V \otimes W}(t) = p_V(t)p_W(t)\)
- \(p_{\mathbb{C}[z_1, \ldots, z_n]} = \prod_j p_{\mathbb{C}[z_j]}(t) = \frac{1}{1-t^{d_1}} \cdots \frac{1}{1-t^{d_n}}\) where \(\deg z_i = d_i\), \(\mathbb{C}[z_1, \ldots, z_n] = \mathbb{C}[z_1] \otimes \ldots \otimes \mathbb{C}[z_n]\).

If \(d_1 = \ldots = d_n = 1\) then \(p_{\mathbb{C}[z_1, \ldots, z_n]}(t) = \frac{1}{(1-t)^n}\).

Example: If \(G\) acts on \(V\), then \(\forall x \in G\) let

\[\chi_x(t) = \det(I_V - t\rho(x))^{-1} = \prod_j \frac{1}{1-\lambda_j t} = \prod_j (1 + \lambda_j t + \lambda_j^2 t^2 + \ldots) = \sum_{j=0}^{\infty} t^j \left(\sum_{a_1 + \ldots + a_n = j} \lambda_1^{a_1} \cdots \lambda_n^{a_n} \right) \]

where \(\lambda_1, \ldots, \lambda_n\) are the eigenvalues of \(\rho(x)\).

Theorem 10.2. Let \((G, V)\) be a finite reflection group, \(d_1, \ldots, d_n\) the fundamental degrees. Then

\[\frac{1}{|G|} \sum_{x \in G} \chi_x(t) = \prod_{j=1}^{\infty} \frac{1}{1-t^{d_j}} \in \mathbb{C}[[t]] \]
Proof. By 9.7 and the Example before, the RHS is \(p_{SG}(t) \).

\(x|_{S_1} \) belongs to \(\begin{pmatrix} \lambda_1 & 0 \\ . & . \\ 0 & \lambda_n \end{pmatrix} \) in some basis \(e_1, \ldots, e_n \) of \(S_1 \). Then \(e_1^{a_1} \cdots e_n^{a_n} \) with \(a_1 + \ldots + a_n = j \) form a basis of \(S_j \) and

\[
x e_1^{a_1} \cdots e_n^{a_n} = \lambda_1^{a_1} \cdots \lambda_n^{a_n} e_1^{a_1} \cdots e_n^{a_n}
\]

hence

\[
\text{tr}(x|_{S_j}) = \sum_{a_1 + \ldots + a_n = j} \lambda_1^{a_1} \cdots \lambda_n^{a_n}
\]

Hence

\[
\text{LHS} = \frac{1}{|G|} \sum_{x \in G, j=0}^{\infty} \text{tr}(x|_{S_j}) t^j
\]

Remember \(\pi_j = \int_G : S_j \rightarrow S_j^G \), \(\pi_j(v) = \frac{1}{|G|} \sum_{g \in G} gv \). In particular \(\text{LHS} = \sum_{j=0}^{\infty} \text{tr}(\pi_j) t^j \).

\[
\pi_j^2 = \pi_j \implies \pi_j \sim \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad \text{tr} \pi_j = \text{rk} \pi_j = \dim S_j^G
\]

Hence \(\text{LHS} = p_{SG}(t) \). □

Corollary 10.3. \(|G| = d_1 \cdots d_n \).

Corollary 10.4. \(d_1 + \ldots + d_n = n + \frac{1}{2}\text{number of reflections} \).

Proof. Multiply 10.2 by \((1-t)^n\):

\[
\frac{1}{|G|} \sum_{x \in G} \chi_x(t)(1-t)^n = \prod_{j=1}^{n} \frac{1 - t}{1 - t^{d_j}}
\]

\[
\frac{1}{|G|} \sum_{x \in G} \frac{(1-t)^n}{\det(1-tg)} = \prod_{j=1}^{n} \frac{1}{1 + t + t^2 + \ldots + t^{d_j-1}} = \alpha(t)
\]

\[
= \frac{1}{|G|} \left(\sum_{g \in G} \frac{1}{1 + \frac{2|\Phi|}{1+t}} + \frac{h(t) \cdot (1-t)^2}{(1+t+\ldots+t^{d_j-1})^2} \right)
\]

\([h(1) \text{ is defined}]

Plug in \(t = 1 \), then \(\frac{1}{|G|} = \prod_{j=1}^{n} \frac{1}{d_j} \implies |G| = d_1 \cdots d_n
\]

Apply \(\frac{\partial}{\partial t} \):

\[
\frac{|\Phi|}{2|G|} \frac{-2}{(1+t)^2} + \tilde{h}(t)(1-t) = \sum_{j=1}^{n} \alpha(t) (1 + t + \ldots + t^{d_j-1}) \left(\frac{-1 + 2t + 3t^2 + \ldots + (d_j-1)t^{d_j-2}}{(1 + t + \ldots + t^{d_j-1})^2} \right)
\]

55
Plug in $t = 1$:

$$-\frac{|\Phi|}{4|G|} = \sum_{j=1}^{n} \frac{d_j}{d_1 \cdots d_n} \left(-\frac{(d_j - 1)d_j}{2d_j^2} \right)$$

As $|G| = d_1 \cdots d_n$

$$-\frac{|\Phi|}{4} = \sum_{j=1}^{n} \frac{d_j - 1}{2} = \frac{1}{2} \left(\sum_{j=1}^{n} d_j - n \right)$$

Example:

- $I_2(m)$ has fundamental degrees $2, m$.

 $$|G| = 2m, \ |\Phi| = 2((m + 2) - 2) = 2m$$

- A_n has fundamental degrees $2, 3, \ldots, n + 1$

 $$|G| = (n+1)!, \ |\Phi| = 2((2+3+\ldots+n+1) - n) = 2 \left(\frac{n(n+3)}{2} - n \right) = n^2 + 3n - 2n = n^2 + n$$

56
11 Coxeter Elements

Let \((G, V)\) be a finite reflection group, \(\Phi \subset V\) a root system.
A Coxeter element is \(w = S_{\alpha_1} \cdots S_{\alpha_n}\) for some simple system \(\Pi = \{\alpha_1, \ldots, \alpha_n\}\).

There are two choices involved:

- simple system
- order on \(\Pi\)

In \(S_n\) the choices will lead to

\[
S_{\alpha_1} = (a_1 a_2), \quad S_{\alpha_2} = (a_2 a_3) \cdots S_{\alpha_{n-1}} = (a_{n-1} a_n)
\]

where \(\{a_1, \ldots, a_n\} = \{1, \ldots, n\}\). Hence \(w = (a_1 \ldots a_n)\). In \(S_n\), Coxeter elements are cycles of order \(n\).

Lemma 11.1. Let \(G\) a group, \(X\) a finite forest (graph without cycles). Suppose \(f : \text{Ver}(X) \rightarrow G\) is a function s.t. if two vertices \(a, b \in \text{Ver}(X)\) are not connected, then

\[
f(a)f(b) = f(b)f(a)
\]

Then for any choice of a total order on the vertices of \(X\), say \(\text{Ver}(X) = \{a_1, \ldots, a_n\}\), the conjugacy class \(Cl_G(g)\) of \(g = f(a_1) \cdots f(a_n)\) does not depend on the order chosen.

Proof. Induction on \(n = |\text{Ver}(X)|\).

\(n=1\): \(g = f(a_1)\), nothing to prove

\(n<k\) proved

\(n=k\) Easy case: \(X\) has no edges, then all \(f(a)f(b) = f(b)f(a)\), so \(g = f(a_1) \cdots f(a_n)\) is independent of the choice of the order.

If \(X\) has an edge, there is a vertex \(b\) connected with exactly one other vertex \(a\). For each function \(\psi : \{1, \ldots, n\} \rightarrow \text{Ver}(X)\), let \(g_{\psi} = f(\psi(1)) \cdots f(\psi(n))\).

Pick a particular \(\pi : \{1, \ldots, n\} \rightarrow \text{Ver}(X)\) s.t. \(\pi(n) = b, \pi(n-1) = a\). It suffices to find a \(s \in G\) s.t. \(g_\pi = s g_{\psi} s^{-1}\).

Case 1 \(\psi(n) = n, \psi(n-1) = a\).

Let \(Y = X \setminus \{b\}\) and \(f' : Y \rightarrow G\) be \(f'(c) = \begin{cases} f(a)f(b) & c = a \\ f(c) & c \neq a \end{cases}\). Then

\[
g_{\psi} = f(\psi(1)) \cdots f(\psi(n-2)) f(a) f(b) = f'(\psi(1)) \cdots f'(\psi(n-1))
\]

By induction assumption it is conjugate to \(f'(\pi(1)) \cdots f'(\pi(n-1)) = g_\pi\).
Case 2 \(\psi(n) = b, \psi(j) = a, \ j < n - 1. \)
Let \(X_0 = \{ \psi(k) : k < j \}, \ X_1 = \{ \psi(k) : j < k < n \} \). Then define
\[
\psi_i : \psi^{-1}(X_i) \rightarrow X_i, \ \psi_i(c) = \psi(c)
\]
Then
\[
g_\psi = g_{\psi_0}f(a)g_{\psi_1}f(b) = g_{\psi_0}f(a)f(b)g_{\psi_1}^{-1} = g_{\psi_1}g_{\psi_0}f(a)f(b)
\]
This is conjugate to \(g_\pi \) by Case 1.

Case 3 \(\psi(j) = b, \ j < n, \ X_0, X_1, \psi_0, \psi_1 \) as above. Then
\[
g_\psi = g_{\psi_0}f(b)g_{\psi_1} \sim g_{\psi_1}g_{\psi_0}f(b)
\]
done by Case 2.

\[\square\]

Proposition 11.2. Coxeter elements form a conjugancy class in \(G \).

Proof. Let \(C = \{ \text{Coxeter elements} \} \). Then
\[
xS_{\alpha_1} \cdots S_{\alpha_n}x^{-1} = (xS_{\alpha_1}x^{-1}) \cdots (xS_{\alpha_n}x^{-1}) = S_{x(\alpha_1)} \cdots S_{x(\alpha_n)} \in C
\]
Hence \(xCx^{-1} = C \), so \(C \) is the union of some conjugacy classes. Let \(w_1 = S_{\alpha_1} \cdots S_{\alpha_n}, \ w_2 = S_{\beta_1} \cdots S_{\beta_n} \in C \). Then there is a \(g \in G \) s.t. \(\{ g(\alpha_1), \ldots, g(\alpha_n) \} = \{ \beta_1, \ldots, \beta_n \} \). Hence \(gw_1g^{-1} = S_{g(\alpha_1)} \cdots S_{g(\alpha_n)} \) is conjugate to \(w_2 \) by Lemma 11.1. \(\square \)

Let \(W \) be a finite Coxeter group, \(w = \pi_1 \cdots \pi_n \) a Coxeter element, \(\{ a_1, \ldots, a_n \} \) the vertices of the Coxeter graph. Then \(h = |w| \) is called the Coxeter number of \(W \).
Let \(\lambda_1, \ldots, \lambda_n \) be the eigenvalues of \(w|_{V(W)} \). Since \(w^h = 1, \ \lambda_k^h = 1 \implies \lambda_k = e^{\frac{2\pi i m_k}{h}} \) for a unique \(0 \leq m_k < h \).
We call \(m_1, \ldots, m_n \) the exponents of \(W \).

Finite Coxeter graphs are bipartite \((X = X_1 \cup X_2) \) **Example:**

- \(D_6 \):
• E_8:

For $a, b \in X_i \implies \pi b = \overline{b\pi}$. Hence $\omega_j = \prod_{a \in X_j} \pi$ does not depend on the order of X_j. Moreover, $\omega_j^2 = \prod \pi^2 = 1$.

$\omega = \omega_1 \omega_2$ is called canonical Coxeter element.

$G = \langle \omega_1, \omega_2 \rangle$ is a dihedral group of order $2h$.

Proposition 11.3. Let us order the exponents $0 \leq m_1 \leq \ldots \leq m_n < h$. Then

1. $m_1 \geq 1$
2. $\forall j: h - m_j$ is an exponent
3. $\sum_{j=1}^{n} m_j = \frac{h}{2}$

Proof.

1. if $m_1 = 0$ then $e^0 = 1$ is a eigenvalue of ω. Hence $\exists x \in V(W)$ s.t. $x \neq 0, \omega x = x$.

\[
\omega_2 x = \omega_1 \omega_1 \omega_2 x = \omega_1 \omega_1 x = \omega_1 x
\]

Let $a \in X_j: S_a(c) = \overline{a} \cdot x = x - 2 \langle e_a, x \rangle e_a$. Hence

\[
\omega_1 x = x + \sum_{a \in X_1} \alpha_a e_a = \omega_2 x = x + \sum_{b \in X_2} \alpha_b e_b
\]

\[
\implies \sum_{a \in X_1} \alpha_a e_a = \sum_{b \in X_2} \alpha_b e_b
\]

and therefore all $\alpha_a, \alpha_b = 0$. So $\omega_1 x = \omega_2 x = 0$. Consider

\[
\omega_1 |_{V(W)}^{a_j \in X_1} = S_{a_1} \cdots S_{a_k}:
\begin{align*}
V^1_1 \ni y & \mapsto y \\
V_1 \ni y & \mapsto -y
\end{align*}
\]

where $V_i = \bigoplus_{a \in X_j} \mathbb{R} e_a$.

Hence $x \in V^1_1 \cap V^1_2$ and $V^1_1 \cap V^1_2 = 0$ because $V = V_1 \oplus V_2 = V^1_1 \oplus V^1_2$ since the form is non-degenerate. But this is a contradiction ($x = 0$) proving that $m_1 > 0$.

59
2. G acts on $V(W)$. Let $f(z)$ be the characteristic polynomial of $\omega|_{V(W)}$. Then

$$f(z) = f_1(z) \cdots f_s(z)$$

where $f_j(z) \in \mathbb{R}[z]$ and monic irreducible in $\mathbb{R}[z]$.

Case 1 $f_j(z) = z - \lambda$, $\lambda \in \mathbb{R}$.

Since $\omega^h = 1 \implies \lambda^h = 1 \implies \lambda = \pm 1$. Note that 1 is not an eigenvalue of ω by part (1), so $\lambda = -1$, h is even and $\lambda = e^{\frac{2\pi i}{h}}$, $\frac{h}{2}$ is the exponent.

Case 2 $f_j(z) = (z - \lambda)(z - \lambda^*)$, $\lambda \notin \mathbb{R}$.

Then if $\lambda = e^{\frac{2\pi i}{h}m}$ then $\lambda^* = e^{-\frac{2\pi i}{h}m} = e^{\frac{2\pi i}{h}(h - m)}$.

3. This also gives part (3) because the average of exponents in each $f_j(z)$ is $\frac{h}{2}$.

\[\square\]

Lemma 11.4. Let W be finite and connected. Then there are $z_1, z_2 \in V$ s.t.

1. z_1, z_2 are linearly independent
2. $P = \mathbb{R}z_1 \oplus \mathbb{R}z_2$ is $G = D_{2h}$-linear
3. $\omega|_P = S_{z_1}^\perp$
4. $z_i \in \overline{C}$, the closure of the fundamental chamber
5. $P \cap C = \mathbb{R}_{>0}z_1 + \mathbb{R}_{>0}z_2$

Proof. ω_a is the dual basis to e_a. That means $\langle \omega_a, e_a \rangle = \delta_{ij}$.

Easy claims:

- $\overline{C} = \langle x : \langle x, e_a \rangle \geq 0 \rangle = \sum_a \mathbb{R}_{\geq 0} \omega_a$
- $V_j^\perp = \bigoplus_{a \notin X_j} \mathbb{R} \omega_a$
- angle between ω_a and $\omega_b = \pi$ -- angle between e_a and e_b
- The angles between ω_a and ω_b are acute and $\langle \omega_a, \omega_b \rangle \geq 0$ and $\langle \omega_a, \omega_b \rangle = 0 \iff \langle e_a, e_b \rangle = 0 \iff \omega_a$ and ω_b commute.

$Q = (\langle e_a, e_b \rangle)_{a,b}$ is the matrix of

- symmetric positive definite bilinear form \langle , \rangle in the basis e_a,
- linear map $q : V \rightarrow V, q(\omega_a) = e_a$ in the basis ω_a.

In particular, its eigenvalues are positive and real. Let λ be the largest eigenvalue of Q. Consider the new form $[,]$ given by $Q - \lambda I$ in the basis e_a.

Note: $[x, x] \leq 0$ and $[x, x] = 0 \iff x \in \ker[,] = K$. $K \neq 0$, K is eigenspace of q.

Pick $z \neq 0$, $z = \sum_a \alpha_a \omega_a \in K$ and let $\tilde{z} = \sum |\alpha_a| \omega_a$.

Now, the idea is to use that $z_j = \sum_{a \in X_j} |\alpha_a| \omega_a$, but we have no time to finish the proof. \[\square\]
Theorem 11.5. If W is finite connected of rank n (i.e. the number of vertices in the Coxeter graph is n), then

1. $m_1 = 1$, $m_n = h - 1$
2. $|\Phi| = h n$

Proof. (Idea)
$\alpha \in \Phi \longrightarrow H_\alpha \cap P$ is G-conjugate to Rz_1 or Rz_2.

- if h is odd:

There are $\frac{n}{2}$ hyperplanes H_α s.t. $H_\alpha \cap P$ is one of these h lines

- if h is even:

There are $\frac{h}{2}$ lines with one intersection pattern and $\frac{h}{2}$ lines with another intersection pattern

\[\square \]

Theorem 11.6. Let W be finite and connected of rank n, $1 \leq m_1 \leq \ldots \leq m_n = h - 1$ the fundamental exponents, $2 \leq d_1 \leq \ldots \leq d_n$ the fundamental degrees. Then:

\[\forall j : d_j = m_j + 1 \]

Proof. (idea)
Compute $Jac = \det \left(\frac{\partial f_i}{\partial z_k} \right)$ in two different ways.

\[\square \]

Corollary 11.7. $|W| = \prod_j (m_j + 1)$, $|\Phi| = 2 \sum_j m_j$. 61
Corollary 11.8. Let \(W \) be connected.
\[
-1 = \begin{pmatrix}
 -1 \\
 . \\
 . \\
 1
\end{pmatrix} \in \rho(W) \iff \text{all } m_i \text{ are odd}
\]

Proof.
"\(\Rightarrow \)" \((-1) \circ I_j = I_j \in S^W \). Therefore \((-1) \cdot x_k = x_k \Rightarrow (-1)I_j = (-1)^d_j I_j \Rightarrow (-1)^d_j = 1.
So all \(d_j \) are even and therefore all \(m_j \) are odd.

"\(\Leftarrow \)" \(m_1 = 1, m_n = h - 1 \) are both odd \(\Rightarrow \) \(h \) is even
\[
(\omega|_{V(W)})^h \sim \begin{pmatrix}
 e^{2\pi i m_1} \\
 . \\
 . \\
 e^{2\pi i m_n}
\end{pmatrix} = \begin{pmatrix}
 e^{\pi i m_1} \\
 . \\
 . \\
 e^{\pi i m_n}
\end{pmatrix} = \begin{pmatrix}
 -1 \\
 . \\
 . \\
 -1
\end{pmatrix}
\]

\(\Box \)

Proposition 11.9. Let \(W \) be finite, connected, crystallographic. Then \(\forall \ m \ s.t. \ 1 \leq m \leq h - 1, \ \gcd(m,h) = 1 \ then \ m \ is \ an \ exponent. \)

Proof. Cyclotomic polynomial
\[
\Phi_h(z) = \prod_{1 \leq m \leq h-1 \atop \gcd(m,h)=1} (z - e^{\frac{2\pi i}{h} m})
\]
is irreducible in \(\mathbb{Z}[z] \).
The characteristic polynomial \(f_\omega(z) \) of \(\omega|_{V(W)} \) is in \(\mathbb{Z}[z] \).
For \(m = 1 \): \((z - e^{\frac{2\pi i}{h}})|f_\omega(z) \) in \(\mathbb{C}[z] \). Therefore
\[
\Phi_h(z)|f_\omega(z) \text{ in } \mathbb{Z}[z]
\]
and therefore all \(e^{\frac{2\pi i}{h} m} \) are eigenvalues.

Application: \(E_8 \) has rank 8 and 240 roots. Hence \(h = \frac{\left|\Phi\right|}{n} = \frac{240}{8} = 30 \). The number of coprimes of 30 is
\[
\varphi(30) = \varphi(2)\varphi(5)\varphi(3) = 1 \cdot 4 \cdot 2 = 8
\]
Hence the exponents are 1, 7, 11, 13, 17, 19, 23, 29 and so
\[
\left|W\right| = 2 \cdot 8 \cdot 12 \cdot 14 \cdot 18 \cdot 20 \cdot 24 \cdot 30
\]

| | \(\left|\Phi\right| \) | \(h = \frac{\left|\Phi\right|}{n} \) | "easy exponents" | missing exponents | \(\left|W\right| \) |
|---|---|---|---|---|---|
| \(E_6 \) | 72 | 12 | 1, 5, 7, 11 | 4, 8 | |
| \(E_7 \) | 126 | 18 | 1, 5, 7, 11, 13, 17 | 9 | |
| \(E_8 \) | 240 | 30 | 1, 7, 11, 13, 17, 19, 23, 29 | none | |
| \(F_4 \) | 48 | 12 | 1, 5, 7, 11 | none | \(2 \cdot 6 \cdot 8 \cdot 12 = 2^7 \cdot 3^2 \) |
| \(H_3 \) | 30 | 10 | 1, 9 | 5 | \(2 \cdot 6 \cdot 10 = 120 \) |
| \(H_4 \) | 120 | 30 | 1, 29 | 11, 19 | \(2 \cdot 12 \cdot 20 \cdot 30 = (120)^2 \) |
Calculations:
Since exponents come in pairs \((m, h-m)\) the only stand alone exponent is \(\frac{h}{2}\). This gives missing \(E_7\) and \(H_3\) components.

\(E_6\): two exponents are missing. We know that \(z^{12} - 1\) is satisfied by Coxeter transformations.

\[
z^{12} - 1 = \phi_1\phi_6\phi_4\phi_3\phi_2\phi_1
\]

if \(\lambda = e^{\frac{2\pi m}{12}}\) where \(m\) is a missing component, there are 4 possible cases:

- \(\phi_2(\lambda) = 0 \rightarrow 6,6\)
- \(\phi_4(\lambda) = 0 \rightarrow 3,9\)
- \(\phi_3(\lambda) = 0 \rightarrow 4,8\)
- \(\phi_6(\lambda) = 0 \rightarrow 2,10\)

One needs to write the Coxeter transformations itself to see that \(\phi_3(\lambda) = 0\).

\(H_4\): can be realised by matrices with coefficients in \(\mathbb{Q}(\sqrt{5})\), \(z^{30} - 1 = \phi_{30} \cdots\). Over \(\mathbb{Q}(\sqrt{5})\), \(\phi_{30} = \phi_{30}^{(1)}\phi_{30}^{(0)}\), the product of 2 irreducibles of degree 4. Exponents correspond to the factor \(\phi_{30}^{(0)}\) and we know that \(\phi_{30}^{(0)}(e^{\frac{2\pi i}{30}}) = 0\). The roots of \(\phi_{30}^{(0)}\) are:

\(e^{\frac{2\pi i}{30}}, e^{\frac{2\pi i}{30} - 29}, e^{\frac{2\pi i}{30} + 11}, e^{\frac{2\pi i}{30} + 19}\)

\(H_3\): \(H_3 = \text{Sym(Icosahedron)} = \text{Sym(Dodecahedron)}\).

Every reflection of the Dodecahedron fixes two opposite edges. Hence

\[|\Phi| = 2|\text{reflections}| = 2 \frac{|\text{edges}|}{2} = 30\]

and

\[|W| = \frac{20}{|\text{vertices}|} \cdot 6 = 120\]

63
\(F_4, H_4: \) \(W(F_4) = \text{Sym}(24 - \text{cells}), \ W(H_4) = \text{Sym}(120 - \text{cells}) = \text{Sym}(600 - \text{cells}). \) We want to use a trick here:

Let \(x, y \in \mathbb{H} \), then \(S_x(y) = -x\bar{y}x. \) Hence if \(G \leq \mathbb{H}^* \), \(|G| < \infty \), \(|G| \) even \(\implies G \) is a root system. Let \(\{q : \|q\| = 1\} = U \subset \mathbb{H}^* \) and consider

\[
\psi : U \xrightarrow{\text{"SU}_2(\mathbb{C})"} SO(3)(\mathbb{R}) = SO(\mathbb{H}_{im}) : \ q \mapsto (x \mapsto q\bar{x}q)
\]

which is 2:1. Then \(\Phi_{H_4} = \psi^{-1}(\text{Rot Symm}(\text{Dodec})) \implies |\Phi_{H_4}| = 2 \cdot 60 = 120. \)
\(\Phi_{F_4} = \psi^{-1}(\text{Rot Symm}(\text{Cube})) \implies |\Phi_{F_4}| = 2 \cdot 24 = 48. \)

\(E_8, E_7: \) There exists a 8-dimensional algebra \(\Phi \) (octonions). If \(G \leq \Phi^* \), \(|G| < \infty \), \(|G| \) is even \(\implies G \) is a root system.

\begin{itemize}
 \item \(\Phi_{E_8} \) is the "group" of invertible octavian integers
 \item \(\Phi_{E_7} \) are the elements of order 4 in it.
\end{itemize}