1 Introduction

There are well known formulae for the number of fixed points for powers of a given orientation preserving hyperbolic linear toral automorphism $T : \mathbb{T}^d \to \mathbb{T}^d$. In particular, if $A \in SL(d, \mathbb{R})$ is the associated hyperbolic matrix then the number of fixed points for T^n is given by

$$\text{Card}\{T^n x = x\} = |\det(A^n - 1)|.$$

Since the hyperbolicity of T is equivalent to the fact that the eigenvalues for A do not lie on the unit circle, it is easy to see that the number of fixed points for T^n grows exponentially fast in n. We then recall that the growth rate of the number of periodic points for T is given by

$$h(T) = \lim_{k \to +\infty} \frac{1}{k} \log \text{Card}\{x : T^k x = x\} > 0 \quad (1.1)$$

where $h(T)$ is the topological entropy of $T : \mathbb{T}^3 \to \mathbb{T}^3$ (or, equivalently, the logarithm of the maximal eigenvalue of the matrix A).

In this note we want to consider fixed points for commuting hyperbolic toral automorphisms. This necessarily requires the torus to have dimension $d \geq 3$, and for simplicity of exposition we shall initially assume with that $d = 3$. Let us therefore consider a pair of commuting hyperbolic matrices $A_1, A_2 \in SL(3, \mathbb{Z})$ (i.e., $A_1 A_2 = A_2 A_1$ and neither matrix has an eigenvalue of modulus one) and associate the natural \mathbb{Z}^2-action on the three dimensional torus $\mathbb{T}^3 = \mathbb{R}^3/\mathbb{Z}^3$ defined by

$$\mathcal{A} : \mathbb{Z}^2 \times \mathbb{T}^3 \to \mathbb{T}^3 \text{ given by } \mathcal{A}(n_1, n_2, x) = A_1^{n_1} A_2^{n_2} x + \mathbb{Z}^3.$$

We will also ask for this action to be non-degenerate, i.e., if $n_1, n_2 \in \mathbb{Z}$ satisfy $A_1^{n_1} A_2^{n_2} = I$ then this necessarily implies that $n_1 = n_2 = 0$.

We can now consider the growth of the number of fixed points for the action associated to any element $(n, m) \in \mathbb{Z}^2$

Definition 1.1. We denote the number of fixed points of by $A_1^{n_1} A_2^{n_2}$ on \mathbb{T}^3 by

$$N(n_1, n_2) = \text{Card}\{x \in \mathbb{T}^3 : \mathcal{A}(n_1, n_2, x) = x\}.$$
We want to give uniform estimates on the rate of growth of the number of fixed points for the actions $A(n_1, n_2, \cdot) : T^3 \to T^3$ in terms of $(n_1, n_2) \in \mathbb{Z}^2$. In particular, we want to give a lower bound on the growth of the fixed points in terms as $\| (n_1, n_2) \|_2 = \sqrt{n_1^2 + n_2^2} \to +\infty$. In the present context, we can assume without loss of generality that the eigenvalues $\alpha_1, \alpha_2, \alpha_3$ of A_1, and the eigenvalues $\beta_1, \beta_2, \beta_3$ of A_2 are real.

Definition 1.2. We denote

$$\overline{\lambda} := \sup_{0 \leq \theta \leq 2\pi} \left\{ \max_{i=1,2,3} \{ \cos \theta \log |\alpha_i| + \sin \theta \log |\beta_i| \} \right\} \quad \text{and}$$

$$\underline{\lambda} := \inf_{0 \leq \theta \leq 2\pi} \left\{ \max_{i=1,2,3} \{ \cos \theta \log |\alpha_i| + \sin \theta \log |\beta_i| \} \right\}. \quad (1.2)$$

Our main result, in the particular case $d = 3$, is the following.

Theorem 1.3. Let $A_1, A_2 \in SL(3, \mathbb{Z})$ be commuting independent hyperbolic matrices. The growth rates of the fixed points

$$\overline{\lambda} = \limsup_{\| (n_1, n_2) \|_2 \to +\infty} \frac{1}{\| (n_1, n_2) \|_2} \log N(n_1, n_2) \quad \text{and}$$

$$\underline{\lambda} = \liminf_{\| (n_1, n_2) \|_2 \to +\infty} \frac{1}{\| (n_1, n_2) \|_2} \log N(n_1, n_2) > 0, \quad (1.3)$$

satisfy $0 < \underline{\lambda} < \overline{\lambda} < +\infty$.

Related problems have been studied for \mathbb{Z}^d-actions in algebraic and symbolic examples by Miles and Ward [5]. Interestingly, whereas their analysis relies on deep results in diophantine approximation, in the present context the required analysis is completely elementary.

The quantity $\overline{\lambda}$ is related to the supremum of the sum of the Lyapunov exponents for the action. In particular, the bound $\underline{\lambda} > 0$ can then be deduced from ([1], Lemma 4.3 (a)).

Remark 1.4. The values $\overline{\theta}$ and $\underline{\theta}$ realizing the supremum and infimum, respectively, in (1.3) can be understood as giving the “approximate directions” of largest and smallest growth in the number of fixed points.

Remark 1.5. There is no analogous result for rates of mixing. The reason for this is simply because any hyperbolic toral automorphism mixes super exponentially with respect to the Haar measure and C^∞ test functions. In particular, the rate of mixing is infinite and there is no useful way to distinguish between the actions. By the same token, there is no analogous result for rates of equidistribution for closed orbits [7], Theorem 1.6.

2 Examples

Let us consider some examples that illustrate Theorem 1.3.

Example 2.1. Consider the commuting matrices $A_1, A_2 \in SL(3, \mathbb{Z})$ given by

$$A_1 = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \quad \text{and} \quad A_2 = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}$$
Table 1: The number of fixed points \(N(n_1, n_2) \) for \(|n_1|, |n_2| \leq 4 \). The columns correspond to \(n_1 \) and the rows correspond to \(n_2 \).

<table>
<thead>
<tr>
<th></th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>533</td>
<td>27</td>
<td>203</td>
<td>377</td>
<td>533</td>
<td>448</td>
<td>1261</td>
<td>11857</td>
<td>68411</td>
</tr>
<tr>
<td>3</td>
<td>377</td>
<td>91</td>
<td>13</td>
<td>64</td>
<td>91</td>
<td>27</td>
<td>559</td>
<td>3913</td>
<td>21463</td>
</tr>
<tr>
<td>2</td>
<td>203</td>
<td>64</td>
<td>13</td>
<td>7</td>
<td>13</td>
<td>203</td>
<td>1261</td>
<td>6656</td>
<td>1247</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>13</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>13</td>
<td>27</td>
<td>2009</td>
</tr>
<tr>
<td>0</td>
<td>533</td>
<td>91</td>
<td>13</td>
<td>1</td>
<td>∞</td>
<td>13</td>
<td>91</td>
<td>533</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>2009</td>
<td>377</td>
<td>64</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>13</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>6656</td>
<td>1247</td>
<td>203</td>
<td>13</td>
<td>7</td>
<td>13</td>
<td>64</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>21463</td>
<td>3913</td>
<td>559</td>
<td>27</td>
<td>91</td>
<td>13</td>
<td>91</td>
<td>377</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td>68411</td>
<td>11857</td>
<td>1261</td>
<td>448</td>
<td>533</td>
<td>377</td>
<td>203</td>
<td>27</td>
<td>533</td>
</tr>
</tbody>
</table>

The number of fixed points \(N(n_1, n_2) \) for \(|n_1|, |n_2| \leq 4 \) is presented in Table 2.1.

The eigenvalues of \(A_1 \) are \(\alpha_1 = 3.24698 \ldots \), \(\alpha_2 = 1.55496 \ldots \) and \(\alpha_3 = 0.198062 \ldots \) and the eigenvalues of \(A_2 \) are \(\beta_1 = 0.198062 \ldots \), \(\beta_2 = 3.24698 \ldots \) and \(\beta_3 = 1.55496 \ldots \) (which happen to be a permutation of those for \(A_1 \)). Corresponding to these eigenvalues are the common eigenvectors

\[
e_1 = \begin{pmatrix} -0.327985 \ldots \\ 0.736976 \ldots \\ -0.591009 \ldots \end{pmatrix},
\]

\[
e_2 = \begin{pmatrix} -0.591009 \ldots \\ 0.327985 \ldots \\ 0.736976 \ldots \end{pmatrix}
\]

and

\[
e_3 = \begin{pmatrix} 0.736976 \ldots \\ 0.591009 \ldots \\ 0.327985 \ldots \end{pmatrix}.
\]

Using these eigenvalues are can now plot the function \(\theta \mapsto \{\max_{i=1,2,3}\{\cos \theta \log |\alpha_i| + \sin \theta \log |\beta_i|\}\} \) (cf. Figure 4.10) and then read off the values of \(\lambda \) and \(\bar{\lambda} \) as the maximum and minimum values, respectively.

![Figure 1: A plot of \(\{\max_{i=1,2,3}\{\cos \theta \log |\alpha_i| + \sin \theta \log |\beta_i|\}\} \) as a function of \(0 \leq \theta < 2\pi \)](image)

In this example, we see that \(\lambda = 0.60501 \ldots \) (occurring at \(\theta = 4.07742 \ldots \)) and \(\bar{\lambda} = 2.00219 \ldots \) (occurring at \(\bar{\theta} = 5.34124 \ldots \)).
Example 2.2 (cf. [2]). We can let

\[A_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -11 & 5 \end{pmatrix} \quad \text{and} \quad A_2 = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 2 & -1 \\ -1 & 11 & -5 \end{pmatrix} \]

The number of fixed points \(N(n_1, n_2) \) for \(|n_1|, |n_2| \leq 4 \) is presented in Table 2.2.

<table>
<thead>
<tr>
<th></th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>25600</td>
<td>8132</td>
<td>464</td>
<td>4652</td>
<td>10880</td>
<td>21388</td>
<td>40592</td>
<td>75356</td>
<td>133120</td>
</tr>
<tr>
<td>3</td>
<td>5476</td>
<td>1928</td>
<td>460</td>
<td>296</td>
<td>988</td>
<td>2008</td>
<td>3700</td>
<td>6152</td>
<td>7004</td>
</tr>
<tr>
<td>2</td>
<td>1040</td>
<td>452</td>
<td>128</td>
<td>4</td>
<td>80</td>
<td>172</td>
<td>256</td>
<td>76</td>
<td>2000</td>
</tr>
<tr>
<td>1</td>
<td>68</td>
<td>152</td>
<td>20</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>232</td>
<td>1404</td>
</tr>
<tr>
<td>0</td>
<td>640</td>
<td>148</td>
<td>16</td>
<td>4</td>
<td>(\infty)</td>
<td>4</td>
<td>16</td>
<td>148</td>
<td>640</td>
</tr>
<tr>
<td>-1</td>
<td>1404</td>
<td>232</td>
<td>20</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>152</td>
<td>68</td>
</tr>
<tr>
<td>-2</td>
<td>2000</td>
<td>76</td>
<td>256</td>
<td>172</td>
<td>80</td>
<td>4</td>
<td>128</td>
<td>452</td>
<td>1040</td>
</tr>
<tr>
<td>-3</td>
<td>7004</td>
<td>6152</td>
<td>3700</td>
<td>2008</td>
<td>988</td>
<td>296</td>
<td>460</td>
<td>1928</td>
<td>5476</td>
</tr>
<tr>
<td>-4</td>
<td>133120</td>
<td>75356</td>
<td>40592</td>
<td>21388</td>
<td>4652</td>
<td>464</td>
<td>8132</td>
<td>25600</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: The number of fixed points \(N(n_1, n_2) \) for \(|n_1|, |n_2| \leq 4 \). The columns correspond to \(n_1 \) and the rows correspond to \(n_2 \).

Then the eigenvalues for \(A \) are \(\alpha_1 = 4.70928, \alpha_2 = 0.0967881 \) and \(\alpha_3 = 2.19394 \) and the eigenvalues for \(A_2 \) are \(\beta_1 = -2.70928, \beta_2 = 1.90321 \) and \(\beta_3 = -0.193937 \). These correspond to the eigenvectors

\[
\begin{pmatrix} -0.0440649 \\ -0.207514 \\ -0.977239 \end{pmatrix}, \quad \begin{pmatrix} -0.995305 \\ -0.0963337 \\ -0.00932395 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0.185754 \\ 0.407532 \\ 0.894099 \end{pmatrix}.
\]

Figure 2: A plot of \(\{\max_{i=1,2,3}\{\cos \theta \log |\alpha_i| + \sin \theta \log |\beta_i|\}\} \) as a function of \(0 \leq \theta < 2\pi \)

In this case we can compute \(\lambda = 0.689643 \ldots \) (occurring at \(\theta = 4.17448 \ldots \)) and \(\overline{\lambda} = 2.2481 \ldots \) (occurring at \(\bar{\theta} = 5.43348 \ldots \))
3 Proof of Theorem 1.3

We begin by fixing our notation. Let \(A_1, A_2 \in SL(3, \mathbb{Z}) \) be commuting hyperbolic matrices (i.e., none of the eigenvalues has modulus unity. In this particular case, it is not possible to have ergodic non-hyperbolic toral automorphisms.) We shall assume that the associated action is non-trivial (i.e., \(A_1^{n_1} A_2^{n_2} = I \) implies \((n_1, n_2) = (0, 0))

We next recall the following standard results.

Lemma 3.1. Under the above hypotheses:

1. the eigenvalues \(\alpha_1, \alpha_2, \alpha_3 \) of \(A_1 \) are all, and the eigenvalues \(\beta_1, \beta_2, \beta_3 \) of \(A_2 \) are real;

2. each of the common eigenvectors \(e_1, e_2, e_3 \) for \(A_1 \) and \(A_2 \) has irrational slope (i.e., each \(\mathbb{R} e_i + \mathbb{Z}^3 \) is dense in \(\mathbb{T}^3 \)); and

3. each of the real numbers \(\frac{\log |\alpha_i|}{\log |\beta_i|}, i = 1, 2, 3 \), is irrational.

Proof. The first result is a consequence of a standard general result for more general Cartan actions, applied in the particular case of \(\mathbb{Z}^2 \)-actions [2].

For the second part, we can restrict to the case \(e_1 \), the other cases being similar. It is easy to see that we can make an appropriate choice of \(n, m \in \mathbb{Z}^3 \) such that matrix \(A_1^n A_2^m \) either has \(|\alpha_i^m \beta_i^n| > 1 > |\alpha_i^m \beta_i^n|, |\alpha_i^m \beta_i^n| \) or \(|\alpha_i^m \beta_i^n| < 1 < |\alpha_i^m \beta_i^n|, |\alpha_i^m \beta_i^n| \). In particular, \(T = \mathcal{A}(n_1, n_2, \cdot) \) corresponds to a linear hyperbolic toral automorphism \(T \) for which \(\mathbb{R} e_i + \mathbb{Z}^3 \) is a leaf of either the one dimensional stable or one dimensional unstable manifold foliation. In particular, this is dense by the well known minimality of the stable and unstable manifolds.

Finally, for the last part, the irrationality of the ratio of the logarithm of the eigenvalues is a consequence of the non-triviality assumption and part 2. More precisely, if we assume for a contradiction that \(\frac{\log \alpha_i}{\log \beta_i} \) is a rational \(\frac{p}{q} \), say, then by comparing the actions of \(A_1 \) and \(A_2 \) on the dense \(\mathbb{R} e_i + \mathbb{Z}^3 \) set we then see from the second part that \(A_1^n A_2^m = I \). This contradicts the non-degeneracy condition, completing the proof.

In particular, we see from parts 2 and 3 of Lemma 3.1 that for all \((n_1, n_2) \in \mathbb{Z}^2 - (0, 0)\) we have that \(A_1^{n_1} A_2^{n_2} \) has no eigenvalues of modulus 1.

We recall the following standard result for the fixed points of the single transformation \(\mathcal{A}(n_1, n_2, \cdot) : \mathbb{T}^3 \to \mathbb{T}^3 \).

Lemma 3.2. For each \((n_1, n_2) \in \mathbb{Z}^2 - \{(0, 0)\}\) we can write

\[
N(n_1, n_2) = |\det(I - A_1^{n_1} A_2^{n_2})|
\]

Proof. This is a standard result which can also be easily be deduced from the Lefschetz fixed point theorem.

Lemma 3.2 is particularly useful in computing the numerical values of fixed points in the tables we have for the examples. We also have the following simple, but useful, corollary.

Lemma 3.3. For each \((n_1, n_2) \in \mathbb{Z}^2 - \{(0, 0)\}\) we can write

\[
N(n_1, n_2)
= |1 - (\alpha_1^{n_1} \beta_1^{-n_1} + \alpha_2^{n_1} \beta_2^{-n_1} + \alpha_2^{n_1} \beta_2^{n_1}) + (\alpha_1^{-n_1} \beta_1^{n_1} + \alpha_2^{-n_2} \beta_2^{-n_2} + \alpha_3^{-n_3} \beta_3^{n_3}) - 1|.
\]

(3.1)
Proof. The matrix \(A_1^{n_1}A_2^{n_2} \) has eigenvalues \(\alpha_1^{n_1}\beta_1^{n_2}, \alpha_2^{n_1}\beta_2^{n_2} \) and \(\alpha_3^{n_1}\beta_3^{n_2} \). Multiplying out this expression \(N(n_1, n_2) \) gives:

\[
N(n_1, n_2) = |\det(I - A_1^{n_1}A_2^{n_2})| \\
= |(1 - \alpha_1^{n_1}\beta_1^{n_2})(1 - \alpha_2^{n_1}\beta_2^{n_2})(1 - \alpha_3^{n_1}\beta_3^{n_2})| \\
= |1 - (\alpha_1^{n_1}\beta_1^{n_2} + \alpha_2^{n_1}\beta_2^{n_2} + \alpha_3^{n_1}\beta_3^{n_2}) \\
+ ((\alpha_1\alpha_2)^{n_1}(\beta_1\beta_2)^{n_2} + (\alpha_1\alpha_3)^{n_1}(\beta_1\beta_3)^{n_2} + (\alpha_2\alpha_3)^{n_1}(\beta_2\beta_3)^{n_2}) - 1| \\
= |1 - (\alpha_1^{n_1}\beta_1^{n_2} + \alpha_2^{n_1}\beta_2^{n_2} + \alpha_3^{n_1}\beta_3^{n_2}) + (\alpha_1^{-1}\beta_1^{-1} - \alpha_2^{-1}\beta_2^{-1} + \alpha_3^{-1}\beta_3^{-1}) - 1|
\]

where we have used the identities \(\alpha_1\alpha_2\alpha_3 = \det A_1 = 1 \) and \(\beta_1\beta_2\beta_3 = \det A_2 = 1 \) for the last line.

We want to use this lemma to estimate the growth of \(N(n_1, n_2) \). In particular, we want to get bounds based on the largest of the terms (in modulus) contributing to the Right Hand Side of (3.1). In order to formulate these estimates, it is convenient to introduce the vectors in \(\mathbb{R}^2 \) defined by

\[
v_1 = \left(\frac{\log |\alpha_1|}{\log |\beta_1|} \right), \quad v_2 = \left(\frac{\log |\alpha_2|}{\log |\beta_2|} \right) \quad \text{and} \quad v_3 = \left(\frac{\log |\alpha_3|}{\log |\beta_3|} \right)
\]

Each of these has irrational slope, by the final part of Lemma 3.1.

Lemma 3.4. All of the vectors \(v_1, v_2, v_3 \) are non-zero and satisfy \(v_1 + v_2 + v_3 = 0 \).

Proof. For the first part we need only observe that if \(v_i = 0 \), say, then this would require \(|\alpha_i| = |\beta_i| = 1 \), i.e., at least one of the eigenvalues for the matrices is of modulus one which would contradict the hyperbolicity assumption.

For the second part we observe that since \(\alpha_1\alpha_2\alpha_3 = \det A_1 = 1 \) and \(\beta_1\beta_2\beta_3 = \det A_2 = 1 \) we immediately see that \(v_1 + v_2 + v_3 = 0 \).

We now parameterize the unit vectors in \(\mathbb{R}^2 \) by

\[
w_\theta = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \quad \text{for } 0 \leq \theta < 2\pi.
\]

We can then write that

\[
\langle v_i, w_\theta \rangle = \cos \theta \log \alpha_i + \sin \theta \log \beta_i, \quad \text{for } i = 1, 2, 3.
\]

In particular, if we write \((n_1, n_2) = (R\cos \theta, R\sin \theta)\), say, where \(R = \| (n_1, n_2) \|_2 \), then we can write

\[
|\alpha_i^{n_1}\beta_i^{n_2}| = \exp (R(\cos \theta \log |\alpha_i| + \sin \theta \log |\beta_i|)) \quad (3.2)
\]

To prove Theorem 1.3 it suffices to show that the vectors \(v_1, v_2, v_3 \) are not collinear. Since \(v_1 + v_2 + v_3 = 0 \) and the vectors \(v_1, v_2, v_3 \) are non-zero, and additionally we know that the vectors are non-collinear, it is then easy to see that this is enough to know that for any \(0 \leq \theta < 2\pi \) there is some \(i \) such that \(\langle v_i, w_\theta \rangle > 0 \). For typical \(\theta \) there will be single dominant term of the form (3.2) contributing to the Right Hand Side of (3.1).
Assume for a contradiction that the vectors are collinear v_1, v_2 and v_3. Then we can choose $\delta \neq 0$ such that
\[
\delta = \frac{\log |\alpha_1|}{\log |\beta_1|} = \frac{\log |\alpha_2|}{\log |\beta_2|} = \frac{\log |\alpha_3|}{\log |\beta_3|}.
\]
First that observe that δ cannot be irrational since otherwise \(\{n \log |\alpha_1| + m \log |\beta_1| : n, m \in \mathbb{Z}\}\) will be dense on the real line \mathbb{R}. However, since $\mathbb{R}^+ v_1 + \mathbb{Z}^3$ is dense in \mathbb{T}^3 this means that we can choose $n_k, m_k \in \mathbb{Z}$ such that $A^{n_k} B^{m_k} \to I$ as $k \to +\infty$, but with $A^{n_k} B^{m_k} \neq I$. However, this is clearly false in the lattice $SL(3, \mathbb{Z})$. On the other hand, if $\delta = p/q$ were a rational then by again considering the action on the dense set $\mathbb{R}^+ w_1 + \mathbb{Z}^3$ we see that $A^p B^q = I$ which contradicts the non-degeneracy hypothesis.

4 Generalizations to \mathbb{Z}^k-actions

We will consider the more general setting of higher dimensional actions. The basic results are similar to the case of Theorem 1.3.

Hypothesis 4.1. Let $2 \leq k \leq d - 1$

1. We shall assume that $A_1, \cdots, A_k \in SL(d, \mathbb{Z})$ are commuting matrices, i.e., $A_i A_j = A_j A_i$ for $1 \leq i, j \leq k$.

2. We shall assume that each matrix $A_1^{n_1} \cdots A_k^{n_k}$, $(n_1, \cdots, n_k) \in \mathbb{Z}^k - (0, \cdots, 0)$, is ergodic (i.e., they do not have eigenvalues which are roots of unity)
3. We shall assume that the action is non-degenerate, i.e., if there exist \(n_1, \cdots, n_k \in \mathbb{Z} \) such that
\[
A_{1}^{n_1} A_{2}^{n_2} \cdots A_{k}^{n_k} = I \text{ then } n_1 = \cdots = n_k = 0.
\]

4. We shall assume that the action is irreducible, i.e., no \(\mathcal{A}(n_1, \cdots, n_k) : T^d \to T^d \) preserves a proper invariant toral subgroup of \(T^d \).

5. We shall additionally assume, mainly for convenience, that the matrices are semi-simple (i.e., they diagonalize over the complex numbers) and \(A_i \) has complex eigenvalues \(\alpha_1^{(i)}, \cdots, \alpha_d^{(i)} \) for \(i = 1, \cdots, k \).

The special case which bears closest comparison with the special case of \(k = 2 \) and \(d = 3 \) is when \(k = d - 1 \). In particular, in this case \(A_i \) has real eigenvalues \(\alpha_1^{(i)}, \cdots, \alpha_d^{(i)} \) for \(i = 1, \cdots, k \).

We now generalize two definitions from the first section.

Definition 4.2. Let \(\mathcal{A} : \mathbb{Z}^k \times T^d \to T^d \) be the action given by \(\mathcal{A}(n_1, \cdots, n_d, x) = A_{1}^{n_1} \cdots A_{k}^{n_k} x + \mathbb{Z}^d \) then we denote
\[
N(n_1, \cdots, n_k) = \text{Card}\{x \in T^d : \mathcal{A}(n_1, \cdots, n_k, x) = x\}.
\]

Definition 4.3. We can define
\[
\lambda = \inf_{\|v\|_2 = 1} \left\{ \sup_w \langle v, w \rangle \right\} \quad \text{and} \quad \overline{\lambda} = \sup_{\|v\|_2 = 1} \left\{ \sup_w \langle v, w \rangle \right\}
\]
where the supremum ranges over all unit vectors \(v \) in \(\mathbb{R}^k \).

The natural generalization Theorem 1.3 is the following.

Theorem 4.4. The growth rate of the number of fixed points
\[
\overline{\lambda} := \limsup_{\|n_1, \cdots, n_k\|_2 \to +\infty} \frac{1}{\|n_1, \cdots, n_k\|_2} \log N(n_1, \cdots, n_k) \quad \text{and} \quad \underline{\lambda} := \liminf_{\|n_1, \cdots, n_k\|_2 \to +\infty} \frac{1}{\|n_1, \cdots, n_k\|_2} \log N(n_1, \cdots, n_k) > 0,
\]
satisfy \(0 < \underline{\lambda} < \overline{\lambda} < +\infty \).

To begin the proof, we need the following standard generalization of Lemma 3.2.

Lemma 4.5. For each \((n_1, \cdots, n_k) \in \mathbb{Z}^2 - \{(0, \cdots, 0)\} \) we can write
\[
N(n_1, \cdots, n_k) = |\det(I - A_{1}^{n_1} \cdots A_{k}^{n_k})|
\]

Proof. This is again a standard generalization of the Lefschetz formula. \(\square \)

In particular, we can use Lemma 4.5 write
\[
N(n_1, \cdots, n_k) = |\det(I - A_{1}^{n_1} \cdots A_{k}^{n_k})| = \prod_{j=1}^{d} \left| 1 - \prod_{i=1}^{d-1} (\alpha_j^{(i)})^{n_i} \right| \quad (4.1)
\]
It is convenient to use the parameterization \((n_1, \cdots, n_k) = (p_1 R, \cdots, p_k R) \) where
1. \(0 \leq p_1, \ldots, p_k \leq 1\) with \(p_1^2 + \cdots + p_k^2 = 1\); and

2. \(R = \|(n_1, \ldots, n_k)\|_2\).

We can now introduce the notation \(v_p = (p_1, \ldots, p_k)\) and \(v_j = (\log |\alpha_j^{(1)}|, \ldots, \log |\alpha_j^{(k)}|)\), for \(j = 1, \ldots, k\). We can now easily see from (4.1) that for any \(\delta > 0\) there exists \(R_0 = R_0(\delta)\) such that

\[
N(n_1, \ldots, n_k) \geq \prod_{j: \langle v_p, v_j \rangle > 0} \left(\exp(R\langle v_p, v_j \rangle) - 1 \right) \prod_{j: \langle v_p, v_j \rangle < 0} (1 - \exp(R\langle v_p, v_j \rangle))
\]

\[
\geq (1 - \delta) \prod_{j: \langle v_p, v_j \rangle \geq 0} \exp(R\langle v_p, v_j \rangle)
\]

\[
\geq (1 - \delta) \exp \left(R\langle v_p, \left(\sum_{j: \langle v_p, v_j \rangle \geq 0} v_j \right) \rangle \right).
\]

for \(R \geq R_0\). In particular, we see that

\[
N(n_1, \ldots, n_k) \geq (1 - \delta) \exp(\Lambda\|(n_1, \ldots, n_k)\|_2)
\]

where

\[
\Lambda = \inf_p \left\{ \langle v_p, \left(\sum_{j: \langle v_p, v_j \rangle \geq 0} v_j \right) \rangle \right\}.
\]

Similarly, we see that for \(R \geq R_0\),

\[
N(n_1, \ldots, n_k) \leq (1 + \delta) \exp(\overline{\Lambda}\|(n_1, \ldots, n_k)\|_2)
\]

where

\[
\overline{\Lambda} = \sup_p \left\{ \langle v_p, \left(\sum_{j: \langle v_p, v_j \rangle \geq 0} v_j \right) \rangle \right\}.
\]

To see that \(\Lambda > 0\) we need to know that \(v_1, \ldots, v_k\) are not confined to a codimension-one hyperplane in \(\mathbb{R}^k\) orthogonal to some \(v_p\). Assume for a contradiction that there is a unit vector \(v_p\) such that \(\langle v_p, v_i \rangle = 0\) for \(i = 1, \ldots, k\). Let \(v_p = (v_p^{(1)}, \ldots, v_p^{(k)})\) then by Dirichlet’s theorem of simultaneous diophantine approximation, for any \(\varepsilon > 0\) we choose \(1 \leq q \leq \left\lfloor \frac{1}{\varepsilon} \right\rfloor + 1\) and \((n_1, \ldots, n_k) \in \mathbb{Z}^k\) with

\[
\|(n_1, \ldots, n_k) - qv_p\|_\infty \leq \varepsilon.
\]

In particular, the eigenvalues \((\alpha_j^{(1)})^{n_1} \cdots (\alpha_j^{(k)})^{n_k}, \ j = 1, \ldots, k\), for the matrix \(A_1^{n_1} \cdots A_k^{n_k} \in SL(d, \mathbb{R})\) satisfy

\[
\left| \log \left((\alpha_j^{(1)})^{n_1} \cdots (\alpha_j^{(k)})^{n_k} \right) \right| = \sum_{l=1}^k n_l \log |\alpha_j^{(l)}| \leq k\varepsilon + q \underbrace{\sum_{l=1}^k v_l \log |\alpha_j^{(l)}|}_{=|\langle v_p, v_i \rangle| = 0}.
\]
In particular, the algebraic integers, and its conjugates, occurring as zeros of the characteristic polynomial \(\det(zI - A_1^{n_1} \cdots A_k^{n_k}) = 0 \) can be arbitrarily close to one. It only remains to show this cannot happen, which we deduce from the following two results.

Lemma 4.6 (Krönecker, [3]). Any algebraic integer \(\alpha \) whose conjugate roots \(\alpha = \alpha_1, \ldots, \alpha_d \) all lie on the unit circle must necessarily be a root of unity.

Proof. We include the simple proof for completeness. Let us define a sequence of monomials

\[
P_n(x) := \prod_{i=1}^{d} (x - \alpha_i^n) = x^d + a_{d-1}^{(n)} x^{d-1} + \cdots + a_k^{(n)} x^k + \cdots + a_1^{(n)} x + a_0^{(n)}
\]

In particular, since

\[
|a_k^{(n)}| = \left| \sum_{i_1 < \cdots < i_{d-k}} \alpha_{i_1}^{(n)} \cdots \alpha_{i_{d-k}}^{(n)} \right| \leq K := d!
\]

we see that \(\{P_n(x) : n \geq 1\} \) is a finite set, as is the set of roots \(\alpha \) of these polynomials. Thus for any such root, the pigeonhole principle applied to \(\{\alpha^n : n \geq 1\} \) show that there exists \(0 \leq p < q \leq K + 1 \) such that \(\alpha^p = \alpha^q \), and thus \(\alpha^{q-p} = 1 \).

We can also prove the following variant.

Lemma 4.7. Given \(d \geq 2 \) there exists \(\epsilon > 0 \) such that if \(\alpha \) is an algebraic number of degree which is not an algebraic integer then the conjugate values \(\alpha = \alpha_1, \ldots, \alpha_d \) cannot all be contained in the annulus

\[
A(\epsilon) = \{ z \in \mathbb{C} : 1 - \epsilon \leq |z| \leq 1 + \epsilon \}.
\]

Proof. Since the proof is elementary, we include it for convenience. Assume for a contradiction that for some \(d \geq 2 \) we can find an infinite sequence of monomials

\[
P_n(x) = x^d + a_{d-1}^{(n)} x^{d-1} + \cdots + a_k^{(n)} x^k + \cdots + a_1^{(n)} x + a_0^{(n)} \in \mathbb{Z}[x], \quad \text{for } n \geq 2
\]

whose roots \(\alpha_1^{(n)}, \ldots, \alpha_d^{(n)} \in A \left(\frac{1}{n} \right) \) don’t lie on the unit circle. In particular, since \(P_n(x) = \prod_{i=1}^{d} (x - \alpha_i^{(n)}) \) we see that

\[
|a_k^{(n)}| = \left| \sum_{i_1 < \cdots < i_{d-k}} \alpha_{i_1}^{(n)} \cdots \alpha_{i_{d-k}}^{(n)} \right| \leq K := \left(1 + \frac{1}{n} \right)^{d^d}
\]

Since for each \(k \) we have \(a_k^{(n)} \in \mathbb{Z} \cap [-K, K] \), for all \(n \geq 1 \), we can use the pigeonhole principle to choose an infinite subsequence with \(P(x) := P_{n_1}(x) = P_{n_2}(x) = P_{n_3}(x) = \cdots \) for which the coefficients all agree. But this contradicts the zeros of each polynomial not lying on the unit circle.

Remark 4.8. In fact, Schinzel and Zassenhaus showed that if \(\alpha \) is not a root of unity then \(|\alpha| \geq 1 + \frac{1}{4^{d-1/2}} \) (cf. [6]). This completes the proof.
5 A SECTOR THEOREM AND DIRECTIONAL GROWTH

Remark 4.9. The formula (5.1) and the description of the growth of periodic points for a single hyperbolic matrix was a core ingredient in Manning’s famous work on the classification of Anosov toral automorphisms [4].

Example 4.10 (cf. [1]). We can consider the action on \mathbb{T}^6 defined by the matrices

$$A_1 = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ -1 & 2 & 5 & 3 & 5 & 2 \end{pmatrix} \quad \text{and} \quad A_2 = \begin{pmatrix} 0 & -6 & -6 & -3 & -6 & 2 \\ -2 & 4 & 4 & 0 & 7 & -2 \\ 2 & -6 & -6 & -2 & -10 & 3 \\ -3 & 8 & 9 & 3 & 13 & -4 \\ 4 & -11 & -12 & -3 & -17 & 5 \\ -5 & 14 & 14 & 3 & 22 & -7 \end{pmatrix}$$

The number of fixed points $N(n_1, n_2)$ for $|n_1|, |n_2| \leq 4$ is presented in Table 4.10.

<table>
<thead>
<tr>
<th></th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>13395375</td>
<td>1295405</td>
<td>61440</td>
<td>2645</td>
<td>15</td>
<td>125</td>
<td>48735</td>
<td>6452480</td>
<td>560164815</td>
</tr>
<tr>
<td>3</td>
<td>1613760</td>
<td>722000</td>
<td>37500</td>
<td>3920</td>
<td>540</td>
<td>1280</td>
<td>37500</td>
<td>524880</td>
<td>269340</td>
</tr>
<tr>
<td>2</td>
<td>141135</td>
<td>182405</td>
<td>3375</td>
<td>1280</td>
<td>15</td>
<td>1805</td>
<td>59535</td>
<td>2415125</td>
<td>79626240</td>
</tr>
<tr>
<td>1</td>
<td>48735</td>
<td>3920</td>
<td>15</td>
<td>125</td>
<td>15</td>
<td>405</td>
<td>19440</td>
<td>1245005</td>
<td>56745375</td>
</tr>
<tr>
<td>0</td>
<td>10786560</td>
<td>188180</td>
<td>960</td>
<td>20</td>
<td>∞</td>
<td>20</td>
<td>960</td>
<td>188180</td>
<td>10786560</td>
</tr>
<tr>
<td>-1</td>
<td>56745375</td>
<td>1245005</td>
<td>19440</td>
<td>405</td>
<td>15</td>
<td>125</td>
<td>15</td>
<td>3920</td>
<td>48735</td>
</tr>
<tr>
<td>-2</td>
<td>79626240</td>
<td>2415125</td>
<td>59535</td>
<td>1805</td>
<td>15</td>
<td>1280</td>
<td>3375</td>
<td>182405</td>
<td>141135</td>
</tr>
<tr>
<td>-3</td>
<td>269340</td>
<td>524880</td>
<td>37500</td>
<td>1280</td>
<td>540</td>
<td>3920</td>
<td>37500</td>
<td>722000</td>
<td>1613760</td>
</tr>
<tr>
<td>-4</td>
<td>560164815</td>
<td>6452480</td>
<td>48735</td>
<td>125</td>
<td>15</td>
<td>2645</td>
<td>61440</td>
<td>1295405</td>
<td>13395375</td>
</tr>
</tbody>
</table>

Table 3: The number of fixed points $N(n_1, n_2)$ for $|n_1|, |n_2| \leq 4$. The columns correspond to n_1 and the rows correspond to n_2.

The matrix A_1 has eigenvalues

$$\alpha_1 = 3.68631 \ldots, \alpha_2 = -1.32361 \ldots, \alpha_3 = 0.0607659 \ldots + 0.998152i \ldots, \alpha_4 = 0.0607659 \ldots - 0.998152i \ldots, \alpha_5 = -0.75551 \ldots, \alpha_6 = 0.271274 \ldots,$$

and the matrix A_2 has corresponding eigenvalues

$$\beta_1 = -0.463258 \ldots, \beta_2 = -22.1542 \ldots, \beta_3 = 0.910592 \ldots - 0.413307i \ldots, \beta_4 = 0.910592 \ldots + 0.413307i \ldots, \beta_5 = -0.0451382 \ldots, \beta_6 = -2.15862 \ldots$$

In this example, we see that $\lambda = 1.06415 \ldots$ (occurring at $\theta = 0.258896 \ldots$) and $\overline{\lambda} = 3.11069 \ldots$ (occurring at $\overline{\theta} = 4.62214 \ldots$).

5 A sector theorem and directional growth

A natural refinement it to estimate the number of fixed points for (n_1, n_2) lying in a sector of the form $S(\theta_1, \theta_2) := \{(n_1, n_2) \in \mathbb{Z}^2 : n_2 \tan(\theta_1) \leq n_1 \leq n_2 \tan(\theta_2)\}$, for $0 \leq \theta_1 < \theta_2 \leq 2\pi$.

Theorem 5.2 (Sector Theorem). Let $A_1, A_2 \in SL(3, \mathbb{Z})$ be commuting independent hyperbolic matrices. Let $0 \leq \theta_1 < \theta_2 \leq 2\pi$. The growth rates of the fixed points in the sector $S(\theta_1, \theta_2)$

\[
\begin{align*}
\lambda(\theta_1, \theta_2) &= \sup_{\theta_1 \leq \theta \leq \theta_2} \max_{i=1,2,3} \{ \cos \theta \log |\alpha_i| + \sin \theta \log |\beta_i| \} \\
&\quad \text{and} \\
\bar{\lambda}(\theta_1, \theta_2) &= \inf_{\theta_1 \leq \theta \leq \theta_2} \max_{i=1,2,3} \{ \cos \theta \log |\alpha_i| + \sin \theta \log |\beta_i| \}.
\end{align*}
\]

(5.1)

We then have the following natural refinement of Theorem 1.3.

Theorem 5.2 (Sector Theorem). Let $A_1, A_2 \in SL(3, \mathbb{Z})$ be commuting independent hyperbolic matrices. Let $0 \leq \theta_1 < \theta_2 \leq 2\pi$. The growth rates of the fixed points in the sector $S(\theta_1, \theta_2)$

\[
\begin{align*}
\lambda(\theta_1, \theta_2) &= \limsup_{\|(n_1, n_2)\|_2 \to +\infty, (n_1, n_2) \in S(\theta_1, \theta_2)} \frac{1}{\|(n_1, n_2)\|_2} \log N(n_1, n_2) \\
&\quad \text{and} \\
\bar{\lambda}(\theta_1, \theta_2) &= \liminf_{\|(n_1, n_2)\|_2 \to +\infty, (n_1, n_2) \in S(\theta_1, \theta_2)} \frac{1}{\|(n_1, n_2)\|_2} \log N(n_1, n_2)
\end{align*}
\]

satisfy $0 < \lambda(\theta_1, \theta_2) < \bar{\lambda}(\theta_1, \theta_2) < +\infty$.

Proof. The proof follows easily by modifying the proof of Theorem 1.3. Recall that the number fixed points of the single transformation $A(n_1, n_2, \cdot) : T^3 \to T^3$, this time restricting to $(n_1, n_2) \in S$, can be written as

\[
N(n_1, n_2) = |\det(I - A_1 n_1 A_2 n_2)|
= |1 - (\alpha_1 n_1 \beta_1 n_2 + \alpha_2 n_1 \beta_2 n_2 + \alpha_2 n_1 \beta_2 n_2) + (\alpha_1 n_1 \beta_3 n_1 + \alpha_2 n_2 \beta_2 n_2 + \alpha_3 n_2 \beta_3 n_3) - 1|.
\]

(5.1)

We can again consider the vectors v_1, v_2, v_3 but this time we only need to consider unit vectors v_0 with $\theta_1 \leq \theta \leq \theta_2$. We can again write that $\langle v_i, w_0 \rangle = \cos \theta \log \alpha_i + \sin \theta \log \beta_i$ for $i = 1, 2, 3$. In particular, if we write $(n_1, n_2) = (R \cos \theta, R \sin \theta) \in S(\theta_1, \theta_2)$, say, where $R = \|(n_1, n_2)\|_2$, then we have that

\[
|\alpha_i n_1 \beta_3 n_2| = \exp (R(\cos \theta \log |\alpha_i| + \sin \theta \log |\beta_i|)).
\]

(5.2)
We now want to estimate $N(n_1, n_2)$ in terms of the largest expression of the form (5.2) where $(n_1, n_2) \in S(\theta_1, \theta_2)$. In particular, modifying the proof of Theorem 1.3 we observe that

$$\overline{\lambda}(\theta_1, \theta_2) = \sup_{\theta_1 \leq \theta \leq \theta_2} \max_{i=1,2,3} \{ \langle v_i, w_\theta \rangle \} \geq \inf_{\theta_1 \leq \theta \leq \theta_2} \max_{i=1,2,3} \{ \langle v_i, w_\theta \rangle \} = \lambda(\theta_1, \theta_2),$$

as required. \qed

Definition 5.3. Let us denote

$$\lambda(\theta) := \max_{i=1,2,3} \{ \cos \theta \log |\alpha_i| + \sin \theta \log |\beta_i| \}.$$

We then have the following corollary.

Corollary 5.4 (Directional growth). Let $A_1, A_2 \in SL(3, \mathbb{Z})$ be commuting independent hyperbolic matrices. Let $0 \leq \theta < 2\pi$. The following limits exist and agree:

$$\overline{\lambda}(\theta) := \lim_{\epsilon \to 0} \limsup_{\|(n_1, n_2)\|_2 \to +\infty, (n_1, n_2) \in S(\theta-\epsilon, \theta+\epsilon)} \frac{1}{\|(n_1, n_2)\|_2} \log N(n_1, n_2) \quad \text{and}$$

$$\underline{\lambda}(\theta) := \lim_{\epsilon \to 0} \liminf_{\|(n_1, n_2)\|_2 \to +\infty, (n_1, n_2) \in S(\theta-\epsilon, \theta+\epsilon)} \frac{1}{\|(n_1, n_2)\|_2} \log N(n_1, n_2)$$

and $\overline{\lambda}(\theta) = \underline{\lambda}(\theta) = \lambda(\theta)$.

Proof. This follows immediately from the Theorem 5.2 and continuity of $\lambda(\theta)$. \qed

Remark 5.5. We have that for each fixed choice $(n_1, n_2) \in S(\theta_1, \theta_2)$ that

$$h(A(n_1, n_2, .)) = \lim_{k \to +\infty} \frac{1}{k} \log \text{Card}\{x : A(kn_1, kn_2)x = x\}.$$

We see that for any $\epsilon > 0$ we have that

$$\lambda(\theta_1, \theta_2) - \epsilon \leq h(A(n_1, n_2)) \leq \lambda(\theta_1, \theta_2) + \epsilon$$

providing $\|(n_1, n_2)\|_2$ is sufficiently large. In particular, by continuity we see that we have the limit

$$\lim_{R \to +\infty} \frac{h(A([R \cos \theta], [R \sin \theta]))}{R} = \lambda(\theta).$$

References

