Sub-exponential mixing rates for open systems with interacting particles

Tatiana Yarmola
University of Geneva

Limit theorems for dynamical systems
Centre Interfacultaire Bernouilli
June 6, 2013
Steady states for mechanical particle systems
Steady states for mechanical particle systems

- Equilibrium: explicit formulas for steady states
Steady states for mechanical particle systems

- Equilibrium: explicit formulas for steady states
- Nonequilibrium: pure existence of steady states is a nontrivial question due to non-compactness of the phase space
Steady states for mechanical particle systems

- Equilibrium: explicit formulas for steady states
- Nonequilibrium: pure existence of steady states is a nontrivial question due to non-compactness of the phase space
- The system may freeze or heat up
 - Freezing example: 1D model [Eckmann and Young 2011]
 - Problem: slow particles
 - Among many particles only ONE drives the system for extended periods of time
Sub-exponential mixing for mechanical particle systems

- Gibbs heat bath distributions: may emit arbitrarily slow particles
Sub-exponential mixing for mechanical particle systems

- Gibbs heat bath distributions: may emit arbitrarily slow particles
- Slow particles may prevent exponential mixing
Sub-exponential mixing for mechanical particle systems

- Gibbs heat bath distributions: may emit arbitrarily slow particles
- Slow particles may prevent exponential mixing
- Similar effect for natural discretizations of systems with more than one particle:
 - slow particle(s) do not collide with anything for a while, while other particle(s) experience collisions and drive the system
Sub-exponential mixing for mechanical particle systems

- Gibbs heat bath distributions: may emit arbitrarily slow particles
- Slow particles may prevent exponential mixing
- Similar effect for natural discretizations of systems with more than one particle:
 - slow particle(s) do not collide with anything for a while, while other particle(s) experience collisions and drive the system
- Present a system with particles interacting through ‘energy tanks’; rigorous results: existence, uniqueness, absolute continuity (w.r.t. Lebesgue measure), and sub-exponential mixing of (non-equilibrium) steady state.
\(\Gamma \) - a disk of radius \(R + d \).
Domain

- Γ - a disk of radius $R + d$.
- D - a disk of radius R pinned at the center of Γ, rotating freely.
 - angular velocity ω
 - marked position ζ
Energy exchange with the disk

- Γ - a disk of radius $R + d$.
- D - a disk of radius R pinned at the center of Γ, rotating freely.
 - angular velocity ω
 - marked position ζ
- particles exchange energy with the disk D
 - $v_\perp' = -v_\perp$
 - $v_t' = \omega$
 - $\omega' = v_t$
Heat Baths

- Split Γ in two parts by vertical walls.
 - specular reflections off the walls
Heat Baths

- Split Γ in two parts by vertical walls.
 - specular reflections off the walls
- Left and Right heat baths $\partial \Gamma_L$ and $\partial \Gamma_R$
 - inverse temperatures $\beta_L = \frac{1}{T_L}$ and $\beta_R = \frac{1}{T_R}$
Heat Baths

- Split Γ in two parts by vertical walls.
 - specular reflections off the walls
- Left and Right heat baths $\partial \Gamma_L$ and $\partial \Gamma_R$
 - inverse temperatures $\beta_L = \frac{1}{T_L}$ and $\beta_R = \frac{1}{T_R}$
 - upon collision of a particle with $\partial \Gamma_L$, new particle is emitted at the position of collision with speed s and angle φ distributed

$$\frac{2\beta_L^{3/2}}{\pi} s^2 e^{-\beta_L s^2} \cos(\varphi) ds d\varphi$$
Heat Baths

- Split Γ in two parts by vertical walls.
 - specular reflections off the walls
- Left and Right heat baths $\partial \Gamma_L$ and $\partial \Gamma_R$
 - inverse temperatures $\beta_L = \frac{1}{T_L}$ and $\beta_R = \frac{1}{T_R}$
 - upon collision of a particle with $\partial \Gamma_L$, new particle is emitted at the position of collision with speed s and angle φ distributed

\[
\frac{2\beta_L^{3/2}}{\pi} s^2 e^{-\beta_L s^2} \cos(\varphi) ds d\varphi
\]

- \Rightarrow particle’s velocity distributed as $\frac{\beta_L}{\pi} e^{-\beta_L |v|^2} dv$ in Γ
Heat Baths

- Split Γ in two parts by vertical walls.
 - specular reflections off the walls
- Left and Right heat baths $\partial\Gamma_L$ and $\partial\Gamma_R$
 - inverse temperatures $\beta_L = \frac{1}{T_L}$ and $\beta_R = \frac{1}{T_R}$
 - upon collision of a particle with $\partial\Gamma_L$, new particle is emitted at the position of collision with speed s and angle φ distributed

$$\frac{2\beta_L^{3/2}}{\pi} s^2 e^{-\beta_L s^2} \cos(\varphi) ds d\varphi$$

- \Rightarrow particle’s velocity distributed as
 $$\frac{\beta_L}{\pi} e^{-\beta_L |v|^2} dv$$ in Γ
- same for $\partial\Gamma_R$
The Markov process

The Phase Space

\[\Omega = \left[\{(x_i, v_i) : 1 \leq i \leq k\} \times \{(\zeta, \omega)\} \right]/\sim \]
The Markov process

- The Phase Space
 \[\Omega = \left\{ (x_i, v_i) : 1 \leq i \leq k \right\} \times \{ (\zeta, \omega) \} / \sim \]

- Markov Process \(\Phi_t \)
 - deterministic between collisions with heat baths
 - \((s, \varphi)\) at collision replaced by randomly drawn \((s, \varphi)\) from
 \[
 \frac{2\beta^{3/2}}{\pi} s^2 e^{-\beta L/R s^2} \cos(\varphi) ds d\varphi
 \]
The Markov process

- The Phase Space

\[\Omega = \{ (x_i, v_i) : 1 \leq i \leq k \} \times \{ (\zeta, \omega) \} / \sim \]

- Markov Process \(\Phi_t \)
 - deterministic between collisions with heat baths
 - \((s, \varphi)\) at collision replaced by randomly drawn \((s, \varphi)\) from

\[
\frac{2\beta^{3/2}_{L/R}}{\pi} s^2 \, e^{-\beta_{L/R}s^2} \cos(\varphi) \, dsd\varphi
\]

- Denote the transition probabilities for \(\Phi_t \) by \(\mathcal{P}^t \), i.e.

\[
\mathcal{P}^t((z, A) = \mathbb{P}(\Phi_t \in A | \Phi_0 = z)
\]
Main Theorem

Theorem

$\exists ! \text{ invariant measure } \mu \text{ for the continuous Markov process } \Phi_t.$
Main Theorem

Theorem

\[\exists \mu \text{ invariant measure for the continuous Markov process } \Phi_t. \]
\[\mu \text{ is mixing and almost all initial probability distributions converge to } \mu \text{ (exceptions: distributions giving positive measures to the set of states with stopped particles, etc.)} \]
Main Theorem

Theorem

- $\exists !$ invariant measure μ for the continuous Markov process Φ_t.
- μ is mixing and almost all initial probability distributions converge to μ (exceptions: distributions giving positive measures to the set of states with stopped particles, etc.)
- μ is not exponential mixing and, for a large class of initial distributions, the convergence rate to μ is at best polynomial.
Methods

- Most commonly used methods: spectral gap and Harris ergodic theorem
 - both ensure exponential convergence of initial distributions to the initial state
Methods

- Most commonly used methods: spectral gap and Harris ergodic theorem
 - both ensure exponential convergence of initial distributions to the initial state

- When convergence is sub-exponential, direct estimates on hitting times of (compact) sets are required to ensure existence of the invariant measures.
Methods

- Most commonly used methods: spectral gap and Harris ergodic theorem
 - both ensure exponential convergence of initial distributions to the initial state

- When convergence is sub-exponential, direct estimates on hitting times of (compact) sets are required to ensure existence of the invariant measures.

- Uniqueness, absolute continuity, and convergence of initial distributions to the steady state results can be acquired incrementally.
Methods

- Most commonly used methods: spectral gap and Harris ergodic theorem
 - both ensure exponential convergence of initial distributions to the initial state

- When convergence is sub-exponential, direct estimates on hitting times of (compact) sets are required to ensure existence of the invariant measures.

- Uniqueness, absolute continuity, and convergence of initial distributions to the steady state results can be acquired incrementally.

- Mechanical systems with stochastic boundaries by S. Goldstein, J.L. Lebowitz, and E. Presutti gives a great overview of ideas and difficulties associated with this approach. [Colloquia Mathematica Societatis János Bolyai 27 (1979). Random Fields, Esztergom (Hungary), 403-419 (1981)]
Existence: Hitting times of ‘good’ sets

- A closed set $C \in \mathcal{B}(\Omega)$ is called ‘good’ if $\exists \eta > 0, \ T > 0$ s.t. $\mathcal{P}^T(z, \cdot) = \mathcal{P}^T_{\star} \delta_z \geq \eta m_C$ (minorization condition)

 ▷ m_C is a probability measure on C
Existence: Hitting times of ‘good’ sets

- A closed set $C \in \mathcal{B}(\Omega)$ is called ‘good’ if $\exists \eta > 0$, $T > 0$ s.t.
 \[\mathcal{P}^T(z, \cdot) = \mathcal{P}^T_{\pi} \delta_z \geq \eta m_C \] (minorization condition)
- m_C is a probability measure on C

Theorem (Meyn and Tweedie 1993)

C ‘good’ \+ $\mathbb{P}_z \{ \tau_C < \infty \} = 1 \ \forall z \in \Omega \implies$

\exists an invariant measure for Φ_t (not necessarily finite).

Tatiana Yarmola (University of Geneva)
Open interacting particle systems
Lausanne, June 6, 2013
Existence: Hitting times of ‘good’ sets

- A closed set $C \in \mathcal{B}(\Omega)$ is called ‘good’ if $\exists \eta > 0, T > 0$ s.t.
 $$P^T(z, \cdot) = P^T_* \delta_z \geq \eta m_C$$ (minorization condition)
 - m_C is a probability measure on C

Theorem (Meyn and Tweedie 1993)

- C ‘good’ $\Rightarrow \mathbb{P}_z\{\tau_C < \infty\} = 1 \ \forall z \in \Omega \implies \exists$ an invariant measure for Φ_t (not necessarily finite).

- Given $\delta \geq 0$ and $C \in \mathcal{B}(\Omega)$ define
 $$\tau_C(\delta) = \text{first hitting time of } C \text{ after time } \delta.$$
Existence: Hitting times of ‘good’ sets

- A closed set $C \in \mathcal{B}(\Omega)$ is called ‘good’ if $\exists \eta > 0, \ T > 0$ s.t.
 $$P^T(z, \cdot) = P^T_* \delta_z \geq \eta m_C \text{ (minorization condition)}$$
 - m_C is a probability measure on C

Theorem (Meyn and Tweedie 1993)

C ‘good’ $+ P_z\{\tau_C < \infty\} = 1 \ \forall z \in \Omega \implies \exists$ an invariant measure for Φ_t (not necessarily finite).

- Given $\delta \geq 0$ and $C \in \mathcal{B}(\Omega)$ define
 $$\tau_C(\delta) = \text{first hitting time of } C \text{ after time } \delta.$$

Theorem (Meyn and Tweedie 1993)

The invariant measure for Φ_t is finite if \exists ‘good’ C and $\delta > 0$ s.t.

$$\sup_{z \in C} \mathbb{E}_z[\tau_C(\delta)] < \infty$$
Idea of Proof: similarity to a regenerative process

- Break sample paths from z to C into similarly behaving pieces of bounded average length
Idea of Proof: similarity to a regenerative process

- Break sample paths from z to C into similarly behaving pieces of bounded average length, i.e.,
- Introduce a stopping time τ such that most of the initial data is forgotten by time τ due to randomness of the heat baths.
 - the system ‘renews enough’ by time τ such that Φ_τ hits C with geometric rates
 (if $\Phi_\tau \sim \nu$ iid, then $\mathbb{P}_z[\Phi_\tau \in C] = \nu(C)$)
Idea of Proof: similarity to a regenerative process

- Break sample paths from \(z \) to \(C \) into similarly behaving pieces of bounded average length, i.e.,
- Introduce a stopping time \(\tau \) such that most of the initial data is forgotten by time \(\tau \) due to randomness of the heat baths.
 - the system ‘renews enough’ by time \(\tau \) such that \(\Phi_\tau \) hits \(C \) with geometric rates
 (if \(\Phi_\tau \sim \nu \) iid, then \(\mathbb{P}_z[\Phi_\tau \in C] = \nu(C) \))
- Control on certain expected values of \(\tau \) ⇒
 - \(\mathbb{P}_z\{\tau_C < \infty\} = 1 \ \forall z \in \Omega \) and
 - \(\sup_{z \in C} \mathbb{E}_z[\tau_C(\delta)] < \infty \)
Idea of Proof: similarity to a regenerative process

- Break sample paths from z to C into similarly behaving pieces of bounded average length, i.e.,
- Introduce a stopping time τ such that most of the initial data is forgotten by time τ due to randomness of the heat baths.
 - the system ‘renews enough’ by time τ such that Φ_τ hits C with geometric rates
 (if $\Phi_\tau \sim \nu$ iid, then $\mathbb{P}_z[\Phi_\tau \in C] = \nu(C)$)
- Control on certain expected values of τ \Rightarrow
 - $\mathbb{P}_z\{\tau_C < \infty\} = 1 \ \forall z \in \Omega$ and
 - $\sup_{z \in C} \mathbb{E}_z[\tau_C(\delta)] < \infty$
- Balance between
 - fast enough renewal time τ and
 - thorough enough renewals
Idea of Proof: stopping time

Let τ be the minimum time at which all particles and the disk randomize.
Idea of Proof: stopping time

- Let τ be the minimum time at which all particles and the disk randomize, i.e.,
 $\tau = \min\{ t > 0 :$
 - all particles in z have collided with $\partial \Gamma$ (all initial velocities are forgotten)
 - a particle originated from $\partial \Gamma$, hit the disk at some time $\tilde{t} > t_0(z)$, and collided with $\partial \Gamma$ again (disk’s angular velocity is forgotten) }
 - where $t_0(z)$ is a time at which all particles in z heading for collision with the disk have collided with $\partial \Gamma$
Idea of Proof: stopping time

- Let τ be the minimum time at which all particles and the disk randomize, i.e.,
 \[\tau = \min\{ t > 0 : \]
 \begin{itemize}
 \item all particles in z have collided with $\partial \Gamma$ (all initial velocities are forgotten)
 \item a particle originated from $\partial \Gamma$, hit the disk at some time $\tilde{t} > t_0(z)$, and collided with $\partial \Gamma$ again (disk’s angular velocity is forgotten)
 \end{itemize}
 * where $t_0(z)$ is a time at which all particles in z heading for collision with the disk have collided with $\partial \Gamma$

- Let Φ_{τ} be the discrete-time Markov chain obtained by stopping Φ_t at time τ and P^τ its transition probability kernel
Idea of Proof: stopping time

- Let τ be the minimum time at which all particles and the disk randomize, i.e.,
 \[\tau = \min\{ t > 0 : \]
 - all particles in z have collided with $\partial \Gamma$ (all initial velocities are forgotten)
 - a particle originated from $\partial \Gamma$, hit the disk at some time $\tilde{t} > t_0(z)$, and collided with $\partial \Gamma$ again (disk’s angular velocity is forgotten) \}
 \[\star \] where $t_0(z)$ is a time at which all particles in z heading for collision with the disk have collided with $\partial \Gamma$

- Let Φ_τ be the discrete-time Markov chain obtained by stopping Φ_t at time τ and P^τ its transition probability kernel

Proposition

For any initial distribution λ and $\nu = P^\tau \ast \lambda$,

\[\mathbb{E}_\nu[\tau] \leq D \]
The ‘good’ set C

Let C be such that

- speeds of particles are bounded above and below
- ω is bounded above
- angles of incidence with disk are bounded away from $\pm \frac{\pi}{2}$
- C is invariant between collisions with heat baths
The ‘good’ set C

Let C be such that

- speeds of particles are bounded above and below
- ω is bounded above
- angles of incidence with disk are bounded away from $\pm \frac{\pi}{2}$
- C is invariant between collisions with heat baths

Proposition

C is ‘good’
The ‘good’ set C

- Let C be such that
 - speeds of particles are bounded above and below
 - ω is bounded above
 - angles of incidence with disk are bounded away from $\pm \frac{\pi}{2}$
 - C is invariant between collisions with heat baths

Proposition

C is ‘good’

Proposition

$0 < \gamma_{\text{min}} \leq \mathbb{P}[\Phi_\tau \in C] \leq \gamma_{\text{max}} < 1$ (variation depends on β_L and β_R)
The ‘good’ set C

- Let C be such that
 - speeds of particles are bounded above and below
 - ω is bounded above
 - angles of incidence with disk are bounded away from $\pm \frac{\pi}{2}$
 - C is invariant between collisions with heat baths

Proposition

C is ‘good’

Proposition

$0 < \gamma_{\text{min}} \leq \mathbb{P}[\Phi_{\tau} \in C] \leq \gamma_{\text{max}} < 1$ (variation depends on β_L and β_R)

Proposition

- $\sup_{z \in C} \{\mathbb{E}_{z}[\tau(\delta)]\} \leq D'$
- $\mathbb{P}_z\{\tau(\delta) < \infty\} = 1$
Existence of unique invariant probability measure

Prop. C is ‘good’

Prop. $\nu = \mathcal{P}^\tau \lambda \implies \mathbb{E}_\nu[\tau] \leq D$

Want: $\sup_{z \in C} \mathbb{E}_z[\tau_C(\delta)] < \infty$

Prop. $\gamma_{\min} \leq \mathbb{P}[\Phi \tau \in C] \leq \gamma_{\max}$

Prop. $\sup_{z \in C} \{\mathbb{E}_z[\tau(\delta)]\} \leq D'$
Existence of unique invariant probability measure

- **Prop.**
 - C is ‘good’

- **Prop.**
 - $\nu = \mathcal{P}_\tau \lambda \implies \mathbb{E}_\nu[\tau] \leq D$

- **Want:**
 - $\sup_{z \in C} \mathbb{E}_z[\tau_C(\delta)] < \infty$

- **Prop.**
 - $\gamma_{\min} \leq \mathbb{P}[\Phi_{\tau} \in C] \leq \gamma_{\max}$

- **Prop.**
 - $\sup_{z \in C} \{\mathbb{E}_z[\tau(\delta)]\} \leq D'$

- Let σ_C be the hitting time of C for Φ_{τ}: $\sigma_C = n \Rightarrow \Phi_{n\tau} \in C$
Existence of unique invariant probability measure

Prop.

C is ‘good’

Prop.

\[\nu = \mathbb{P}^\tau \lambda \implies \mathbb{E}_\nu [\tau] \leq D \]

Want:

\[\sup_{z \in C} \mathbb{E}_z [\tau_C (\delta)] < \infty \]

Prop.

\[\gamma_{\min} \leq \mathbb{P} [\Phi \tau \in C] \leq \gamma_{\max} \]

\[\sup_{z \in C} \{ \mathbb{E}_z [\tau (\delta)] \} \leq D' \]

- Let \(\sigma_C \) be the hitting time of \(C \) for \(\Phi \tau \): \(\sigma_C = n \Rightarrow \Phi_{n\tau} \in C \)
- For \(z \in C \)

\[
\mathbb{E}_z [\tau_C (\delta)] \leq \mathbb{P}(\sigma_C = 1) \mathbb{E}_z [\tau (\delta)] + \mathbb{P}(\sigma_C = 2) (\mathbb{E}_z [\tau (\delta)] + \mathbb{E}_{\mathbb{P}^\tau \delta z} [\tau])
\]

\[+ \mathbb{P}(\sigma_C = 3) (\mathbb{E}_z [\tau (\delta)] + \mathbb{E}_{\mathbb{P}^\tau \delta z} [\tau] + \mathbb{E}_{\mathbb{P}^2 \delta z} [\tau]) + \cdots \]
Existence of unique invariant probability measure

Prop.

C is ‘good’

Want:

\[\sup_{z \in C} \mathbb{E}_z[\tau_C(\delta)] < \infty \]

Prop.

\[\nu = \mathcal{P}^\tau \lambda \implies \mathbb{E}_\nu[\tau] \leq D \]

Prop.

\[\gamma_{\min} \leq \mathbb{P}[\Phi_\tau \in C] \leq \gamma_{\max} \]

Prop.

\[\sup_{z \in C} \{\mathbb{E}_z[\tau(\delta)]\} \leq D' \]

Let \(\sigma_C \) be the hitting time of \(C \) for \(\Phi_\tau \):
\[\sigma_C = n \Rightarrow \Phi_{n\tau} \in C \]

For \(z \in C \)

\[
\begin{align*}
\mathbb{E}_z[\tau_C(\delta)] & \leq \mathbb{P}(\sigma_C = 1)\mathbb{E}_z[\tau(\delta)] + \mathbb{P}(\sigma_C = 2)(\mathbb{E}_z[\tau(\delta)] + \mathbb{E}_{\mathcal{P}^\tau \delta z}[\tau]) \\
& \quad + \mathbb{P}(\sigma_C = 3)(\mathbb{E}_z[\tau(\delta)] + \mathbb{E}_{\mathcal{P}^\tau \delta z}[\tau] + \mathbb{E}_{\mathcal{P}^{2\tau} \delta z}[\tau]) + \cdots \\
& \leq \gamma_{\max} D' + (1 - \gamma_{\min}) \gamma_{\max}(D' + D) + (1 - \gamma_{\min})^2 \gamma_{\max}(D' + 2D) + \cdots
\end{align*}
\]
Existence of unique invariant probability measure

Prop.

\(C \) is ‘good’

Prop.

\(\nu = P_\tau \lambda \implies E_\nu [\tau] \leq D \)

Want:

\[\sup_{z \in C} E_z [\tau_C (\delta)] < \infty \]

Prop.

\[\gamma_{\min} \leq P[\Phi \tau \in C] \leq \gamma_{\max} \]

\[\sup_{z \in C} \{ E_z [\tau (\delta)] \} \leq D' \]

Let \(\sigma_C \) be the hitting time of \(C \) for \(\Phi_\tau \): \(\sigma_C = n \Rightarrow \Phi_{n \tau} \in C \)

For \(z \in C \)

\[
E_z [\tau_C (\delta)] \leq P(\sigma_C = 1) E_z [\tau (\delta)] + P(\sigma_C = 2) (E_z [\tau (\delta)] + E_{P_\tau \delta z} [\tau]) \\
+ P(\sigma_C = 3) (E_z [\tau (\delta)] + E_{P_\tau \delta z} [\tau] + E_{P_2 \tau \delta z} [\tau]) + \cdots
\]

\[\leq \gamma_{\max} D' + (1 - \gamma_{\min}) \gamma_{\max} (D' + D) + (1 - \gamma_{\min})^2 \gamma_{\max} (D' + 2D) + \cdots \]

\[= \frac{\gamma_{\max}}{\gamma_{\min}} D' + \frac{(1 - \gamma_{\min}) \gamma_{\max}}{\gamma_{\min}^2} D \]
Estimates for $\mathbb{E}_z(\tau)$

- T^i: (random) time it takes for particle i to exit (hit $\partial \Gamma$)
Estimates for $E_z(\tau)$

- T^i: (random) time it takes for particle i to exit (hit $\partial \Gamma$)
- T^{flight}: (random) time to hit the disk originating from $\partial \Gamma$
Estimates for $E_z(\tau)$

- T^i: (random) time it takes for particle i to exit (hit $\partial \Gamma$)
- T^{flight}: (random) time to hit the disk originating from $\partial \Gamma$
- T^{hit}: (random) time to hit the disk and then $\partial \Gamma$, originating from $\partial \Gamma$
Estimates for $E_z(\tau)$

- T^i: (random) time it takes for particle i to exit (hit $\partial \Gamma$)
- T^{flight}: (random) time to hit the disk originating from $\partial \Gamma$
- T^{hit}: (random) time to hit the disk and then $\partial \Gamma$, originating from $\partial \Gamma$
- all may depend the angular velocity of the disk at collision
Estimates for $E_z(\tau)$

- T^i: (random) time it takes for particle i to exit (hit $\partial \Gamma$)
- T^{flight}: (random) time to hit the disk originating from $\partial \Gamma$
- T^{hit}: (random) time to hit the disk and then $\partial \Gamma$, originating from $\partial \Gamma$
- all may depend the angular velocity of the disk at collision
- however $\frac{1}{\sqrt{\omega^2 + s^2 \cos^2(\varphi')}} \leq \frac{1}{s \cos(\varphi')}$
Estimates for $\mathbb{E}_z(\tau)$

- T^i: (random) time it takes for particle i to exit (hit $\partial \Gamma$)
- T^flight: (random) time to hit the disk originating from $\partial \Gamma$
- T^hit: (random) time to hit the disk and then $\partial \Gamma$, originating from $\partial \Gamma$

all may depend the angular velocity of the disk at collision

however $\frac{1}{\sqrt{\omega^2 + s^2 \cos^2(\varphi')}} \leq \frac{1}{s \cos(\varphi')}$

Given $z \in \Omega$,

$$\tau \leq \max_{1 \leq i \leq k} \{ \sup_{\omega} \{ T^i \} \} + \sup_{\omega} \{ T^\text{flight} \} + \sup_{\omega} \{ T^\text{hit} \}$$
Estimates for $E_z(\tau)$

- T^i: (random) time it takes for particle i to exit (hit $\partial \Gamma$)
- T^{flight}: (random) time to hit the disk originating from $\partial \Gamma$
- T^{hit}: (random) time to hit the disk and then $\partial \Gamma$, originating from $\partial \Gamma$
- all may depend the angular velocity of the disk at collision

however \[
\frac{1}{\sqrt{\omega^2 + s^2 \cos^2(\varphi')}} \leq \frac{1}{s \cos(\varphi')}
\]

Given $z \in \Omega$,

\[
\tau \leq \max_{1 \leq i \leq k} \{ \sup_\omega \{ T^i \} \} + \sup_\omega \{ T^{\text{flight}} \} + \sup_\omega \{ T^{\text{hit}} \}
\]

\Rightarrow

\[
E_z[\tau] \leq \max_{1 \leq i \leq k} E_z[\sup_\omega \{ T^i \}] + E_z[\sup_\omega \{ T^{\text{flight}} \}] + E[\sup_\omega \{ T^{\text{hit}} \}]
\]
Suspension flow coordinates

\((x_i, v_i) \rightarrow (r_i, \varphi_i, s_i, \xi_i)\)
Suspension flow coordinates

\[(x_i, v_i) \rightarrow (r_i, \varphi_i, s_i, \xi_i)\]

- \(r_i \in \partial \Gamma\): the point of the immediate past or future collision is with \(\partial \Gamma\)
- \(\varphi_i \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\): the angle with the normal to \(\partial \Gamma\)
- \(s_i \in [0, \infty)\): the speed of the particle
- \(\xi_i\) the distance from the collision point; \(\xi_i > 0 \leftrightarrow\) past or \(\xi_i < 0 \leftrightarrow\) future
Suspension flow coordinates

- \((x_i, v_i) \rightarrow (r_i, \varphi_i, s_i, \xi_i)\)

- \(r_i \in \partial \Gamma\): the point of the immediate past or future collision is with \(\partial \Gamma\)
- \(\varphi_i \in (-\frac{\pi}{2}, \frac{\pi}{2})\): the angle with the normal to \(\partial \Gamma\)
- \(s_i \in [0, \infty)\): the speed of the particle
- \(\xi_i\): the distance from the collision point;
 \(\xi_i > 0 \leftrightarrow \text{past}\) or \(\xi_i < 0 \leftrightarrow \text{future}\)

- Denote angles of collision with disk by \(\varphi'\); note that
 \[
 \sin(\varphi') = \frac{R+d}{R} \sin(\varphi).
 \]
Estimates for $\mathbb{E}_z[\sup_\omega \{ T^i \}]$

- T^i: (random) time it takes for particle i to hit $\partial \Gamma$
Estimates for $E_z[\sup_\omega \{ T^i \}]$

- T^i: (random) time it takes for particle i to hit $\partial \Gamma$
- if the particle is headed for collision, the disk has angular velocity
 - either ω
 - or $s_j \sin(\varphi_j')$ (if j^{th} particle collided with $\partial \Gamma$ right before the i^{th})
 - or $\tilde{\omega} \sim \sqrt{\frac{\beta L}{R \pi}} e^{-\beta L/R \tilde{\omega}^2} d\tilde{\omega}$
Estimates for $\mathbb{E}_z[\sup_\omega \{ T^i \}]$

- T^i: (random) time it takes for particle i to hit $\partial \Gamma$
- if the particle is headed for collision, the disk has angular velocity is
 - either ω
 - or $s_j \sin(\phi'_j)$ (if j^{th} particle collided with $\partial \Gamma$ right before the i^{th})
 - or $\tilde{\omega} \sim \sqrt{\frac{\beta L/R}{\pi}} e^{-\beta L/R \tilde{\omega}^2} d\tilde{\omega}$

\[
\frac{l}{\sqrt{\omega^2 + s^2_i \cos^2(\phi'_i)}} \leq \frac{l}{s_i \cos(\phi'_i)} \quad \text{and} \quad \frac{l}{\sqrt{\tilde{\omega}^2 + s^2_i \cos^2(\phi'_i)}} \leq \frac{l}{\tilde{\omega}}
\]

- where l is a maximal flight distance
Estimates for $E_z[\sup_\omega \{ T^i \}]$

- T^i: (random) time it takes for particle i to hit $\partial \Gamma$
- if the particle is headed for collision, the disk has angular velocity is
 - either ω
 - or $s_j \sin(\varphi'_j)$ (if j^{th} particle collided with $\partial \Gamma$ right before the i^{th})
 - or $\tilde{\omega} \sim \sqrt{\frac{\beta L}{R \pi}} e^{-\beta L/R \tilde{\omega}^2} d\tilde{\omega}$

$$\frac{l}{\sqrt{\omega^2 + s_i^2 \cos^2(\varphi'_i)}} \leq \frac{l}{s_i \cos(\varphi'_i)} \quad \text{and} \quad \frac{l}{\sqrt{\tilde{\omega}^2 + s_i^2 \cos^2(\varphi'_i)}} \leq \frac{l}{\tilde{\omega}}$$

- where l is a maximal flight distance

\implies

$$E_z[T^i] \leq \frac{2l}{s_i \cos(\varphi'_i)} + \frac{l}{\sqrt{\beta_{\min} \pi}}$$
Estimates for $\mathbb{E}[\sup_\omega \{ T^{\text{flight}} \}]$

- T^{flight}: (random) time of exit of a particle emitted from $\partial \Gamma$
Estimates for $\mathbb{E}[\sup_\omega \{T^{\text{flight}}\}]$

- T^{flight}: (random) time of exit of a particle emitted from $\partial \Gamma$

$$
\mathbb{E}[\sup_\omega \{T^{\text{flight}}\}] \leq \int_0^\infty \int_{\sin(\varphi) \geq \alpha} \frac{2I}{s} \rho_{\beta L/R}(s, \varphi) ds d\varphi \\
+ \int_0^\infty \int_{\sin(\varphi) \leq \alpha} \left[\frac{I}{s} + \frac{I}{s \cos(\varphi')} \right] \rho_{\beta L/R}(s, \varphi) ds d\varphi \\
\leq K
$$
Estimates for $\mathbb{E}[\sup_\omega \{ T^{hit} \}]$ and $\mathbb{E}_z[\tau]$

- T^{hit}: (random) time to hit the disk emitted from $\partial \Gamma$
Estimates for $\mathbb{E}[\sup_\omega \{ T^{hit} \}]$ and $\mathbb{E}_z[\tau]$

- T^{hit}: (random) time to hit the disk emitted from $\partial \Gamma$
- Probability of hitting the disk at each trial is $\alpha = \frac{R}{R+d}$
Estimates for $\mathbb{E}[\sup_\omega \{ T^{hit} \}]$ and $\mathbb{E}_z[\tau]$

- T^{hit}: (random) time to hit the disk emitted from $\partial \Gamma$
- Probability of hitting the disk at each trial is $\alpha = \frac{R}{R+d}$

$$\mathbb{E}[\sup_\omega \{ T^{flight} \}] \leq K \Rightarrow$$

$$\mathbb{E}[\sup_\omega \{ T^{hit} \}] \leq \alpha K + (1 - \alpha)\alpha 2K + (1 - \alpha)^2\alpha 3K + \cdots$$
Estimates for $\mathbb{E}[\sup_\omega \{ T^{hit} \}]$ and $\mathbb{E}_z[\tau]$

- T^{hit}: (random) time to hit the disk emitted from $\partial \Gamma$
- Probability of hitting the disk at each trial is $\alpha = \frac{R}{R+d}$

$$\mathbb{E}[\sup_\omega \{ T^{flight} \}] \leq K \implies$$

$$\mathbb{E}[\sup_\omega \{ T^{hit} \}] \leq \alpha K + (1 - \alpha)\alpha 2K + (1 - \alpha)^2 \alpha 3K + \cdots$$

$$= \alpha K [1 + 2(1 - \alpha) + 3(1 - \alpha^2) + \cdots] = \frac{\alpha K}{\alpha^2} = \frac{K}{\alpha}$$
Estimates for $\mathbb{E}[\sup_\omega \{ T^{hit} \}]$ and $\mathbb{E}_z[\tau]$

- T^{hit}: (random) time to hit the disk emitted from $\partial \Gamma$
- Probability of hitting the disk at each trial is $\alpha = \frac{R}{R+d}$

\[
\mathbb{E}[\sup_\omega \{ T^{flight} \}] \leq K \implies \mathbb{E}[\sup_\omega \{ T^{hit} \}] \leq \alpha K + (1 - \alpha)\alpha2K + (1 - \alpha)^2\alpha3K + \cdots
\]

\[
= \alpha K[1 + 2(1 - \alpha) + 3(1 - \alpha^2) + \cdots] = \frac{\alpha K}{\alpha^2} = \frac{K}{\alpha}
\]

- \implies

\[
\mathbb{E}_z[\tau] \leq \max_{1 \leq i \leq k} \left\{ \frac{2l}{s_i \cos(\varphi'_i)} \right\} + \frac{l}{\sqrt{\beta_{\min}}} + \frac{(1 + \alpha)K}{\alpha}
\]
Prop. $\nu = P^\tau_\star \lambda \implies \mathbb{E}_{\nu}[\tau] \leq D$

\[\nu = P^{nt}_\star \lambda \implies \]

\[d(s^T_i, \varphi^T_i) \sim \rho_{\beta L/R}(s_i, \varphi_i) ds_i d\varphi_i := \frac{2\beta^{3/2}}{\sqrt{\pi}} \frac{s_i^2 e^{-\beta L/R s_i^2}}{s_i^2} \cos(\varphi_i) ds_i d\varphi_i \]
Prop. \(\nu = \mathcal{P}_*^{\tau} \lambda \implies \mathbb{E}_\nu[\tau] \leq D \)

\(\nu = \mathcal{P}_*^{n\tau} \lambda \implies \)

\[
d(s_i^\tau, \varphi_i^\tau) \sim \rho_{\beta_{L/R}}(s_i, \varphi_i) ds_i d\varphi_i := \frac{2\beta^{3/2}}{\sqrt{\pi}} s_i^2 e^{-\beta_{L/R} s_i^2} \cos(\varphi_i) ds_i d\varphi_i
\]

\[
\mathbb{E}_\nu[\tau] \leq \int_{\Omega} \left[\max_{1 \leq i \leq k} \left\{ \frac{2l}{s_i \cos(\varphi_i')} \right\} \right] + \frac{l}{\sqrt{\beta_{\min}}} + \frac{(1 + \alpha)K}{\alpha} \right] d\nu
\]
Prop. \(\nu = \mathcal{P}^\tau \lambda \implies \mathbb{E}_\nu[\tau] \leq D \)

- \(\nu = \mathcal{P}^{n\tau} \lambda \Rightarrow \)

\[
d(s_i^\tau, \varphi_i^\tau) \sim \rho_{\beta L/R}(s_i, \varphi_i) ds_i d\varphi_i \overset{:=}{=} \frac{2\beta^{3/2}}{\sqrt{\pi}} s_i^2 e^{-\beta L/R s_i^2} \cos(\varphi_i) ds_i d\varphi_i
\]

\[
\mathbb{E}_\nu[\tau] \leq \int_{\Omega} \left[\max_{1 \leq i \leq k} \left\{ \frac{2l}{s_i \cos(\varphi'_i)} \right\} + \frac{l}{\sqrt{\beta_{\min} \pi}} + \frac{(1 + \alpha)K}{\alpha} \right] d\nu
\]

\[
\leq \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\infty} \frac{2l}{s \cos(\varphi')} \rho_{\beta L/R}(s, \varphi') dr d\varphi + \frac{l}{\sqrt{\beta_{\min} \pi}} + \frac{(1 + \alpha)K}{\alpha} \leq D
\]
Prop. $\sup_{z \in C} \{ \mathbb{E}_z[\tau(\delta)] \} \leq D'$

If $z \in C$

$$
\mathbb{E}_z[\tau] \leq \max_{1 \leq i \leq k} \left\{ \frac{2l}{s_i \cos(\varphi_i')} \right\} + \frac{l}{\sqrt{\beta_{\text{min}}}} + \frac{(1 + \alpha)K}{\alpha}
$$
Prop. \(\sup_{z \in C} \{ E_z[\tau(\delta)] \} \leq D' \)

- If \(z \in C \)

\[
E_z[\tau] \leq \max_{1 \leq i \leq k} \left\{ \frac{2l}{s_i \cos(\varphi'_i)} \right\} + \frac{l}{\sqrt{\beta_{\min} \pi}} + \frac{(1 + \alpha)K}{\alpha}
\]

\[
\leq \frac{2l_{\max}}{\sqrt{\varepsilon s_{\min}}} + \frac{l_{\max}}{\sqrt{\beta_{\min} \pi}} + \frac{(1 + \alpha)K}{\alpha}
\]
Prop. $\sup_{z \in C} \{ \mathbb{E}_z[\tau(\delta)] \} \leq D'$

- If $z \in C$

$$
\mathbb{E}_z[\tau] \leq \max_{1 \leq i \leq k} \left\{ \frac{2l}{s_i \cos(\varphi'_i)} \right\} + \frac{l}{\sqrt{\beta_{\min}}\pi} + \frac{(1 + \alpha)K}{\alpha}
$$

$$
\leq \frac{2l_{\max}}{\sqrt{\epsilon} s_{\min}} + \frac{l_{\max}}{\sqrt{\beta_{\min}}\pi} + \frac{(1 + \alpha)K}{\alpha}
$$

- Wait time $\delta \Rightarrow$ some of the particles experience collisions with $\partial \Gamma$ and redistribute their speeds and angles according to $\rho_{\beta_L/R}(s, \varphi)drd\varphi$.

Tatiana Yarmola (University of Geneva)
Open interacting particle systems
Lausanne, June 6, 2013
21 / 29
Prop. $\sup_{z \in C} \{ \mathbb{E}_z[\tau(\delta)] \} \leq D'$

- If $z \in C$

$$
\mathbb{E}_z[\tau] \leq \max_{1 \leq i \leq k} \left\{ \frac{2l}{s_i \cos(\varphi'_i)} \right\} + \frac{l}{\sqrt{\beta_{\min}} \pi} + \frac{(1 + \alpha)K}{\alpha}
$$

$$
\leq \frac{2l_{\max}}{\sqrt{\epsilon s_{\min}}} + \frac{l_{\max}}{\sqrt{\beta_{\min}} \pi} + \frac{(1 + \alpha)K}{\alpha}
$$

- Wait time $\delta \Rightarrow$ some of the particles experience collisions with $\partial \Gamma$ and redistribute their speeds and angles according to $\rho_{\beta_{L/R}}(s, \varphi) drd\varphi$.

$$
\mathbb{E}_z[\tau(\delta)] \leq \frac{2l_{\max}}{\sqrt{\epsilon s_{\min}}} + D =: D'
$$
Let Φ_1 be time-1 Markov chain sampled from Φ_t
Let Φ_1 be time-1 Markov chain sampled from Φ_t

Theorem (Meyn and Tweedie 1993)

Φ_1 is irreducible and Φ_t has invariant probability measure $\mu \implies$

Φ_t is ergodic, i.e.

$$\lim_{t \to \infty} ||P^t(x, \cdot) - \mu|| = 0$$
Mixing

- Let Φ_1 be time-1 Markov chain sampled from Φ_t

Theorem (Meyn and Tweedie 1993)

Φ_1 is irreducible and Φ_t has invariant probability measure $\mu \Rightarrow$

Φ_t is ergodic, i.e.

$$\lim_{t \to \infty} \| P_t^t(x, \cdot) - \mu \| = 0$$

- Similar arguments for “Φ_1 is irreducible” and “C is ‘good’".
Mixing

- Let Φ_1 be time-1 Markov chain sampled from Φ_t

Theorem (Meyn and Tweedie 1993)

Φ_1 is irreducible and Φ_t has invariant probability measure $\mu \Rightarrow$

Φ_t is ergodic, i.e.

$$\lim_{t \to \infty} \| P^t(x, \cdot) - \mu \| = 0$$

- Similar arguments for “Φ_1 is irreducible" and “C is ‘good’".

- Ergodicity \Rightarrow any distribution converges to the invariant measure.

$$\lim_{t \to \infty} \| P^t \lambda - \mu \| = \lim_{t \to \infty} \sup_{t \to \infty} \left| \int_{\Omega} (P^t(x, A) - \mu(A)) d\lambda \right|$$

$$\leq \lim_{t \to \infty} \int_{\Omega} \| P^t(x, \cdot) - \mu(\cdot) \| d\lambda = 0$$
Rates of mixing

Let B_T be the set of configurations such that one of the particles would not collide with $\partial \Gamma \cup \partial D$ in time T.
Rates of mixing

Let B_T be the set of configurations such that one of the particles would not collide with $\partial \Gamma \cup \partial D$ in time T.

Proposition

$$\mu(B_T) \approx \frac{1}{T^2} \text{ for large } T$$
Rates of mixing

- Let B_T be the set of configurations such that one of the particles would not collide with $\partial \Gamma \cup \partial D$ in time T.

Proposition

$$\mu(B_T) \approx \frac{1}{T^2} \text{ for large } T$$

- Equilibrium invariant measure: $\beta = \beta_L = \beta_R$

$$d\mu = ce^{-\beta(\omega^2 + \sum_{i=1}^{k} |v_i|^2)} d\omega d\zeta dv_1 \cdots dv_k dx_1 \cdots dx_k$$

[Eckmann and Young 2006]
Rates of mixing

- Let B_T be the set of configurations such that one of the particles would not collide with $\partial \Gamma \cup \partial D$ in time T.

Proposition

$$\mu(B_T) \approx \frac{1}{T^2} \text{ for large } T$$

- Equilibrium invariant measure: $\beta = \beta_L = \beta_R$

$$d\mu = ce^{-\beta(\omega^2 + \sum_{i=1}^{k} |v_i|^2)} d\omega d\zeta dv_1 \cdots dv_k dx_1 \cdots dx_k$$

[Eckmann and Young 2006]

- in (r, φ, s, t)-coordinates the part that corresponds to particle i:

$$d\mu_i = cs_i^2 e^{-\beta s_i^2} \cos(\varphi_i) dr_i d\varphi_i ds_i dt_i$$

- integrate over distance of flight $< d$, $s_i < d/T$, and $t_i < \frac{d}{s_i} - T$

$$\nu(B_T) \approx \int_0^{\frac{d}{s_i}} s_i^2 \left(\frac{d}{s_i} - T \right) ds_i \approx \frac{1}{T^2}$$
Rates of mixing are not exponential [Young 1999]

\[z \in B_{k+n} \Rightarrow \mathcal{P}^n(z, B^c_k) = 0 \]
Rates of mixing are not exponential [Young 1999]

- $z \in B_{k+n} \Rightarrow P^n(z, B_k^c) = 0$
- Let $\lambda \ll \mu$ be such that $d\lambda = \varphi d\mu$ with $\varphi \geq 1 + c$ on B_{k_0}
Rates of mixing are not exponential [Young 1999]

- $z \in B_{k+n} \Rightarrow \mathcal{P}^n(z, B_k^c) = 0$
- Let $\lambda \ll \mu$ be such that $d\lambda = \varphi d\mu$ with $\varphi \geq 1 + c$ on B_{k_0}

\[\|\mathcal{P}_\ast^n \lambda - \mu\| \geq \mathcal{P}_\ast^n \lambda(B_k) - \mu(B_k) \geq \lambda(B_{k+n}) - \mu(B_k) \]
Rates of mixing are not exponential [Young 1999]

- $z \in B_{k+n} \Rightarrow P^n(z, B_k^c) = 0$
- Let $\lambda \ll \mu$ be such that $d\lambda = \varphi d\mu$ with $\varphi \geq 1 + c$ on B_{k_0}

$$\|P^n_* \lambda - \mu\| \geq P^n_* \lambda(B_k) - \mu(B_k) \geq \lambda(B_{k+n}) - \mu(B_k)$$

$$\geq (1 + c)\mu(B_{k+n}) - \mu(B_k) \approx [(1 + c)\frac{k^2}{(k+n)^2} - 1] \frac{1}{k^2}$$
Rates of mixing are not exponential [Young 1999]

- \(z \in B_{k+n} \Rightarrow P^n(z, B_k^c) = 0 \)
- Let \(\lambda \ll \mu \) be such that \(d\lambda = \varphi d\mu \) with \(\varphi \geq 1 + c \) on \(B_{k_0} \)

 \[
 \|P_*^n \lambda - \mu\| \geq P_*^n \lambda(B_k) - \mu(B_k) \geq \lambda(B_{k+n}) - \mu(B_k)
 \]

 \[
 \geq (1 + c)\mu(B_{k+n}) - \mu(B_k) \approx [(1 + c)\frac{k^2}{(k + n)^2} - 1]\frac{1}{k^2}
 \]

- \(\exists N \) s.t. \([(1 + c)\frac{N^2}{(N+1)^2} - 1] > \frac{c}{2} \).
Rates of mixing are not exponential [Young 1999]

- \(z \in B_{k+n} \Rightarrow \mathcal{P}^n(z, B_k^c) = 0 \)
- Let \(\lambda \ll \mu \) be such that \(d\lambda = \varphi d\mu \) with \(\varphi \geq 1 + c \) on \(B_{k_0} \)

\[
\| \mathcal{P}_*^n \lambda - \mu \| \geq \mathcal{P}_*^n \lambda(B_k) - \mu(B_k) \geq \lambda(B_{k+n}) - \mu(B_k)
\]

\[
\geq (1 + c)\mu(B_{k+n}) - \mu(B_k) \approx [(1 + c)\frac{k^2}{(k+n)^2} - 1] \frac{1}{k^2}
\]

- \(\exists N \) s.t. \([(1 + c)\frac{N^2}{(N+1)^2} - 1] > \frac{c}{2} \). Let \(k = Nn \). Then

\[
\| \mathcal{P}_*^n \lambda - \mu \| \geq \frac{c}{2N^2} \frac{1}{n^2}
\]
Rates of mixing: non-equilibrium

- The information we need: \(C \) is a ‘good’ set, i.e. \(\exists \eta > 0, \ T_0 > 0 \) s.t.
 \[
 \mathcal{P}^{T_0}(z, \cdot) = \mathcal{P}^{T_0}_* \delta_z \geq \eta m_C \quad \forall z \in C
 \]
 - where \(m_C \) is the uniform probability measure on \(C \)
Rates of mixing: non-equilibrium

- The information we need: C is a ‘good’ set, i.e. $\exists \eta > 0, T_0 > 0$ s.t.
 \[P^{T_0}(z, \cdot) = P^{T_0}_* \delta_z \geq \eta m_C \quad \forall z \in C \]
 - where m_C is the uniform probability measure on C
- Let $\alpha = \mu(C)$, then $\mu \geq \alpha \eta m_C$ by invariance
Rates of mixing: non-equilibrium

- The information we need: \(C \) is a ‘good’ set, i.e. \(\exists \eta > 0, \ T_0 > 0 \) s.t.
 \[
P^{T_0}(z, \cdot) = P^{T_0}_* \delta_z \geq \eta m_C \ \forall z \in C
 \]
 where \(m_C \) is the uniform probability measure on \(C \)
- Let \(\alpha = \mu(C) \), then \(\mu \geq \alpha \eta m_C \) by invariance
- For \(\delta > 0 \) small, let \(C_\delta \subset C \) be the set of configurations with a particle that will collide with \(\partial \Gamma \) in time \(\delta \)
The information we need: C is a ‘good’ set, i.e. $\exists \eta > 0$, $T_0 > 0$ s.t.
\[\mathcal{P}^{T_0}(z, \cdot) = \mathcal{P}_*^{T_0} \delta_z \geq \eta m_C \quad \forall z \in C \]
where m_C is the uniform probability measure on C

Let $\alpha = \mu(C)$, then $\mu \geq \alpha \eta m_C$ by invariance

For $\delta > 0$ small, let $C_\delta \subset C$ be the set of configurations with a particle that will collide with $\partial \Gamma$ in time δ

$\mu(C_\delta) \geq \alpha \eta \gamma$ for some geometric constant γ
Rates of mixing: non-equilibrium

- The information we need: C is a ‘good’ set, i.e. $\exists \eta > 0, \; T_0 > 0$ s.t.
 $$\mathcal{P}^{T_0}(z, \cdot) = \mathcal{P}^{T_0}_* \delta_z \geq \eta m_C \; \forall z \in C$$
 - where m_C is the uniform probability measure on C
- Let $\alpha = \mu(C)$, then $\mu \geq \alpha \eta m_C$ by invariance
- For $\delta > 0$ small, let $C_\delta \subset C$ be the set of configurations with a particle that will collide with $\partial \Gamma$ in time δ
 $$\mu(C_\delta) \geq \alpha \eta \gamma$$ for some geometric constant γ
- The probability that a randomly emitted particle will not collide in time $T + \delta$ is $\geq \frac{\varsigma}{T^3}$
Rates of mixing: non-equilibrium

The information we need: C is a ‘good’ set, i.e. $\exists \eta > 0, T_0 > 0$ s.t.
$P^{T_0}(z, \cdot) = P^{T_0}_* \delta_z \geq \eta m_C \quad \forall z \in C$

where m_C is the uniform probability measure on C

Let $\alpha = \mu(C)$, then $\mu \geq \alpha \eta m_C$ by invariance

For $\delta > 0$ small, let $C_\delta \subset C$ be the set of configurations with a particle that will collide with $\partial \Gamma$ in time δ

$\mu(C_\delta) \geq \alpha \eta \gamma$ for some geometric constant γ

The probability that a randomly emitted particle will not collide in time $T + \delta$ is $\geq \frac{\varsigma}{T^3}$

For $z \in C_\delta$, $P^\delta(z, B_T) \geq \frac{\varsigma}{T^3} \Rightarrow$

$$\mu(B_T) - \mu(B_{T+\delta}) \geq \alpha \eta \gamma \times \frac{\varsigma}{T^3}$$
Prop. $\mu(B_T) \approx \frac{1}{T^2}$

- $B_T^c \to B_T$: emit slow particle from $\partial \Gamma$
Prop. \(\mu(B_T) \approx \frac{1}{T^2} \)

- \(B^c_T \to B_T \): emit slow particle from \(\partial \Gamma \)
- \(\Rightarrow \) for \(z \in B^c_T \), \(P^\delta(z, B_T) \leq \frac{\varsigma'}{T^3} \)
Prop. $\mu(B_T) \approx \frac{1}{T^2}$

- $B^c_T \rightarrow B_T$: emit slow particle from $\partial \Gamma$
- \Rightarrow for $z \in B^c_T$, $\mathcal{P}^\delta(z, B_T) \leq \frac{\varsigma'}{T^3}$
- $\Rightarrow \mu(B_T) = \mu(B_{T+\delta}) + \Theta\left(\frac{1}{T^3}\right)$
Prop. $\mu(B_T) \approx \frac{1}{T^2}$

- $B^c_T \to B_T$: emit slow particle from $\partial \Gamma$
- \Rightarrow for $z \in B^c_T$, $P^\delta(z, B_T) \leq \frac{\zeta'}{T^3}$
- $\Rightarrow \mu(B_T) = \mu(B_{T+\delta}) + \Theta\left(\frac{1}{T^3}\right)$
- $\Rightarrow \mu(B_T) \approx \frac{1}{T^2}$
Remarks

‘Almost renewing’ stopping time idea applicable to more general classes of systems

▷ underlying deterministic dynamics may create ‘conspiracies’ (invariant sets or traps)
▷ minorization condition on C is harder to prove for more complex geometries
Remarks

- ‘Almost renewing’ stopping time idea applicable to more general classes of systems
 - underlying deterministic dynamics may create ‘conspiracies’ (invariant sets or traps)
 - minorization condition on C is harder to prove for more complex geometries
- Main geometric assumption: a particle hits the disk at most once before randomizing its velocity at $\partial \Gamma$
 - used in estimating $\mathbb{E}_z[\tau]$
 - easy to ensure hitting C with geometric rates
Remarks

- ‘Almost renewing’ stopping time idea applicable to more general classes of systems
 - underlying deterministic dynamics may create ‘conspiracies’ (invariant sets or traps)
 - minorization condition on C is harder to prove for more complex geometries

- Main geometric assumption: a particle hits the disk at most once before randomizing its velocity at $\partial\Gamma$
 - used in estimating $\mathbb{E}_z[\tau]$
 - easy to ensure hitting C with geometric rates

- Mechanical particle systems coupled to Gibbs-like heat reservoirs do not mix exponentially
Remarks

- ‘Almost renewing’ stopping time idea applicable to more general classes of systems
 - underlying deterministic dynamics may create ‘conspiracies’ (invariant sets or traps)
 - minorization condition on C is harder to prove for more complex geometries
- Main geometric assumption: a particle hits the disk at most once before randomizing its velocity at $\partial \Gamma$
 - used in estimating $\mathbb{E}_z[\tau]$
 - easy to ensure hitting C with geometric rates
- Mechanical particle systems coupled to Gibbs-like heat reservoirs do not mix exponentially
- Coupling arguments may be developed to get the polynomial upper bounds on the rates of mixing
Thank You!

