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1 Introduction

These notes are based on a series of lectures given first at the University of Warwick in spring 2008
and then at the Courant Institute in spring 2009. It is an attempt to give a reasonably self-contained
presentation of the basic theory of stochastic partial differential equations, taking for granted basic
measure theory, functional analysis and probability theory, but nothing else. Since the aim was
to present most of the material covered in these notes during a 30-hours series of postgraduate
lecture, such an attempt is doomed to failure unless drastic choices are made. This is why many
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important facets of the theory of stochastic PDEs are missing from these notes. In particular, we
do not treat equations with multiplicative noise, we do not treat equations driven Lévy noise, we
do not consider equations with ‘rough’ (that is not locally Lipschitz, even in a suitable space)
nonlinearities, we do not treat measure-valued processes, we do not consider hyperbolic or elliptic
problems, we do not cover Malliavin calculus and densities of solutions, etc. The reader who is
interested in a more detailed exposition of these more technically subtle parts of the theory might
be advised to read the excellent works [DPZ92b, DPZ96, PZ07, PR07, SS05].

Instead, the approach taken in these notes is to focus on semilinear parabolic problems driven
by additive noise. These can be treated as stochastic evolution equations in some infinite-dimen-
sional Banach or Hilbert space that usually have nice regularising properties and they already
form (in my humble opinion) a very rich class of problems with many interesting properties.
Furthermore, this class of problems has the advantage of allowing to completely pass under silence
many subtle problems arising from stochastic integration in infinite-dimensional spaces.

1.1 Acknowledgements

These notes would never have been completed, were it not for the enthusiasm of the attendants of
the course. Hundreds of typos and mistakes were spotted and corrected. I am particularly indebted
to David Epstein and Jochen Voß who carefully worked their way through these notes when they
were still in a state of wilderness. Special thanks are also due to Pavel Bubak who was running
the tutorials for the course given in Warwick.

2 Some motivating examples

2.1 A model for a random string (polymer)

Take N + 1 particles with positions un immersed in a fluid and assume that nearest-neighbours
are connected by harmonic springs. If the particles are furthermore subject to an external forcing
F , the equations of motion (in the overdamped regime where the forces acting on the particle are
more important than inertia, which can also formally be seen as the limit where the masses of the
particles go to zero) would be given by

du0

dt
= k(u1 − u0) + F (u0) ,

dun
dt

= k(un+1 + un−1 − 2un) + F (un) , n = 1, . . . , N − 1 ,

duN
dt

= k(uN−1 − uN ) + F (uN ) .

This is a primitive model for a polymer chain consisting of N + 1 monomers and without self-
interaction. It does however not take into account the effect of the molecules of water that would
randomly ‘kick’ the particles that make up our string. Assuming that these kicks occur randomly
and independently at high rate, this effect can be modelled in first instance by independent white
noises acting on all degrees of freedom of our model. We thus obtain a system of coupled stochas-
tic differential equations:

du0 = k(u1 − u0) dt+ F (u0) dt+ σ dw0(t) ,

dun = k(un+1 + un−1 − 2un) dt+ F (un) dt+ σ dwn(t) , n = 1, . . . , N − 1 ,

duN = k(uN−1 − uN ) dt+ F (uN ) dt+ σ dwN (t) .
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Formally taking the continuum limit (with the scalings k ≈ νN2 and σ ≈
√
N ), we can infer that

if N is very large, this system is well-described by the solution to a stochastic partial differential
equation

du(x, t) = ν∂2
xu(x, t) dt+ F (u(x, t)) dt+ dW (x, t) ,

endowed with the boundary conditions ∂xu(0, t) = ∂xu(1, t) = 0. It is not so clear a priori what
the meaning of the term dW (x, t) should be. We will see in the next section that, at least on a
formal level, it is reasonable to assume that EdW (x,t)

dt
dW (y,s)
ds = δ(x − y)δ(t − s). The precise

meaning of this formula will be discussed later.

2.2 The stochastic Navier-Stokes equations

The Navier-Stokes equations describing the evolution of the velocity field u(x, t) of an incom-
pressible viscous fluid are given by

du

dt
= ν∆u− (u · ∇)u−∇p+ f , (2.1)

complemented with the (algebraic) incompressibility condition divu = 0. Here, f denotes some
external force acting on the fluid, whereas the pressure p is given implicitly by the requirement
that divu = 0 at all times.

While it is not too difficult in general to show that solutions to (2.1) exist in some weak sense,
in the case where x ∈ Rd with d ≥ 3, their uniqueness is an open problem with a $1,000,000
prize. We will of course not attempt to solve this long-standing problem, so we are going to
restrict ourselves to the case d = 2. (The case d = 1 makes no sense since there the condition
divu = 0 would imply that u is constant. However, one could also consider the Burger’s equation
which has similar features to the Navier-Stokes equations.)

For simplicity, we consider solutions that are periodic in space, so that we view u as a function
from T2 × R+ to R2. In the absence of external forcing f , one can use the incompressibility
assumption to see that

d

dt

∫
T2
|u(x, t)|2 dx = −2ν

∫
T2

trDu(x, t)∗Du(x, t) dx ≤ −2ν
∫

T2
|u(x, t)|2 dx ,

where we used the Poincaré inequality in the last line (assuming that
∫

T2 u(x, t) dx = 0). There-
fore, by Gronwall’s inequality, the solutions decay to 0 exponentially fast. This shows that energy
needs to be pumped into the system continuously if one wishes to maintain an interesting regime.

One way to achieve this from a mathematical point of view is to add a force f that is randomly
fluctuating. We are going to show that if one takes a random force that is Gaussian and such that

Ef (x, t)f (y, s) = δ(t− s)C(x− y) ,

for some correlation function C then, provided that C is sufficiently regular, one can show that
(2.1) has solutions for all times. Furthermore, these solutions do not blow up in the sense that one
can find a constant K such that, for any solution to (2.1), one has

lim sup
t→∞

E‖u(t)‖2 ≤ K ,

for some suitable norm ‖ · ‖. This allows to provide a construction of a model for homogeneous
turbulence which is amenable to mathematical analysis.



4 SOME MOTIVATING EXAMPLES

2.3 The stochastic heat equation
In this section, we focus on the particular example of the stochastic heat equation. We will perform
a number of calculations that give us a feeling for what the solutions to this equation look like.
These calculations will not be completely rigorous but could be made so with some extra effort.
Most tools required to make them rigorous will be introduced later in the course.

2.3.1 Setup

Recall that the heat equation is the partial differential equation:

∂tu = ∆u , u: R+ × Rn → R . (2.2)

Given any bounded continuous initial condition u0: Rn → R, there exists a unique solution u to
(2.2) which is continuous on R+ × Rn and such that u(0, x) = u0(x) for every x ∈ Rn.

This solution is given by the formula

u(t, x) =
1

(4πt)n/2

∫
Rn
e−
|x−y|2

4t u0(y) dy .

We will denote this by the shorthand u(t, · ) = e∆tu0 by analogy with the solution to an Rd-valued
linear equation of the type ∂tu = Au.

Let us now go one level up in difficulty by considering (2.2) with an additional ‘forcing term’
f :

∂tu = ∆u+ f , u: R+ × Rn → R . (2.3)

From the variations of constants formula, we obtain that the solution to (2.3) is given by

u(t, · ) = e∆tu0 +
∫ t

0
e∆(t−s)f (s, · ) ds . (2.4)

Since the kernel defining e∆t is very smooth, this expression actually makes sense for a large
class of distributions f . Suppose now that f is ‘space-time white noise’. We do not define this
rigorously for the moment, but characterise it as a (distribution-valued) centred Gaussian process
ξ such that Eξ(s, x)ξ(t, y) = δ(t− s)δ(x− y).

The stochastic heat equation is then the stochastic partial differential equation

∂tu = ∆u+ ξ , u: R+ × Rn → R . (2.5)

Consider the simplest case u0 = 0, so that its solution is given by

u(t, x) =
∫ t

0

1
(4π|t− s|)n/2

∫
Rn
e−
|x−y|2
4(t−s) ξ(s, y) dy ds (2.6)

This is again a centred Gaussian process, but its covariance function is more complicated. The aim
of this section is to get some idea about the space-time regularity properties of (2.6). While the
solutions to ordinary stochastic differential equations are in general α-Hölder continuous (in time)
for every α < 1/2 but not for α = 1/2, we will see that in dimension n = 1, u as given by (2.6)
is only ‘almost’ 1/4-Hölder continuous in time and ‘almost’ 1/2-Hölder continuous in space. In
higher dimensions, it is not even function-valued... The reason for this lower time-regularity is
that the driving space-time white noise is not only very singular as a function of time, but also as
a function of space. Therefore, some of the regularising effect of the heat equation is required to
turn it into a continuous function in space.
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Heuristically, the appearance of the Hölder exponents 1/2 for space and 1/4 for time in di-
mension n = 1 can be understood by the following argument. If we were to remove the term
∂tu in (2.5), then u would have the same time-regularity as ξ, but two more derivatives of space
regularity. If on the other hand we were to remove the term ∆u, then u would have the sample
space regularity as ξ, but one more derivative of time regularity. The consequence of keeping both
terms is that we can ‘trade’ space-regularity against time-regularity at a cost of one time derivative
for two space derivatives. Now we know that white noise (that is the centred Gaussian process
η with Eη(t)η(s) = δ(t − s)) is the time derivative of Brownian motion, which itself is ‘almost’
1/2-Hölder continuous. Therefore, the regularity of η requires ‘a bit more than half a derivative’
of improvement if we wish to obtain a continuous function.

Turning back to ξ, we see that it is expected to behave like η both in the space direction and
in the time direction. So, in order to turn it into a continuous function of time, roughly half of a
time derivative is required. This leaves over half of a time derivative, which we trade against one
spatial derivative, thus concluding that for fixed time, u will be almost 1/2-Hölder continuous in
space. Concerning the time regularity, we note that half of a space derivative is required to turn
ξ into a continuous function of space, thus leaving one and a half space derivative. These can be
traded against 3/4 of a time derivative, thus explaining the 1/4-Hölder continuity in time.

In Section 5.1, we are going to see more precisely how the space-regularity and the time-
regularity interplay in the solutions to linear SPDEs, thus allowing us to justify rigorously this
type of heuristic arguments. For the moment, let us justify it by a calculation in the particular case
of the stochastic heat equation.

2.3.2 A formal calculation

Define the covariance for the solution to the stochastic heat equation by

C(s, t, x, y) = Eu(s, x)u(t, y) , (2.7)

where u is given by (2.6).
By (statistical) translation invariance, it is clear that C(s, t, x, y) = C(s, t, 0, x − y). Using

(2.6) and the expression for the covariance of ξ, one has

C(s, t, 0, x)

=
1

(4π)n
E
∫ t

0

∫ s

0

∫
Rn

∫
Rn

1
|s− r′|n/2|t− r|n/2

e
− |x−y|

2

4(t−r) −
|y′|2

4(s−r′) ξ(r, y)ξ(r′, y′) dy dy′ dr′ dr

=
1

(4π)n

∫ s∧t

0

∫
Rn

1
|s− r|n/2|t− r|n/2

e−
|x−y|2
4(t−r) −

|y|2
4(s−r) dy dr

=
1

(4π)n

∫ s∧t

0

∫
Rn

1
|s− r|n/2|t− r|n/2

× exp
(
− |x|2

4(t− r)
− 〈x, y〉

2(t− r)
− |y|2

4(s− r)
− |y|2

4(t− r)

)
dy dr .

The integral over y can be performed explicitly by ‘completing the square’ and one obtains

C(s, t, 0, x) = 2−n
∫ s∧t

0
(s+ t− 2r)−n/2 exp

(
− |x|2

4(s+ t− 2r)

)
dr

= 2−(n+1)
∫ s+t

|s−t|
`−n/2 exp

(
−|x|

2

4`

)
d` . (2.8)

We notice that the singularity at ` = 0 is integrable if and only if n < 2, so that C(t, t, 0, 0) is
finite only in the one-dimensional case. We therefore limit ourselves to this case in the sequel.
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Remark 2.1 Even though the random variable u defined by (2.6) is not function-valued in di-
mension 2, it is ‘almost’ the case since the singularity in (2.8) diverges only logarithmically. The
stationary solution to (2.5) is called the Gaussian free field and has been the object of intense
studies over the last few years, especially in dimension 2. Its interest stems from the fact that
many of its features are conformally invariant (as a consequence of the conformal invariance of
the Laplacian), thus linking probability theory to quantum field theory on one hand and to complex
geometry on the other hand. The Gaussian free field also relates directly to the Schramm-Loewner
evolutions (SLEs) for the study of which W. Werner was awarded the Fields medal in 2006, see
[Law04, SS06]. For more information on the Gaussian free field, see for example [She07].

The regularity of u is determined by the behaviour of C near the ‘diagonal’ s = t, x = y. We
first consider the time regularity. We therefore set x = 0 and compute

C(s, t, 0, 0) =
1
4

∫ s+t

|s−t|
`−1/2 d` = 1

2(|s+ t|
1
2 − |s− t|

1
2 ) .

This shows that, in the case n = 1 and for s ≈ t, one has the asymptotic behaviour

E|u(s, 0)− u(t, 0)|2 ≈ |t− s|
1
2 .

Comparing this with the standard Brownian motion for which E|B(s) − B(t)|2 = |t − s|, we
conclude that the process t 7→ u(t, x) is, for fixed x, almost surely α-Hölder continuous for any
exponent α < 1/4 but not for α = 1/4. This argument is a special case of Kolmogorov’s cele-
brated continuity test, of which we will see a version adapted to Gaussian measures in Section 3.1.

If, on the other hand, we fix s = t, we obtain (still in the case n = 1) via the change of
variables z = |x|2/4`, the expression

C(t, t, 0, x) =
|x|
8

∫ ∞
|x|2
8t

z−
3
2 e−z dz .

Integrating by parts, we get

C(t, t, 0, x) =
√
t

4
e−
|x|2
8t +

|x|
4

∫ ∞
|x|2
8t

z−
1
2 e−z dz ,

So that to leading order we have for small values of x:

C(t, t, 0, x) ≈
√
t

4
+
|x|
4

∫ ∞
0

z−
1
2 e−z dz =

√
t+
√
π|x|
4

+O(|x|2/8
√
t) .

This shows that, at any fixed instant t, the solution to (2.5) looks like a Brownian motion in space
over lengthscales of order t1/2. Note that over such a lengthscale the Brownian motion fluctuates
by about t1/4, which is precisely the order of magnitude of E|u(t, x)|.

2.4 What have we learned?

1. At a ‘hand-waving’ level, we have forced our equation with a term that has a temporal
evolution resembling white noise, so that one would naively expect its solutions to have
a temporal regularity resembling Brownian motion. However, for any fixed location in
space, the solution to the stochastic heat equation has a time-regularity which is only almost
Hölder-1

4 , as opposed to the almost Hölder-1
2 time-regularity of Brownian motion.
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2. Unlike the solutions to an ordinary parabolic PDE, the solutions to a stochastic PDE tend to
be spatially ‘rough’. It is therefore not obvious a priori how the formal expression that we
obtained is to be related to the original equation (2.5), since even for positive times, the map
x 7→ u(t, x) is certainly not twice differentiable.

3. Even though the deterministic heat equation has the property that e∆tu → 0 for every
u ∈ L2, the solution to the stochastic heat equation has the property that E|u(x, t)|2 → ∞
for fixed x as t → ∞. This shows that in this particular case, the stochastic forcing term
pumps energy into the system faster than the deterministic evolution can dissipate it.

Exercise 2.2 Perform the same calculation, but for the equation

∂tu = ∆u− au+ ξ , u: R+ × R→ R .

Show that as t→∞, the law of its solution converges to the law of an Ornstein-Uhlenbeck process
(if the space variable is viewed as ‘time’):

lim
t→∞

Eu(t, x)u(t, y) = Ce−c|x−y| .

Compute the constants C and c as functions of the parameter a.

3 Gaussian Measure Theory

This section is devoted to the study of Gaussian measures on general Banach spaces. Throughout
this section and throughout most of the remainder of these notes, we will denote by B an arbi-
trary separable Banach space. Recall that a space is separable if it contains a countable dense
subset. This separability assumption turns out to be crucial for measures on B to behave in a
non-pathological way. It turns out that this assumption can be circumvented by trickery in most
natural situations where non-separable spaces arise, but we choose not to complicate our lives by
considering overly general cases in these notes.

One additional assumption that would appear to be natural in the context of Gaussian measure
theory is that B be reflexive (that is B∗∗ = B). This is because the mean of a measure µ appears
in general to be an element of B∗∗ rather than of B, since the natural way of defining the mean m
of µ is to set m(`) =

∫
B `(x)µ(dx) for any ` ∈ B∗. This turns out not to be a problem, since the

mean of a Gaussian measure on a separable Banach space B turns out to always be an element of
B itself, see the monograph [Bog98]. However this result is not straightforward to prove, so we
will take here the more pragmatic approach that whenever we consider Gaussian measures with
non-zero mean, we simply consider the mean m ∈ B as given.

Before we proceed, let us just mention a few examples of Banach spaces. The spacesLp(M, ν)
(with (M, µ) a countably generated measure space like Rn) for p ∈ [1,∞) are both reflexive and
separable. However, both properties fail to hold for L∞ spaces. The space of bounded continuous
functions on a compact space is separable, but not reflexive. The space of bounded continuous
functions from Rn to R is neither separable nor reflexive, but the space of continuous functions
from Rn to R vanishing at infinity is separable. (The last two statements are still true if we
replace Rn by any locally compact complete separable metric space.) Hilbert spaces are obviously
reflexive since H∗ = H for every Hilbert space H by the Riesz representation theorem [Yos95].
There exist non-separable Hilbert spaces, but they have rather pathological properties and do not
appear very often in practice.

We start with the definition of a Gaussian measure on a Banach space. Since there is no
equivalent to Lebesgue measure in infinite dimensions (one could never expect it to be σ-additive),
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we cannot define it by prescribing the form of its density. However, it turns out that Gaussian
measures on Rn can be characterised by prescribing that the projections of the measure onto any
one-dimensional subspace of Rn are all Gaussian. This is a property that can readily be generalised
to infinite-dimensional spaces:

Definition 3.1 A Gaussian probability measure µ on a Banach space B is a Borel measure such
that `∗µ is a real Gaussian probability measure on R for every linear functional `:B → R. (Dirac
measures are considered to be Gaussian measures with zero covariance.) We call it centred if `∗µ
is centred for every `.

Remark 3.2 We used here the notation f∗µ for the push-forward of a measure µ under a map f .
This is defined by (f∗µ)(A) = µ(f−1(A)).

One first question that one may ask is whether this is a reasonable definition. After all, it
only makes a statement about the one-dimensional projections of the measure µ, which itself
lives on an infinite-dimensional space. However, this turns out to reasonable since, provided that
B is separable, the finite-dimensional projections of any probability measure contain sufficiently
information to characterise it:

Proposition 3.3 Let B be a separable Banach space and let µ and ν be two probability Borel
measures on B. If `∗µ = `∗ν for every ` ∈ B∗, then µ = ν.

Proof. Denote by Cyl(B) the algebra of cylindrical sets onB, that isA ∈ Cyl(B) if and only if there
exists n > 0, a continuous linear map T :B → Rn, and a Borel set Ã ⊂ Rn such that A = T−1Ã.
It follows from the assumption that µ(A) = ν(A) for every A ∈ Cyl(B) and therefore, by a basic
uniqueness result in measure theory (see Lemma II.4.6 in [RW94] for example), for everyA in the
σ-algebra E(B) generated by Cyl(B). It thus remains to show that E(B) coincides with the Borel
σ-algebra of B.

Since B is separable, every open set U can be written as a countable union of closed balls. (Fix
any dense countable subset {xn} of B and check that one has for example U =

⋃
xn∈U B̄(xn, rn),

where rn = 1
2 sup{r > 0 : B̄(xn, r) ⊂ U} and B̄(x, r) denotes the closed ball of radius r

centred at x.) Since E(B) is invariant under translations and dilations, it remains to check that
B̄(0, 1) ∈ E(B). Let {xn} be a countable dense subset of {x ∈ B : ‖x‖ = 1} and let `n by
any sequence in B∗ such that ‖`n‖ = 1 and `n(xn) = 1 (such elements exist by the Hahn-Banach
extension theorem [Yos95]). Define now K =

⋂
n≥0{x ∈ B : |`n(x)| ≤ 1}. It is clear that

K ∈ E(B), so that the proof is complete if we can show that K = B̄(0, 1).
Since obviously B̄(0, 1) ⊂ K, it suffices to show that the reverse inclusion holds. Let y ∈

B with ‖y‖ > 1 be arbitrary and set ŷ = y/‖y‖. By the density of the xn’s, there exists a
subsequence xkn such that ‖xkn − ŷ‖ ≤ 1

n , say, so that `kn(ŷ) ≥ 1− 1
n . By linearity, this implies

that `kn(y) ≥ ‖y‖(1− 1
n), so that there exists a sufficiently large n so that `kn(y) > 1. This shows

that y 6∈ K and we conclude that K ⊂ B̄(0, 1) as required.

From now on, we will mostly consider centred Gaussian measures, since one can always re-
duce oneself to the general case by a simple translation. Given a centred Gaussian measure µ, we
define a map Cµ:B∗ × B∗ → R by

Cµ(`, `′) =
∫
B
`(x)`′(x)µ(dx) . (3.1)

Remark 3.4 In the case B = Rn, this is just the covariance matrix, provided that we perform the
usual identification of Rn with its dual.
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The map Cµ will be called the Covariance operator of µ. It follows immediately from the
definitions that the operatorCµ is bilinear and definite positive. Furthermore, the Fourier transform
of µ is given by

µ̂(`) def=
∫
B
ei`(x) µ(dx) = exp(−1

2Cµ(`, `)) , (3.2)

where ` ∈ B∗. This can be checked by using the explicit form of the one-dimensional Gaussian
measure. Conversely, (3.2) characterises Gaussian measures in the sense that if µ is a measure
such that there exists Cµ satisfying (3.2) for every ` ∈ B∗, then µ must be centred Gaussian. The
reason why this is so is that two distinct probability measures necessarily have distinct Fourier
transforms:

Proposition 3.5 Let µ and ν be any two probability measures on a separable Banach space B. If
µ̂(`) = ν̂(`) for every ` ∈ B∗, then µ = ν.

Proof. In the particular case B = Rn, if ϕ is a smooth function with compact support, it follows
from Fubini’s theorem and the invertibility of the Fourier transform that one has the identity∫

Rn
ϕ(x)µ(dx) =

1
(2π)n

∫
Rn

∫
Rn
ϕ̂(k)e−ikx dk µ(dx) =

1
(2π)n

∫
Rn
ϕ̂(k) µ̂(−k) dk ,

so that, since bounded continuous functions can be approximated by smooth functions, µ is indeed
determined by µ̂. The general case then follows immediately from Proposition 3.3.

Remark 3.6 We could also have defined Gaussian measures by imposing that `∗µ is Gaussian for
every bounded linear map `:B → Rn and every n. These two definitions are equivalent because
measures on Rn are characterised by their Fourier transforms and these can be constructed from
one-dimensional marginals.

As a simple consequence, we have the following trivial but useful property:

Proposition 3.7 Let µ be a Gaussian measure on B and, for every ϕ ∈ R, define the ‘rotation’
Rϕ:B2 → B2 by

Rϕ(x, y) = (x sinϕ+ y cosϕ, x cosϕ− y sinϕ) .

Then, one has R∗ϕ(µ⊗ µ) = µ⊗ µ.

Proof. Since a measure is characterised by its Fourier transform [Bog98, Prop A.3.18], it suffices
to check that ̂µ⊗ µ ◦Rϕ = ̂µ⊗ µ, which is an easy exercise.

3.1 A-priori bounds on Gaussian measures

We are going to show now that the operator Cµ has to also be bounded, as a straightforward
consequence of the fact that x 7→ ‖x‖2 is integrable. Actually, we are going to show much more,
namely that there always exists a constant α > 0 such that exp(α‖x‖2) is integrable! In other
words, the norm of any Banach-space valued Gaussian random variable has Gaussian tails, just
like in the finite-dimensional case. This is the content of a celebrated theorem:

Theorem 3.8 (Fernique, 1970) Let µ be a centred Gaussian probability measure on a separable
Banach space B. Then, there exists α > 0 such that

∫
B exp(α‖x‖2)µ(dx) <∞.
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Proof. Note first that, from Proposition 3.7, one has for any two positive numbers t and τ the
bound

µ(‖x‖ ≤ τ )µ(‖x‖ > t) =
∫
‖x‖≤τ

∫
‖y‖>t

µ(dx)µ(dy) =
∫
‖x−y√

2
‖≤τ

∫
‖x+y√

2
‖>t

µ(dx)µ(dy)

≤
∫
‖x‖> t−τ√

2

∫
‖y‖> t−τ√

2

µ(dx)µ(dy) = µ
(
‖x‖ > t−τ√

2

)2
. (3.3)

In order to go from the first to the second line, we have used the fact that the triangle inequality
implies

min{‖x‖, ‖y‖} ≥ 1
2(‖x+ y‖ − ‖x− y‖) ,

so that ‖x + y‖ >
√

2t and ‖x − y‖ ≤
√

2τ do indeed imply that both ‖x‖ and ‖y‖ are greater
than t−τ√

2
. Since ‖x‖ is µ-almost surely finite, there exists some τ > 0 such that µ(‖x‖ ≤ τ ) ≥ 1

2 .

Set now t0 = τ and define tn for n > 0 recursively by the relation tn = tn+1−τ√
2

. It follows from
(3.3) that

1
2µ(‖x‖ > tn+1) ≤ µ(‖x‖ ≤ τ )µ(‖x‖ > tn+1) ≤ µ

(
‖x‖ > tn+1−τ√

2

)2
≤ µ(‖x‖ > tn)2 ,

so that µ(‖x‖ > tn+1) ≤ 2µ(‖x‖ > tn)2. Applying this inequality repeatedly, we obtain

µ(‖x‖ > tn) ≤ 22n−1µ(‖x‖ > t0)2n ≤ 22n−1−2n+1 ≤ 2−2n .

On the other hand, one can check explicitly that tn =
√

2
n+1−1√
2−1

τ ≤ 2n/2 · (2 +
√

2)τ , so that in

particular tn+1 ≤ 2n/2 · 5τ . This shows that one has the bound

µ(‖x‖ > tn) ≤ 2−
t2n+1

25τ2 ,

implying that there exists α > 0 such that µ(‖x‖ > t) ≤ exp(−2αt2) for every t ≥ τ . Integrating
by parts, we finally obtain∫
B

exp(α‖x‖2)µ(dx) ≤ eατ2
+ 2α

∫ ∞
τ

teαt
2
µ(‖x‖ > t) dt ≤ eατ2

+ 2α
∫ ∞
τ

te−αt
2
dt <∞ ,

which is the desired result.

As an immediate corollary, we have

Corollary 3.9 There exists a constant ‖Cµ‖ < ∞ such that Cµ(`, `′) ≤ ‖Cµ‖‖`‖‖`′‖ for any
`, `′ ∈ B∗. In particular, Cµ can be interpreted as a continuous operator from B∗ to B when B is
reflexive.

Actually, Cµ is more than just bounded. If B happens to be a Hilbert space, one has indeed
the following result, which allows us to characterise in a very precise way the set of all centred
Gaussian measures on a Hilbert space:

Proposition 3.10 If B = H is a Hilbert space, then the operator Ĉµ:H → H defined by the
identity 〈Ĉµh, k〉 = Cµ(h, k) is trace class and one has the identity∫

H
‖x‖2 µ(dx) = tr Ĉµ . (3.4)

(Here, we used Riesz’s representation theorem to identifyH with its dual.)
Conversely, for every positive trace class symmetric operator K:H → H, there exists a Gaus-

sian measure µ onH such that Cµ = K.



GAUSSIAN MEASURE THEORY 11

Proof. Fix an arbitrary orthonormal basis {en} ofH. We know from Theorem 3.8 that the second
moment of the norm is finite:

∫
H ‖h‖2 µ(dh) <∞. On the other hand, one has∫

H
‖h‖2 µ(dh) =

∞∑
n=1

∫
H
〈h, en〉2 µ(dh) =

∞∑
n=1

〈en, Ĉµen〉 = tr Ĉµ ,

which is precisely (3.4). To pull the sum out of the integral in the first equality, we used Lebegue’s
dominated convergence theorem.

In order to prove the converse statement, since K is compact, we can find an orthonormal
basis {en} of H such that Ken = λnen and λn ≥ 0,

∑
n λn < ∞. Let furthermore {ξn} be

a collection of i.i.d. N (0, 1) Gaussian random variables (such a family exists by Kolmogorov’s
extension theorem). Then, since

∑
n λnEξ2

n = trK < ∞, the series
∑
n

√
λnξnen converges

almost surely inH. One can easily check that the law of the limiting random variable is Gaussian
and has the requested covariance.

In many situations, it is furthermore helpful to find out whether a given covariance structure
can be realised as a Gaussian measure on some space of Hölder continuous functions. This can be
achieved through the following version of Kolmogorov’s continuity criterion, which can be found
for example in [RY94, p. 26]:

Theorem 3.11 (Kolmogorov) For d > 0, let C: [0, 1]d × [0, 1]d → R be a symmetric function
such that, for every finite collection {xi}mi=1 of points in [0, 1]d, the matrix Cij = C(xi, xj) is
positive definite. If furthermore there exists α > 0 and a constant K > 0 such that C(x, x) +
C(y, y) − 2C(x, y) ≤ K|x − y|2α for any two points x, y ∈ [0, 1]d then there exists a unique
centred Gaussian measure µ on C([0, 1]d,R) such that∫

C([0,1]d,R)
f (x)f (y)µ(df ) = C(x, y) , (3.5)

for any two points x, y ∈ [0, 1]d. Furthermore, for every β < α, one has µ(Cβ([0, 1]d,R)) = 1,
where Cβ([0, 1]d,R) is the space of β-Hölder continuous functions.

Before we turn to the proof of Theorem 3.11, we make a few preparations.

Proof of Theorem 3.11. Set B = C([0, 1]d,R) and B∗ its dual, which consists of the set of Borel
measures with finite total variation [Yos95, p. 119]. Since convex combinations of Dirac measures
are dense (in the topology of weak convergence) in the set of probability measures, it follows that
the set of linear combinations of point evaluations is weakly dense in B∗. Therefore, the claim
follows if we are able to construct a measure µ on B such that (3.5) holds and such that, if f is
distributed according to µ, then the law of f (x) is Gaussian for every x ∈ [0, 1]d.

By Kolmogorov’s extension theorem, we can construct a measure µ0 on R[0,1]d endowed with
the product σ-algebra such that the laws of all finite-dimensional marginals are Gaussian and
satisfy (3.5). We denote by X a R[0,1]d-valued random variable with law µ0.

Denote now by D ⊂ [0, 1]d the subset of dyadic numbers and define the event Ωβ by{
X : X̂(x) def= lim

y→x
y∈D

X(y) exists for every x ∈ [0, 1]d and X̂ belongs to Cβ([0, 1]d,R)
}
.

Since the event Ωβ can be constructed from evaluating X at only countably many points, it is a
measurable set. For the same reason, the map ι: R[0,1]d → Cβ([0, 1]d,R) given by

ι(X) =

{
X̂ if X ∈ Ωβ ,
0 otherwise
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is measurable with respect to the product σ-algebra on R[0,1]d , so that the claim follows if we
can show that µ0(Ωβ) = 1 for every β < α. (Take µ = ι∗µ0.) Denoting the β-Hölder norm of
X by Mβ(X) = supx6=y :x,y∈D{|X(x) − X(y)|/|x − y|β}, we see that Ωβ can alternatively be
characterised as Ωβ = {X : Mβ(X) <∞}.

Denote by Dm ⊂ D the set of those numbers whose coordinates are integer multiples of 2−m

and denote by ∆m the set of pairs x, y ∈ Dm such that |x− y| = 2−m. In particular, note that ∆m

has at most 2(m+2)d such pairs. We are now going to make use of our simplifying assumption that
we are dealing with Gaussian random variables, so that pth moments can be bounded in terms of
second moments. More precisely, for every p ≥ 1 there exists a constant Cp such that if X is a
Gaussian random variable, then one has the bound E|X|p ≤ (E|X|2)p/2.

Setting Km(X) = supx,y∈∆m
|X(x) − X(y)| and fixing some arbitrary β′ ∈ (β, α), we see

that for p ≥ 1 large enough, there exists a constant Kp such that

EKp
m(X) ≤

∑
x,y∈∆m

E|X(x)−X(y)|p ≤ Cp
∑

x,y∈∆m

(E|X(x)−X(y)|2)p/2

= Cp
∑

x,y∈∆m

(C(x, x) + C(y, y)− 2C(x, y))p/2 ≤ Kp2(m+2)d−αmp

≤ Kp2−β
′mp .

(In order to obtain the last inequality, we had to assume that p ≥ d
α−β′

m+2
m which can always be

achieved since we assumed that β′ < α.) Using Jensen’s inequality, this shows that there exists a
constant K ′ such that the bound

EKm(X) ≤ K ′2−β′m (3.6)

holds uniformly in m. Fix now any two points x, y ∈ D with x 6= y and denote by m0 the largest
m such that |x − y| ≤ 2−m. One can then find sequences {xn}n≥m0 and {yn}n≥m0 with the
following properties:

1. One has limn→∞ xn = x and limn→∞ yn = y.

2. Either xm0 = ym0 or (xm0 , ym0) ∈ ∆m0 .

3. For every n ≥ m0, xn and xn+1 can be connected by at most d ‘bonds’ in ∆n+1 and
similarly for (yn, yn+1).

x

xn

One way of constructing this sequence is to order elements in Dm by
lexicographic order and to choose xn = max{x̄ ∈ Dn : x̄j ≤ xj ∀j}, as
illustrated in the picture to the right. This shows that one has the bound

|X(x)−X(y)| ≤ |X(xm0)− Y (xm0)|+
∞∑

n=m0

|X(xn+1)−X(xn)|

+
∞∑

n=m0

|X(yn+1)−X(yn)|

≤ Km0(X) + 2d
∞∑

n=m0

Kn+1(X) ≤ 2d
∞∑

n=m0

Kn(X) .

Since m0 was chosen in such a way that |x− y| ≥ 2−m0−1, one has the bound

Mβ(X) ≤ 2d sup
m≥0

2β(m+1)
∞∑
n=m

Kn(X) ≤ 2β+1d
∞∑
n=0

2βnKn(X) .
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It follows from this and from the bound (3.6) that

E|Mβ(X)| ≤ 2β+1d
∞∑
n=0

2βnEKn(X) ≤ 2β+1dK ′
∞∑
n=0

2(β−β′)n <∞ ,

since β′ was chosen strictly larger than β.

Remark 3.12 The space Cβ([0, 1]d,R) is not separable. However, the space Cβ0 ([0, 1]d,R) of
Hölder continuous functions that furthermore satisfy limy→x

|f (x)−f (y)|
|x−y|β = 0 uniformly in x is

separable (polynomials with rational coefficients are dense in it). This is in complete analogy
with the fact that the space of bounded measurable functions is not separable, while the space of
continuous functions is.

It is furthermore possible to check that Cβ′ ⊂ Cβ0 for every β′ > β, so that Exercise 3.29 below
shows that µ can actually be realised as a Gaussian measure on Cβ0 ([0, 1]d,R).

Exercise 3.13 Try to find conditions on G ⊂ Rd that are as weak as possible and such that
Kolmogorov’s continuity theorem still holds if the cube [0, 1]d is replaced by G. Hint: One
possible strategy is to embed G into a cube and then to extend C(x, y) to that cube.

Exercise 3.14 Show that ifG is as in the previous exercise,H is a Hilbert space, and C:G×G→
L(H,H) is such that C(x, y) positive definite, symmetric, and trace class for any two x, y ∈
G, then Kolmogorov’s continuity theorem still holds if its condition is replaced by trC(x, x) +
trC(y, y)− 2 trC(x, y) ≤ K|x− y|α. More precisely, one can construct a measure µ on the space
Cβ([0, 1]d,H) such that∫

Cβ ([0,1]d,R)
〈h, f (x)〉〈f (y), k〉µ(df ) = 〈h,C(x, y)k〉 ,

for any x, y ∈ G and h, k ∈ H.

Corollary 3.15 Let {ηk}k≥0 be countably many i.i.d. standard Gaussian random variables (real
or complex). Moreover let {fk}k≥0 ⊂ Lip(G,C) where the domain G ⊂ Rd is sufficiently regular
for Kolomgorov’s continuity theorem to hold. Suppose there is some δ ∈ (0, 2) such that

S2
1 =

∑
k∈I
‖fk‖2L∞ <∞ and S2

2 =
∑
k∈I
‖fk‖2−δL∞ Lip(fk)δ <∞ ,

and define f =
∑
k∈I ηkfk. Then f is almost surely bounded and continuous.

Proof. From the assumptions we immediately derive that f (x) and f (x) − f (y) are a centred
Gaussian for any x, y ∈ G. Moreover, the corresponding series converge absolutely. Using that
the ηk are i.i.d., we obtain

E|f (x)− f (y)|2 =
∑
k∈I
|fk(x)− fk(y)|2 ≤

∑
k∈I

min{2‖fk‖2L∞ ,Lip(fk)2|x− y|2}

≤ 2
∑
k∈I
‖fk‖2−δL∞ Lip(fk)δ|x− y|δ = 2S2

2 |x− y|δ ,

where we used that min{a, bx2} ≤ a1−δ/2bδ/2|x|δ for any a, b ≥ 0. The claim now follows from
Kolmogorov’s continuity theorem.



14 GAUSSIAN MEASURE THEORY

3.2 The Cameron-Martin space

Given a Gaussian measure µ on a separable Banach space B, it is possible to associate to it in
a canonical way a Hilbert space Hµ ⊂ B, called the Cameron-Martin space of µ. The main
importance of the Cameron-Martin space is that it characterises precisely those directions in B in
which translations leave the measure µ ‘quasi-invariant’ in the sense that the translated measure
has the same null sets as the original measure. In general, the spaceHµ will turn out to be strictly
smaller than B. Actually, this is always the case as soon as dimHµ =∞. Contrast this to the case
of finite-dimensional Lebesgue measure which is invariant under translations in any direction!
This is a striking illustration of the fact that measures in infinite-dimensional spaces have a strong
tendency of being mutually singular.

The definition of the Cameron-Martin space is the following, where we postpone to Re-
mark 3.17 and Proposition 3.20 the verification that ‖h‖µ is well-defined and that ‖h‖µ > 0
for h 6= 0:

Definition 3.16 The Cameron-Martin space Hµ of µ is the completion of the linear subspace
Ĥµ ⊂ B defined by

Ĥµ = {h ∈ B : ∃h∗ ∈ B∗ with Cµ(h∗, `) = `(h) ∀` ∈ B∗} ,

under the norm ‖h‖2µ = 〈h, h〉µ = Cµ(h∗, h∗). It is a Hilbert space when endowed with the scalar
product 〈h, k〉µ = Cµ(h∗, k∗).

Remark 3.17 Even though the map h 7→ h∗ may not be one to one, the norm ‖h‖µ is well-
defined. To see this, assume that for a given h ∈ Ĥµ, there are two corresponding elements h∗1 and
h∗2 in B∗. Then, defining k = h∗1 + h∗2, one has

Cµ(h∗1, h
∗
1)− Cµ(h∗2, h

∗
2) = Cµ(h∗1, k)− Cµ(h∗2, k) = k(h)− k(h) = 0 ,

showing that ‖h‖µ does indeed not depend on the choice of h∗.

Exercise 3.18 The Wiener measure µ is defined on B = C([0, 1],R) as the centred Gaussian
measure with covariance operator given by Cµ(δs, δt) = s ∧ t. Show that the Cameron-Martin
space for the Wiener measure on B = C([0, 1],R) is given by the set of all absolutely continuous
functions h such that

∫ 1
0 ḣ

2(t) dt <∞.

Exercise 3.19 Show that in the case B = Rn, the Cameron-Martin space is given by the range of
the covariance matrix. Write an expression for ‖h‖µ in this case.

Let us discuss a few properties of the Cameron-Martin space. First of all, we show that it is a
subspace of B despite the completion procedure and that all non-zero elements ofHµ have strictly
positive norm:

Proposition 3.20 One hasHµ ⊂ B. Furthermore, one has the bound

〈h, h〉µ ≥ ‖Cµ‖−1‖h‖2 , (3.7)

where the norms on the right hand side are understood to be taken in B.
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Proof. One has the chain of inequalities

‖h‖2 = sup
`∈B∗\{0}

`(h)2

‖`‖2
= sup

`∈B∗\{0}

Cµ(h∗, `)2

‖`‖2
≤ sup

`∈B∗\{0}

Cµ(h∗, h∗)Cµ(`, `)
‖`‖2

≤ ‖Cµ‖〈h, h〉µ ,

which yields the bound on the norms. The fact thatHµ is a subset of B then follows from the fact
that B is complete and that Cauchy sequences in Ĥµ are also Cauchy sequences in B by (3.7).

Another remark is that the correspondence h 7→ h∗ in the definition of Ĥµ is not necessarily
unique. Consider for example the case µ = δ0, so that Cµ = 0. If one chooses h = 0, any h∗ ∈ B
has the required property that Cµ(h∗, `) = `(h). However, if we view B∗ as a subset of L2(B, µ)
(by identifying linear functionals that agree µ-almost surely), then the correspondence h 7→ h∗

is an isomorphism. One has indeed
∫
B h
∗(x)2 µ(dx) = Cµ(h∗, h∗) = ‖h‖2µ. In particular, if h∗1

and h∗2 are two distinct elements of B∗ associated to the same element h ∈ B, then h∗1 − h∗2 is
associated to the element 0 and therefore

∫
B(h∗1(x)− h∗2(x))2 µ(dx) = 0, showing that h1 = h2 as

elements of L2(B, µ). We have:

Proposition 3.21 There is a canonical isomorphism ι:h 7→ h∗ between Hµ and the closure Rµ
of B∗ in L2(B, µ).

Proof. We have already shown that ι:Hµ → L2(B, µ) is an isomorphism onto its image, so it
remains to show that all of B∗ belongs to the image of ι. For h ∈ B∗, define h∗ ∈ B by

h∗ =
∫
B
xh(x)µ(dx) .

(This integral converges since ‖x‖2 is integrable by Fernique’s theorem.) Since one has the identity
`(h∗) = Cµ(`, h), it follows that h∗ ∈ Ĥµ and h = ι(h∗), as required to conclude the proof.

Remark 3.22 The space Rµ is called the reproducing kernel Hilbert space for µ (or just repro-
ducing kernel for short). However, since it is isomorphic to the Cameron-Martin space in a natural
way, there is considerable confusion between the two in the literature. We retain in these notes the
terminology from [Bog98].

Remark 3.23 Since L2(B, µ) is separable if B is separable, the same is true for Hµ and Rµ. In
general, there do however exist Gaussian measures with non-separable Cameron-Martin space.

Exercise 3.24 Let µ be a Gaussian measure on a Hilbert spaceH with covariance K and consider
the spectral decomposition of K: Ken = λnen with

∑
n≥1 λn < ∞. Assume that λn > 0 for

every n. Show that Ĥµ is given by the range of K and that the correspondence h 7→ h∗ is given
by h∗ = K−1h. Show furthermore that the Cameron-Martin space Hµ consists of those elements
h ofH such that

∑
n≥1 λ

−1
n 〈h, en〉2 <∞ and that 〈h, k〉µ = 〈K−1/2h,K−1/2k〉.

Exercise 3.25 Show that one has the alternative characterisation

‖h‖µ = sup{`(h) : Cµ(`, `) ≤ 1} , (3.8)

and Hµ = {h ∈ B : ‖h‖µ < ∞}. Hint: Use the fact that in any Hilbert space H, one has
‖h‖ = sup{〈k, h〉 : ‖k‖ ≤ 1}.

Note also that
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Proposition 3.26 The law of any element of Rµ is a centred Gaussian.

Proof. We already know from the definition of a Gaussian measure that the law of any element of
B∗ is a centred Gaussian. Let now h be any element of Rµ and let hn be a sequence in Rµ ∩ B∗
such that hn → h in Rµ. We see that, if h and g are any two centred random variables with
variances σ2

h and σ2
g respectively, then

E(h− g)2 = σ2
h + σ2

g − 2Ehg ≥ σ2
h + σ2

g − 2|σhσg| = (|σh| − |σg|)2 ,

thus showing that the variances σ2
n of hn form a Cauchy sequence in R and therefore have a limit

σ2. Since L2-convergence implies convergence in law and since we know that if σn → σ, then
N (0, σ2

n)→ N (0, σ2) in law, we conclude that the law of h is given by N (0, σ2).

Furthermore, elements in Rµ are ‘almost’ linear functionals on B in the following sense:

Proposition 3.27 For every ` ∈ Rµ there exists a subspace V` of B such that µ(V`) = 1 and a
linear map ˆ̀:V` → R such that ` = ˆ̀µ-almost surely.

Proof. Fix ` ∈ Rµ. By the definition of Rµ and Borel-Cantelli, we can find a sequence `n ∈ B∗
such that limn→∞ `n(x) = `(x) for µ-almost every x ∈ B. (Take for example `n such that
‖`n − `‖2µ ≤ n−4.) It then suffices to define

V` = {x : lim
n→∞

`n(x) exists} ,

and to set ˆ̀(x) = limn→∞ `n(x) on V`.

Remark 3.28 Actually, the converse of Proposition 3.27 is also true: if `:B → R is measurable
and linear on a subspace of full measure, then ` belongs to Rµ. This is not an obvious statement.
It uses the highly non-trivial fact that every Borel measurable linear map between two ‘nice’
topological vector spaces is bounded (see for example [Sch66, Kat82]), but we will not give its
proof in these notes.

Exercise 3.29 Show that if B̃ ⊂ B is a continuously embedded Banach space with µ(B̃) = 1,
then the embedding B∗ ↪→ Rµ extends to an embedding B̃∗ ↪→ Rµ. Deduce from this that the
restriction of µ to B̃ is again a Gaussian measure. In particular, Kolmogorov’s continuity criterion
yields a Gaussian measure on Cβ0 ([0, 1]d,R).

The properties of the reproducing kernel space of a Gaussian measure allow us to give another
illustration of the fact that measures on infinite-dimensional spaces behave in a rather different
way from measures on Rn:

Proposition 3.30 Let µ be a centred Gaussian measure on a separable Banach space B such that
dimHµ =∞. Denote by Dc the dilatation by a real number c on B, that is Dc(x) = cx. Then, µ
and D∗cµ are mutually singular for every c 6= ±1.

Proof. Since the reproducing Kernel space Rµ is a separable Hilbert space, we can find an or-
thonormal basis {en}n≥0. Consider the sequence of random variablesXN (x) = 1

N

∑N
n=1 |en(x)|2

over B. If B is equipped with the measure µ then, since the en are independent under µ, we can
apply the law of large numbers and deduce that

lim
N→∞

XN (x) = 1 , (3.9)
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for µ-almost every x. On the other hand, it follows from the linearity of the en that when we equip
B with the measure D∗cµ, the en are still independent, but have variance c2, so that

lim
N→∞

XN (x) = c2 ,

for D∗cµ-almost every x. This shows that if c 6= ±1, the set on which the convergence (3.9) takes
place must be of D∗cµ-measure 0, which implies that µ and D∗cµ are mutually singular.

As already mentioned earlier, the importance of the Cameron-Martin space is that it represents
precisely those directions in which one can translate the measure µ without changing its null sets:

Theorem 3.31 (Cameron-Martin) For h ∈ B, define the map Th:B → B by Th(x) = x + h.
Then, the measure T ∗hµ is absolutely continuous with respect to µ if and only if h ∈ Hµ.

Proof. Fix h ∈ Hµ and let h∗ ∈ L2(B, µ) be the corresponding element of the reproducing kernel.
Since the law of h∗ is Gaussian by Proposition 3.26, the map x 7→ exp(h∗(x)) is integrable. Since
furthermore the variance of h∗ is given by ‖h‖2µ, the function

Dh(x) = exp(h∗(x)− 1
2‖h‖

2
µ) (3.10)

is strictly positive, belongs to L1(B, µ), and integrates to 1. It is therefore the Radon-Nikodym
derivative of a measure µh that is absolutely continuous with respect to µ. To check that one
has indeed µh = T ∗hµ, it suffices to show that their Fourier transforms coincide. Assuming that
h∗ ∈ B∗, one has

µ̂h(`) =
∫
B

exp(i`(x) + h∗(x)− 1
2‖h‖

2
µ)µ(dx) = exp(1

2Cµ(i`+ h∗, i`+ h∗)− 1
2‖h‖

2
µ)

= exp(−1
2Cµ(`, `)− iCµ(`, h∗)) = exp(−1

2Cµ(`, `) + i`(h)) .

Using Lebegue’s dominated convergence theorem, it is an easy exercise to check that this equality
still holds for arbitrary h ∈ Hµ.

On the other hand, we have

T̂ ∗hµ(`) =
∫
B

exp(i`(x))T ∗hµ(dx) =
∫
B

exp(i`(x+ h))µ(dx) = ei`(h)
∫
B

exp(i`(x))µ(dx)

= exp(−1
2Cµ(`, `) + i`(h)) ,

showing that µh = T ∗hµ.
To show the converse, note first that one can check by an explicit calculation that ‖N (0, 1) −

N (h, 1)‖TV ≥ 2− 2 exp(−h2

8 ). Fix now some arbitrary n > 0. If h 6∈ Hµ then, by Exercise 3.25,
there exists ` ∈ B∗ with Cµ(`, `) = 1 such that `(h) ≥ n. Since the image `∗µ of µ under ` is
N (0, 1) and the image of T ∗hµ under ` is N (−`(h), 1), this shows that

‖µ− T ∗hµ‖TV ≥ ‖`∗µ− `∗T ∗hµ‖TV = ‖N (0, 1)−N (−`(h), 1)‖TV ≥ 2− 2 exp(−n
2

8
) .

Since this is true for every n, we conclude that ‖µ − T ∗hµ‖TV = 2, thus showing that they are
mutually singular.

As a consequence, we have the following characterisation of the Cameron-Martin space
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Proposition 3.32 The space Hµ ⊂ B is the intersection of all linear subspaces of full measure.
However, ifHµ is infinite-dimensional, then one has µ(Hµ) = 0.

Proof. Take an arbitrary linear subspace V ⊂ B of full measure and take an arbitrary h ∈ Hµ. It
follows from Theorem 3.31 that the affine space V −h also has full measure. Since (V −h)∩V = φ
unless h ∈ V , one must have h ∈ V , so thatHµ ∈

⋂
{V ⊂ B : µ(V ) = 1}.

Conversely, take an arbitrary x 6∈ Hµ and let us construct a linear space V ⊂ B of full measure,
but not containing x. Since x 6∈ Hµ, one has ‖x‖µ = ∞ with ‖ · ‖µ extended to B as in (3.8).
Therefore, we can find a sequence `n ∈ B∗ such that Cµ(`n, `n) ≤ 1 and `n(x) ≥ n. Defining the
norm |y|2 =

∑
n n
−2(`n(y))2, we see that∫

B
|y|2 µ(dy) =

∞∑
n=1

1
n2

∫
B

(`n(y))2 µ(dy) ≤ π2

6
,

so that the linear space V = {y : |y| <∞} has full measure. However, |x| =∞ by construction,
so that x 6∈ V .

To show that µ(Hµ) = 0 if dimHµ = ∞, consider an orthonormal sequence en ∈ Rµ so that
the random variables {en(x)} are i.i.d.N (0, 1) distributed. By the second Borel-Cantelli lemma, it
follows that supn |en(x)| =∞ for µ-almost every x, so that in particular ‖x‖2µ ≥

∑
n e

2
n(x) =∞

almost surely.

Exercise 3.33 Recall that the (topological) support suppµ of a Borel measure on a complete sep-
arable metric space consists of those points x such that µ(U ) > 0 for every neighbourhood U of
x. Show that, if µ is a Gaussian measure, then suppµ is the closure H̄µ ofHµ in B.

3.3 Images of Gaussian measures
It follows immediately from the definition of a Gaussian measure and the expression for its Fourier
transform that if µ is a Gaussian measure on some Banach space B and A:B → B2 is a bounded
linear map for B2 some other Banach space, then ν = A∗µ is a Gaussian measure on B2 with
covariance

Cν(`, `′) = Cµ(A∗`, A∗`′) ,

where A∗:B∗2 → B∗ is the adjoint to A.
Recall now that Hµ is the intersection over all linear subspaces of B that have full measure

under µ. This suggests that in order to determine the image of µ under a linear map, it is sufficient
to know how that map acts on elements of Hµ. This intuition is made precise by the following
theorem:

Theorem 3.34 Let µ be a centred Gaussian probability measure on a separable Banach space
B. Let furthermore H be a separable Hilbert space and let A:Hµ → H be a Hilbert-Schmidt
operator. (That is AA∗:H → H is trace class.) Then, there exists a measurable map Â:B → H
such that ν = Â∗µ is Gaussian with covariance Cν(h, k) = 〈A∗h,A∗k〉µ. Furthermore, there
is a subspace V ⊂ B of full µ-measure such that Â restricted to V is linear and Â restricted to
Hµ ⊂ V agrees with A.

Proof. Let {en}n≥1 be an orthonormal basis forHµ and denote by e∗n the corresponding elements
in Rµ ⊂ L2(B, µ). Recall from Proposition 3.27 that we can find subspaces Ven of full measure
such that e∗n is linear on Ven . Define now a linear subspace V ⊂ B by

V =
{
x ∈

⋂
n≥0

Ven :
∑
n≥0

e∗n(x)Aen converges inH
}

,
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(the fact that V is linear follows from the linearity of each of the e∗n) and set

Â(x) =

{ ∑
n≥0 e

∗
n(x)Aen for x ∈ V ,
0 otherwise.

Since the random variables {e∗n} are i.i.d. N (0, 1)-distributed under µ, one has

Eµ
∥∥∥∑
n≥1

e∗nAen
∥∥∥2

=
∑
n≥1

‖Aen‖2 = trA∗A <∞

as a consequence of A being Hilbert-Schmidt. Therefore, µ(V ) = 1.
To see that ν = Â∗µ has the stated property, fix an arbitrary h ∈ H and note that the series∑

n≥1 e
∗
n〈Aen, h〉 converges in Rµ to an element with covariance ‖A∗h‖2. The statement then

follows from Proposition 3.26 and the fact that Cν(h, h) determines Cν by polarisation. To check
that ν is Gaussian, we can compute its Fourier transform in a similar way.

Remark 3.35 Similarly to Proposition 3.27, the converse is again true: if Â:B → H is a measur-
able map which is linear on a subspace of full measure and agrees with A on Hµ, then it agrees
µ-almost surely with the extension constructed in Theorem 3.34.

3.4 Cylindrical Wiener processes and stochastic integration

Central to the theory of stochastic PDEs is the notion of a cylindrical Wiener process. Recall
that the usual (one-dimensional) Wiener process is a real-valued Gaussian process B(t) such that
B(0) = 0 and E|B(t) − B(s)|2 = |t − s| for any pair of times s, t. From our Gaussian measure
point of view, the Wiener process can always be realised as the canonical process for the Gaussian
measure on C(R,R) with covariance function C(s, t) = s ∧ t = min{s, t}. (See Kolmogorov’s
continuity theorem.)

Let us now fix a (separable) Hilbert space H, as well as a larger Hilbert space H′ containing
H as a dense subset and such that the inclusion map ι:H → H′ is Hilbert-Schmidt. GivenH, it is
always possible to construct a space H′ with this property: choose an orthonormal basis {en} of
H and takeH′ to be the closure ofH under the norm

‖x‖2H′ =
∞∑
n=1

1
n2
〈x, en〉2 .

One can check that the map ιι∗ is then given by ιι∗en = 1
n2 en, so that it is indeed trace class.

Definition 3.36 Let H and H′ be as above. We then call a cylindrical Wiener process on H an
H′-valued Gaussian process W such that

E〈h,W (s)〉H′〈W (t), k〉H′ = (s ∧ t)〈ι∗h, ι∗k〉 = (s ∧ t)〈ιι∗h, k〉H′ , (3.11)

for any two times s and t and any two elements h, k ∈ H′. By Kolmogorov’s continuity theorem,
this can be realised as the canonical process for some Gaussian measure on C(R,H′).

Proposition 3.37 In the same setting as above, the Gaussian measure µ on H′ with covariance
ιι∗ hasH as its Cameron-Martin space. Furthermore, ‖h‖2µ = ‖h‖2 for every h ∈ H.
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Proof. It follows from the definition of Ĥµ that this is precisely the range of ιι∗ and that the map
h 7→ h∗ is given by h∗ = (ιι∗)−1h. In particular, Ĥµ is contained in the range of ι. Therefore, for
any h, k ∈ Ĥµ, there exist ĥ, ĝ ∈ H such that h = ιĥ and k = ιk̂. Using this, we have

〈h, k〉µ = 〈(ιι∗)h∗, k∗〉H′ = 〈h, (ιι∗)−1k〉H′ = 〈ιĥ, (ιι∗)−1ιk̂〉H′ = 〈ĥ, ι∗(ιι∗)−1ιk̂〉 = 〈ĥ, k̂〉 ,

from which the claim follows.

The name ‘cylindrical Wiener process on H’ may sound confusing at first, since it is actually
not an H-valued process. (A better terminology may have been ‘cylindrical Wiener process over
H’, but we choose to follow the convention that is found in the literature.) Note however that
if h is an element in H that is in the range of ι∗ (so that ιh belongs to the range of ιι∗ and
ι∗(ιι∗)−1ιh = h), then

〈h, k〉 = 〈ι∗(ιι∗)−1ιh, k〉 = 〈(ιι∗)−1ιh, ιk〉H′ .

In particular, if we pretend that W (t) belongs toH (which is of course not true), then we get

E〈h,W (s)〉〈W (t), k〉 = E〈(ιι∗)−1ιh, ιW (s)〉H′〈(ιι∗)−1ιk, ιW (t)〉H′
= (s ∧ t)〈ιι∗(ιι∗)−1ιh, (ιι∗)−1ιk〉H′
= (s ∧ t)〈ιh, (ιι∗)−1ιk〉H′ = (s ∧ t)〈h, ι∗(ιι∗)−1ιk〉H′
= (s ∧ t)〈h, k〉 .

Here we used (3.11) to go from the first to the second line. This shows that W (t) should be
thought of as an H-valued random variable with covariance t times the identity operator (which
is of course not trace class if H is infinite-dimensional, so that such an object does not exist in
general). Combining Proposition 3.37 with Theorem 3.34, we see however that if K is some
Hilbert space and A:H → K is a Hilbert-Schmidt operator, then the K-valued random variable
AW (t) is well-defined. (Here we made an abuse of notation and also used the symbol A for the
measurable extension ofA toH′.) Furthermore, its law does not depend on the choice of the larger
spaceH′.

Example 3.38 (White noise) Recall that we informally defined ‘white noise’ as a Gaussian pro-
cess ξ with covariance Eξ(s)ξ(t) = δ(t− s). In particular, if we denote by 〈·, ·〉 the scalar product
in L2, this suggests that

E〈g, ξ〉〈h, ξ〉 = E
∫∫

g(s)h(t)ξ(s)ξ(t) ds dt =
∫∫

g(s)h(t)δ(t− s) ds dt = 〈g, h〉 . (3.12)

This calculation shows that white noise can be constructed as a Gaussian random variable on any
space of distributions containing L2 and such the embedding is Hilbert-Schmidt. Furthermore, by
Theorem 3.34, Integrals of the form

∫
g(t)ξ(t) dt can be well-defined. Taking for g the indicator

function of the interval [0, s], we can check that the process B(t) =
∫ t

0 ξ(s) ds is a Brownian
motion, thus justifying the statement that ‘white noise is the derivative of Brownian motion’.

This will allow us to define a Hilbert space-valued stochastic integral against a cylindrical
Wiener process in pretty much the same way as what is usually done in finite dimensions. In the
sequel, we fix a cylindrical Wiener process W on some Hilbert space H ⊂ H′, which we realise
as the canonical coordinate process on Ω = C(R+,H′) equipped with the measure constructed
above. We also denote by Fs the σ-field on Ω generated by {Wr : r ≤ s}.
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Consider now a finite collection of disjoint intervals (sn, tn] ⊂ R+ with n = 1, . . . , N and a
corresponding finite collection of Fsn-measurable random variables Φn taking values in the space
L2(H,K) of Hilbert-Schmidt operators fromH into some other Hilbert space K. Let furthermore
Φ be the L2(R+ × Ω,L2(H,K))-valued function defined by

Φ(t, ω) =
N∑
n=1

Φn(ω) 1(sn,tn](t) ,

where we denoted by 1A the indicator function of a set A. We call such a Φ an elementary process
onH.

Definition 3.39 Given an elementary process Φ and a cylindrical Wiener process W on H, we
define the K-valued stochastic integral

∫ ∞
0

Φ(t) dW (t) def=
N∑
n=1

Φn(W ) (W (tn)−W (sn)) .

Note that since Φn is Fsn-measurable, Φn(W ) is independent of W (tn)−W (sn), therefore each
term on the right hand side can be interpreted in the sense of the construction of Theorem 3.34.

It follows from Theorem 3.34 and (3.4) that one has the identity

E
∥∥∥∫ ∞

0
Φ(t) dW (t)

∥∥∥2

K
=

N∑
n=1

E tr(Φn(W )Φ∗n(W ))(tn − sn) = E
∫ ∞

0
tr Φ(t)Φ∗(t) dt , (3.13)

which is an extension of the usual Itô isometry to the Hilbert space setting. It follows that the
stochastic integral is an isometry from the subset of elementary processes inL2(R+×Ω,L2(H,K))
to L2(Ω,K).

Let now Fpr be the ‘predictable’ σ-field, that is the σ-field over R+ × Ω generated by all
subsets of the form (s, t]×A with t > s and A ∈ Fs. This is the smallest σ-algebra with respect
to which all elementary processes are Fpr-measurable. One furthermore has:

Proposition 3.40 The set of elementary processes is dense in the space L2
pr(R+ × Ω,L2(H,K))

of all predictable L2(H,K)-valued processes.

Proof. Denote by F̂pr the set of all sets of the form (s, t]× A with A ∈ Fs. Denote furthermore
by L̂2

pr the closure of the set of elementary processes in L2. One can check that F̂pr is closed under
intersections, so that 1G ∈ L̂2

pr for every set G in the algebra generated by F̂pr. It follows from
the monotone class theorem that 1G ∈ L̂2

pr for every set G ∈ Fpr. The claim then follows from
the definition of the Lebesgue integral, just as for the corresponding statement in R.

By using the Itô isometry (3.13) and the completeness of L2(Ω,K), it follows that:

Corollary 3.41 The stochastic integral
∫∞
0 Φ(t) dW (t) can be defined for every process Φ ∈

L2
pr(R+ × Ω,L2(H,K)).

This concludes our presentation of the basic properties of Gaussian measures on infinite-
dimensional spaces. The next section deals with the other main ingredient to solving stochastic
PDEs, which is the behaviour of deterministic linear PDEs.
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4 Some semigroup theory

This section is strongly based on the monograph [Dav80] for the first part on strongly contin-
uous semigroups and very loosely follows [Yos95] and [Lun95] for the second part on analytic
semigroups. Its aim is to give a rigorous meaning to solutions to linear equations of the type

∂tx = Lx , x(0) = x0 , (4.1)

where x takes values in some Banach space andL is a possibly unbounded operator on that Banach
space. From a formal point of view, if such a solution exists, one expects the existence of a linear
operator S(t) that maps the initial condition x0 onto the solution x(t) of (4.1) at time t. If such a
solution is unique, then the family of operators S(t) should have the property that S(t) ◦ S(s) =
S(t+ s). This motivates the following definition:

Definition 4.1 A semigroup S(t) on a Banach space B is a family of bounded linear operators
{S(t)}t≥0 with the properties that S(t) ◦ S(s) = S(t + s) for any s, t ≥ 0 and that S(0) = Id. A
semigroup is furthermore called

• strongly continuous if the map (x, t) 7→ S(t)x is strongly continuous.
• analytic if there exists θ > 0 such that the map t 7→ S(t) has an analytic extension to
{λ ∈ C : | arg λ| < θ}, satisfies the semigroup property there, and is such that t 7→ S(eiϕt)
is a strongly continuous semigroup for every |ϕ| < θ.

A strongly continuous semigroup is also called a C0-semigroup.

Exercise 4.2 Show that being strongly continuous is equivalent to t 7→ S(t)x being continuous at
t = 0 for every x ∈ B and the operator norm of S(t) being bounded by Meat for some constants
M and a. Show then that the first condition can be relaxed to t 7→ S(t)x being continuous for
all x in some dense subset of B. (However, the second condition cannot be relaxed in general.
See Exercise 5.20 on how to construct a semigroup of bounded operators such that ‖S(t)‖ is
unbounded near t = 0.)

Remark 4.3 Some authors, like [Lun95], do not impose strong continuity in the definition of an
analytic semigroup. This can result in additional technical complications due to the fact that the
generator may then not have dense domain.

This section is going to assume some familiarity with functional analysis. All the necessary
results can be found for example in the classical monograph by Yosida [Yos95]. Recall that an
unbounded operator L on a Banach space B consists of a linear subspace D(L) ⊂ B called the
domain of L and a linear map L:D(L) → B. The graph of an operator is the subset of B × B
consisting of all elements of the form (x, Lx) with x ∈ D(L). An operator is closed if its graph is
a closed subspace of B × B. It is closable if the closure of its graph is again the graph of a linear
operator and that operator is called the closure of L.

Exercise 4.4 Show that L being closed is equivalent to the fact that if {xn} ⊂ D(L) is Cauchy in
B and {Lxn} is also Cauchy, then x = limn→∞ xn belongs to D(L) and Lx = limn→∞ Lxn.

The resolvent set %(L) of an operator L is defined by

%(L) = {λ ∈ C : range(λ− L) is dense in B and λ− L has a continuous inverse.} ,
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and the resolvent Rλ is given for λ ∈ %(L) by Rλ = (λ− L)−1. (Here and in the sequel we view
B as a complex Banach space. If an operator is defined on a real Banach space, it can always be
extended to its complexification in a canonical way and we will identify the two without further
notice in the sequel.) The spectrum of L is the complement of the resolvent set.

The important results that we are going to use are that any closed operator with non-empty
resolvent set is defined in a unique way by its resolvent. Furthermore, the resolvent is an analytic
function from %(L) to the space L(B) of bounded linear operators on B which all commute and
satisfy the resolvent identity

Rλ −Rµ = (µ− λ)RµRλ ,

for any two λ, µ ∈ %(L).

4.1 Strongly continuous semigroups
We start our investigation of semigroup theory with a discussion of the main results that can be
obtained for strongly continuous semigroups. Given a C0-semigroup, one can associate to it a
‘generator’, which is essentially the derivative of S(t) at t = 0:

Definition 4.5 The generator L of a C0-semigroup is given by

Lx = lim
t→0

t−1(S(t)x− x) , (4.2)

on the set D(L) of all elements x ∈ B such that this limit exists.

The following result shows that if L is the generator of a C0-semigroup S(t), then x(t) =
S(t)x0 is indeed the solution to (4.1) in a weak sense.

Proposition 4.6 The domainD(L) ofL is dense inB, invariant under S, and ∂tS(t)x = LS(t)x =
S(t)Lx for every x ∈ D(L) and every t ≥ 0. Furthermore, for every ` ∈ D(L∗) and every x ∈ B,
the map t 7→ 〈`, S(t)x〉 is differentiable and one has ∂t〈`, S(t)x〉 = 〈L∗`, S(t)x〉.

Proof. Fix some arbitrary x ∈ B and set xt =
∫ t

0 S(s)x ds. One then has

lim
h→0

h−1(S(h)xt − xt) = lim
h→0

h−1
(∫ t+h

h
S(s)x ds−

∫ t

0
S(s)x ds

)
= lim

h→0
h−1

(∫ t+h

t
S(s)x ds−

∫ h

0
S(s)x ds

)
= S(t)x− x ,

where the last equality follows from the strong continuity of S. This shows that xt ∈ D(L). Since
t−1xt → x as t→ 0 and since x was arbitrary, it follows that D(L) is dense in B. To show that it
is invariant under S, note that for x ∈ D(L) one has

lim
h→0

h−1(S(h)S(t)x− S(t)x) = S(t) lim
h→0

h−1(S(h)x− x) = S(t)Lx ,

so that S(t)x ∈ D(L) and LS(t)x = S(t)Lx. To show that it this is equal to ∂tS(t)x, it suffices to
check that the left derivative of this expression exists and is equal to the right derivative. This is
left as an exercise.

To show that the second claim holds, it is sufficient (using the strong continuity of S) to check
that it holds for x ∈ D(L). Since one then has S(t)x ∈ D(L) for every t, it follows from the
definition (4.2) of D(L) that t 7→ S(t)x is differentiable and that its derivative is equal to LS(t)x.
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It follows as a corollary that no two semigroups can have the same generator, which justifies
the notation S(t) = eLt that we are occasionally going to use in the sequel.

Corollary 4.7 If a function x: [0, 1] → D(L) satisfies ∂txt = Lxt for every t ∈ [0, 1], then
xt = S(t)x0. In particular, no two distinct C0-semigroups can have the same generator.

Proof. Fix an arbitrary ` ∈ D(L∗) and T ∈ (0, 1). It follows from Proposition 4.6 that the map
t 7→ 〈`, S(t)xT−t〉 is continuous on [0, T ] and differentiable on (0, T ) and that ∂tS(t)xT−t =
LS(t)xT−t − S(t)LxT−t = 0, so that xT = S(T )x0.

Exercise 4.8 Show that the semigroup S(t) on L2(R) given by

(S(t)f)(ξ) = f (ξ + t) ,

is strongly continuous and that its generator is given by L = ∂ξ with D(L) = H1. Similarly, show
that the heat semigroup on L2(R) given by

(S(t)f)(ξ) =
1√
4πt

∫
exp
(
−|ξ − η|

2

4t

)
f (η) dη ,

is strongly continuous and that its generator is given by L = ∂2
ξ with D(L) = H2. Hint: Use

Exercise 4.2 to show strong continuity.

Remark 4.9 We did not make any assumption on the structure of the Banach space B. However,
it is a general rule of thumb (although this is not a theorem) that semigroups on non-separable
Banach spaces tend not to be strongly continuous. For example, neither the heat semigroup nor
the translation semigroup from the previous exercise are strongly continuous on L∞(R) or even
on Cb(R), the space of all bounded continuous functions.

Recall now that the resolvent set for an operator L consists of those λ ∈ C such that the
operator λ − L is one to one. For λ in the resolvent set, we denote by Rλ = (λ − L)−1 the
resolvent of L. It turns out that the resolvent of the generator of a C0-semigroup can easily be
computed:

Proposition 4.10 Let S(t) be a C0-semigroup such that ‖S(t)‖ ≤ Meat for some constants M
and a. If Reλ > a, then λ belongs to the resolvent set of L and one has the identity Rλx =∫∞

0 e−λtS(t)x dt.

Proof. By the assumption on the bound on S, the expression Zλ =
∫∞
0 e−λtS(t)x dt is well-

defined for every λ with Reλ > a. In order to show that Zλ = Rλ, we first show that Zλx ∈ D(L)
for every x ∈ B and that (λ− L)Zλx = x. We have

LZλx = lim
h→0

h−1(S(h)Zλx− Zλx) = lim
h→0

h−1
∫ ∞

0
e−λt(S(t+ h)x− S(t)x) dt

= lim
h→0

(eλh − 1
h

∫ ∞
0

e−λtS(t)x dt− h−1
∫ h

0
e−λtS(t)x dt

)
= λZλx− x ,

which is the required identity. To conclude, it remains to show that λ−L is an injection on D(L).
If it was not, we could find x ∈ D(L) \ {0} such that Lx = λx. Setting xt = eλtx and applying
Corollary 4.7, this yields S(t)x = eλtx, thus contradicting the bound ‖S(t)‖ ≤Meat if Reλ > a.



SOME SEMIGROUP THEORY 25

We can deduce from this that:

Proposition 4.11 The generator L of a C0-semigroup is a closed operator.

Proof. We are going to use the characterisation of closed operators given in Exercise 4.4. Shifting
L by a constant if necessary (which does not affect it being closed or not), we can assume that
a = 0. Take now a sequence xn ∈ D(L) such that {xn} and {Lxn} are both Cauchy in B and set
x = limn→∞ xn and y = limn→∞ Lxn. Setting zn = (1− L)xn, we have limn→∞ zn = x− y.

On the other hand, we know that 1 belongs to the resolvent set, so that

x = lim
n→∞

xn = lim
n→∞

R1zn = R1(x− y) .

By the definition of the resolvent, this implies that x ∈ D(L) and that x − Lx = x − y, so that
Lx = y as required.

We are now ready to give a full characterisation of the generators of C0-semigroups. This is
the content of the following theorem:

Theorem 4.12 (Hille-Yosida) A closed densely defined operator L on the Banach space B is the
generator of a C0-semigroup S(t) with ‖S(t)‖ ≤ Meat if and only if all λ with Reλ > a lie in its
resolvent set and the bound ‖Rnλ‖ ≤M (Reλ− a)−n holds there for every n ≥ 1.

Remark 4.13 Such operators are also called m-dissipative, the reason being that on a Hilbert
space, they are precisely those operators such that 〈h, Lh〉 ≤ a‖h‖2 and having no extension with
the same property. There also exists a version of this statement that holds for Banach spaces. This
is the content of the Lumer-Phillips theorem.

Proof. The generator L of a C0-semigroup is closed by Proposition 4.11. The fact that its resolvent
satisfies the stated bound follows immediately from the fact that

Rnλx =
∫ ∞

0
· · ·
∫ ∞

0
e−λ(t1+...+tn)S(t1 + . . .+ tn)x dt1 · · · dtn

by Proposition 4.10.
To show that the converse also holds, we are going to construct the semigroup S(t) by using

the so-called ‘Yosida approximations’ Lλ = λLRλ for L. Note first that limλ→∞ LRλx = 0 for
every x ∈ B: it obviously holds for x ∈ D(L) since then ‖LRλx‖ = ‖RλLx‖ ≤ ‖Rλ‖‖Lx‖ ≤
M (Reλ− a)−1‖Lx‖. Furthermore, ‖LRλx‖ = ‖λRλx− x‖ ≤Mλ(λ− a)−1 + 1 ≤M + 2 for
λ large enough, so that limλ→∞ LRλx = 0 for every x by a standard density argument.

Using this fact, we can show that the Yosida approximation of L does indeed approximate L
in the sense that limλ→∞ Lλx = Lx for every x ∈ D(L). Fixing an arbitrary x ∈ D(L), we have

lim
λ→∞

‖Lλx− Lx‖ = lim
λ→∞

‖(λRλ − 1)Lx‖ = lim
λ→∞

‖LRλLx‖ = 0 .

Define now a family of bounded operators Sλ(t) by Sλ(t) = eLλt =
∑
n≥0

tnLnλ
n! . This series

converges in the operator norm since Lλ is bounded and one can easily check that Sλ is indeed a
C0-semigroup (actually a group) with generator Lλ. Since Lλ = −λ + λ2Rλ, one has for λ > a
the bound

‖Sλ(t)‖ = e−λt
∑
n≥0

tnλ2n‖Rnλ‖
n!

= M exp
(
−λt+

λ2

λ− a
t
)

= M exp
( λat

λ− a

)
, (4.3)
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so that lim supλ→∞ ‖Sλ(t)‖ ≤ Meat. Let us show next that the limit limλ→∞ Sλ(t)x exists for
every t ≥ 0 and every x ∈ B. Fixing λ and µ large enough so that max{‖Sλ(t)‖, ‖Sµ(t)‖} ≤
Me2at, and fixing some arbitrary t > 0, we have for s ∈ [0, t]

‖∂sSλ(t− s)Sµ(s)x‖ = ‖Sλ(t− s)(Lµ − Lλ)Sµ(s)x‖ = ‖Sλ(t− s)Sµ(s)(Lµ − Lλ)x‖
≤M2e2at‖(Lµ − Lλ)x‖ .

Integrating this bound between 0 and t, we obtain

‖Sλ(t)x− Sµ(t)x‖ ≤M2te2at‖Lµx− Lλx‖ , (4.4)

which converges to 0 for every x ∈ D(L) as λ, µ → ∞ since one then has Lλx → Lx. We can
therefore define a family of linear operators S(t) by S(t)x = limλ→∞ Sλ(t)x.

It is clear from (4.3) that ‖S(t)‖ ≤ Meat and it follows from the semigroup property of Sλ
that S(s)S(t) = S(s+ t). Furthermore, it follows from (4.4) that the convergence Sλ(t)x→ S(t)x
is uniform in bounded intervals of t, so that (x, t) 7→ S(t)x is jointly continuous, showing that S
is a C0-semigroup. It remains to show that the generator L̂ of S coincides with L. Taking first the
limit λ→∞ and then the limit t→ 0 in the identity

t−1(Sλ(t)x− x) = t−1
∫ t

0
Sλ(s)Lλx ds ,

we see that x ∈ D(L) implies x ∈ D(L̂) and L̂x = Lx, so that L̂ is an extension of L. However,
for λ > a, both λ − L and λ − L̂ are one-to-one between their domain and B, so that they must
coincide.

4.2 Semigroups with selfadjoint generators
In this section, we consider the particular case of selfadjoint semigroups on a Hilbert spaceH. Let
L be a selfadjoint operator onH which is bounded from above. Without loss of generality, we are
going to assume that it is actually negative definite, so that 〈x, Lx〉 ≤ 0 for any x ∈ H. In this
case, we can use functional calculus (see for example [RS80], in particular chapter VIII in volume
I) to define selfadjoint operators f (L) for any measurable map f : R → R. This is because the
spectral decomposition theorem can be formulated as:

Theorem 4.14 (Spectral decomposition) Let L be a selfadjoint operator on a separable Hilbert
space H. Then, there exists a measure space (M, µ), an isomorphism K:H → L2(M, µ), and
a function fL:M → R such that via K, L is equivalent to the multiplication operator by fL on
L2(M, µ). In other words, one has L = K−1fLK and KD(L) = {g : fLg ∈ L2(M, µ)}.

In particular, this allows one to define f (L) = K−1(f ◦ fL)K, which has all the nice prop-
erties that one would expect from functional calculus, like for example (fg)(L) = f (L)g(L),
‖f (L)‖ = ‖f‖L∞(M,µ), etc. Defining S(t) = eLt, it is an exercise to check that S is indeed a
C0-semigroup with generator L (either use the Hille-Yosida theorem and make sure that the semi-
group constructed there coincides with S or check ‘by hand’ that S(t) is indeed C0 with generator
L).

The important property of semigroups generated by selfadjoint operators is that they do not
only leave D(L) invariant, but they have a regularising effect in that they map H into the domain
of any arbitrarily high power of L. More precisely, one has:

Proposition 4.15 Let L be self-adjoint and negative definite and let S(t) be the semigroup on H
generated by L. Then, S(t) maps H into the domain of (1 − L)α for any α, t > 0 and there exist
constants Cα such that ‖(1− L)αS(t)‖ ≤ Cα(1 + t−α).
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Proof. By functional calculus, it suffices to show that supλ≤0(1 − λ)αeλt ≤ Cα(1 + t−α). One
has

sup
λ≥0

λαe−λt = t−α sup
λ≥0

(λt)αe−λt = t−α sup
λ≥0

λαe−λ = ααe−αt−α .

The claim now follows from the fact that there exists a constant C ′α such that (1− λ)α ≤ C ′α(1 +
(−λ)α) for every λ ≤ 0.

4.3 Analytic semigroups
Obviously, the conclusion of Proposition 4.15 does not hold for arbitrary C0-semigroups since the
group of translations from Example 4.8 does not have any smoothing properties. It does however
hold for analytic semigroups, which is going to be one of the two main results of this subsection.
The other result is a characterisation of generators for analytic semigroups that is analogous to
the Hille-Yosida theorem for C0-semigroups. The difference will be that the role of the half-plane
Reλ > awill be played by the complement of a sector of the complex plane with an opening angle
strictly smaller than π.

We are going to take it for granted in this section that the resolvent λ 7→ Rλ = (λ − L)−1 is
analytic in L(B) for λ in the resolvent set of L. For a proof of this fact and several other properties
of the resolvent, see for example [Yos95].

Recall that a semigroup is analytic if there exists θ > 0 such that the map t 7→ S(t) has an
analytic extension to the sector Sθ = {λ ∈ C : | arg λ| < θ}, satisfies the semigroup property
there, and is such that t 7→ Sϕ(t) = S(eiϕt) is a strongly continuous semigroup for every |ϕ| < θ.
If θ is the largest angle such that the above property holds, we call S analytic with angle θ. The
strong continuity of t 7→ S(eiϕt) implies that there exist constants M (ϕ) and a(ϕ) such that

‖Sϕ(t)‖ ≤M (ϕ)ea(ϕ)t .

Using the semigroup property, it is not difficult to show that M and a can be chosen bounded over
compact intervals:

Proposition 4.16 Let S be an analytic semigroup with angle θ. Then, for every θ′ < θ, there exist
M and a such that ‖Sϕ(t)‖ ≤Mea|t| for every t > 0 and every |ϕ| ≤ θ′.

Proof. Fix θ′ > 0. Then, for every t > 0 and every ϕ with |ϕ| < θ, there exist numbers
t+, t− ∈ [0, t] such that teiϕ = t+e

iθ′ + t−e
−iθ′ . It follows that one has the bound ‖Sϕ(t)‖ ≤

M (θ′)M (−θ′)ea(θ′)t+a(−θ′)t, thus proving the claim.

We next compute the generators of the semigroups Sϕ obtained by evaluating S along a ‘ray’
extending out of the origin into the complex plane:

Proposition 4.17 Let S be an analytic semigroup with angle θ. Then, for |ϕ| < θ, the generator
Lϕ of Sϕ is given by Lϕ = eiϕL, where L is the generator of S.

Proof. Recall Proposition 4.10 showing that for Reλ large enough the resolvent Rλ for L is given
by

Rλx =
∫ ∞

0
e−λtS(t) dt .

Since the map t 7→ e−λtS(t) is analytic in Sθ by assumption and since, provided again that Reλ is
large enough, it decays exponentially to 0 as |t| → ∞, we can deform the contour of integration
to obtain

Rλx = eiϕ
∫ ∞

0
e−λe

iϕtS(eiϕt) dt .
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Denoting by Rϕλ the resolvent for the generator Lϕ of Sϕ, we thus have the identity Rλ =
eiϕRϕ

λeiϕ
, which is equivalent to (λ− L)−1 = (λ− e−iϕLϕ)−1, thus showing that Lϕ = eiϕL as

stated.

We now use this to show that if S is an analytic semigroup, then the resolvent set of its gener-
ator L not only contains the right half plane, but it contains a larger sector of the complex plane.
Furthermore, this characterises the generators of analytic semigroups, providing a statement simi-
lar to the Hille-Yosida theorem:

Theorem 4.18 A closed densely defined operator L on a Banach space B is the generator of an
analytic semigroup if and only if there exists θ ∈ (0, π2 ) and a ≥ 0 such that the spectrum of L is
contained in the sector

Sθ,a = {λ ∈ C : arg(a− λ) ∈ [−π
2 + θ, π2 − θ]} ,

and there exists M > 0 such that the resolvent Rλ satisfies the bound ‖Rλ‖ ≤Md(λ, Sθ,a)−1 for
every λ 6∈ Sθ,a.

Proof. The fact that generators of analytic semigroups are of the prescribed form is a consequence
of Proposition 4.17 and the Hille-Yosida theorem.

a

b

ϕ

θ

Sa,θ

γb,ϕ

Re

Im

To show the converse statement, let L be such an
operator, let ϕ ∈ (0, θ), let b > a, and let γϕ,b be
the curve in the complex plane obtained by going in
a counterclockwise way around the boundary of Sϕ,b
(see the figure on the right). For t with | arg t| < ϕ,
define S(t) by

S(t) =
1

2πi

∫
γϕ,b

etzRz dz (4.5)

=
1

2πi

∫
γϕ,b

etz(z − L)−1 dz .

It follows from the resolvent bound that ‖Rz‖ is uni-
formly bounded for z ∈ γϕ,b. Furthermore, since
| arg t| < ϕ, it follows that etz decays exponentially
as |z| → ∞ along γϕ,b, so that this expression is well-
defined, does not depend on the choice of b and ϕ,
and (by choosing ϕ arbitrarily close to θ) determines an analytic function t 7→ S(t) on the sector
{t : | arg t| < θ}. As in the proof of the Hille-Yosida theorem, the function (x, t) 7→ S(t)x is
jointly continuous because the convergence of the integral defining S is uniform over bounded
subsets of {t : | arg t| < ϕ} for any |ϕ| < θ.

It therefore remains to show that S satisfies the semigroup property on the sector {t : | arg t| <
θ} and that its generator is indeed given by L. Choosing s and t such that | arg s| < θ and
| arg t| < θ and using the resolvent identity Rz −Rz′ = (z′ − z)RzRz′ , we have

S(s)S(t) = − 1
4π2

∫
γϕ,b′

∫
γϕ,b

etz+sz
′
RzRz′ dz dz

′ = − 1
4π2

∫
γϕ,b′

∫
γϕ,b

etz+sz
′Rz −Rz′
z′ − z

dz dz′

= − 1
4π2

∫
γϕ,b

etzRz

∫
γϕ,b′

esz
′

z′ − z
dz′ dz − 1

4π2

∫
γϕ,b′

eszRz

∫
γϕ,b

etz
′

z′ − z
dz′ dz .
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Here, the choice of b and b′ is arbitrary, as long as b 6= b′ so that the inner integrals are well-
defined, say b′ > b for definiteness. In this case, since the contour γϕ,b can be ‘closed up’ to the

left but not to the right, the integral
∫
γϕ,b′

esz
′

z′−z dz
′ is equal to −2iπesz for every z ∈ γϕ,b, whereas

the integral with b and b′ inverted vanishes, so that

S(s)S(t) =
1

2iπ

∫
γϕ,b

e(t+s)zRz = S(s+ t) ,

as required. Therefore S is a strongly continuous semigroup; let us call its generator L̂ and R̂λ the
corresponding resolvent.

To show that L = L̂, it suffices to show that R̂λ = Rλ, so we make use again of Proposi-
tion 4.10. Choosing Reλ > b so that Re(z − λ) < 0 for every z ∈ γϕ,b, we have

R̂λ =
∫ ∞

0
e−λtS(t) dt =

1
2πi

∫ ∞
0

∫
γϕ,b

et(z−λ)Rz dz dt

=
1

2πi

∫
γϕ,b

∫ ∞
0

et(z−λ) dtRz dz =
1

2πi

∫
γϕ,b

Rz
z − λ

dz = Rλ .

The last inequality was obtained by using the fact that ‖Rz‖ decays like 1/|z| for large enough z
with | arg z| ≤ π

2 + ϕ, so that the contour can be ‘closed’ to enclose the pole at z = λ.

Remark 4.19 The generators of analytic semigroups are also called m-sectorial by analogy with
them-dissipative operators generating C0-semigroups. On a Hilbert space, they can also be charac-
terised as those operators with numerical range contained in a sector Sθ,a and having no extension
with the same property.

As a consequence of this characterisation theorem, we can study perturbations of generators
of analytic semigroups. The idea is to give a constructive criterion which allows to make sure that
an operator of the type L = L0 + B is the generator of an analytic semigroup, provided that L0

is such a generator and B satisfies a type of ‘relative total boundedness’ condition. The precise
statement of this result is:

Theorem 4.20 Let L0 be the generator of an analytic semigroup and let B:D(B) → B be an
operator such that

• The domain D(B) contains D(L0).

• For every ε > 0 there existsC > 0 such that ‖Bx‖ ≤ ε‖L0x‖+C‖x‖ for every x ∈ D(L0).

Then the operator L = L0 +B (with domain D(L) = D(L0)) is also the generator of an analytic
semigroup.

Proof. In view of Theorem 4.18 it suffices to show that there exists a sector Sθ,a containing the
spectrum of L and such that the resolvent bound Rλ ≤Md(λ, Sθ,a)−1 holds away from it.

Denote by R0
λ the resolvent for L0 and consider the resolvent equation for L:

(λ− L0 −B)x = y , x ∈ D(L0) .

Since (at least for λ outside of some sector) x belongs to the range of R0
λ, we can set x = R0

λz so
that this equation is equivalent to

z −BR0
λz = y .
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The claim therefore follows if we can show that there exists a sector Sθ,a and a constant c < 1
such that ‖BR0

λ‖ ≤ c for λ 6∈ Sθ,a. This is because one then has the bound

‖Rλy‖ = ‖R0
λz‖ ≤

‖R0
λ‖

1− c
‖y‖ .

Using our assumption on B, we have the bound

‖BR0
λz‖ ≤ ε‖L0R

0
λz‖+ C‖R0

λz‖ . (4.6)

Furthermore, one has the identity L0R
0
λ = λR0

λ − 1 and, since L0 is the generator of an analytic
semigroup by assumption, the resolvent bound ‖R0

λ‖ ≤Md(λ, Sα,b)−1 for some parameters α, b.
Inserting this into (4.6), we obtain the bound

‖BR0
λ‖ ≤

(ε|λ|+ C)M
d(λ, Sα,b)

+ ε .

Note now that by choosing θ ∈ (0, α), we can find some δ > 0 such that d(λ, Sα,b) > δ|λ| for all
λ 6∈ Sθ,a and all a > 1 ∨ (b + 1). We fix such a θ and we make ε sufficiently small such that one
has both ε < 1/4 and εδ−1 < 1/4.

We can then make a large enough so that d(λ, Sα,b) ≥ 4CM for λ 6∈ Sθ,a, so that ‖BR0
λ‖ ≤

3/4. for these values of λ, as requested.

Remark 4.21 As one can see from the proof, one actually needs the bound ‖Bx‖ ≤ ε‖L0x‖ +
C‖x‖ only for some particular value of ε that depends on the characteristics of L0.

As a consequence, we have:

Proposition 4.22 Let f ∈ L∞(R). Then, the operator

(Lg)(x) = g′′(x) + f (x)g′(x) ,

on L2(R) with domain D(L) = H2 is the generator of an analytic semigroup.

Proof. It is well-known that the operator (L0g)(x) = g′′(x) with domain D(L) = H2 is self-
adjoint and negative definite, so that it is the generator of an analytic semigroup with angle θ =
π/2.

Setting Bg = fg′, we have for g ∈ H2 the bound

‖Bg‖2 =
∫

R
f2(x)(g′(x))2 dx ≤ ‖f‖2L∞〈g′, g′〉 = −‖f‖2L∞〈g, g′′〉 ≤ ‖f‖L∞‖g‖‖L0g‖ .

It now suffices to use the fact that 2|xy| ≤ εx2 + ε−1y2 to conclude that the assumptions of
Theorem 4.20 are satisfied.

Similarly, one can show:

Exercise 4.23 Show that the generator of an elliptic diffusion with smooth coefficients on a com-
pact Riemannian manifoldM generates an analytic semigroup on L2(M, %), where % is the vol-
ume measure given by the Riemannian structure.
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4.4 Interpolation spaces
The remainder of this section will be devoted to the study of the domains of fractional powers
of the generator L of an analytic semigroup S(t). For simplicity, we will assume that there exist
M > 0 and w > 0 such that ‖S(t)‖ ≤ Me−wt, thus making sure that the resolvent set of L
contains all the right half of the complex plane. The general case can be recovered easily by
‘shifting the generator to the left’. For α > 0, we define negative fractional powers of L by

(−L)−α def=
1

Γ(α)

∫ ∞
0

tα−1S(t) dt , (4.7)

which is a bounded operator by the decay assumption on ‖S(t)‖. Since Γ(1) = 1, note that if α = 1
one does indeed recover the resolvent of L evaluated at 0. Furthermore, it is straightforward to
check that one has the identity (−L)−α(−L)−β = (−L)−α−β , which together justify the definition
(4.7).

Note that it follows from this identity that (−L)−α is injective for every α > 0. Indeed, given
some α > 0, one can find an integer n > 0 such that (−L)−n = (−L)−n+α(−L)−α. A failure
for (−L)−α to be injective would therefore result in a failure for (−L)n and therefore (−L)−1

to be injective. This is ruled out by the fact that 0 belongs to the resolvent set of L. We can
therefore define (−L)α as the unbounded operator with domain D((−L)α) = range(−L)−α given
by the inverse of (−L)−α. This definition is again consistent with the usual definition of (−L)α

for integer values of α. This allows us to set:

Definition 4.24 For α > 0 and given an analytic semigroup S on a Banach space B, we define
the interpolation space Bα as the domain of (−L)α endowed with the graph norm. We also define
B−α as the closure of B under the norm ‖x‖−α = ‖(−L)−αx‖.

Remark 4.25 If the norm of S(t) grows instead of decaying with t, then we use λ− L instead of
−L for some λ sufficiently large. The choice of different values of λ leads to equivalent norms on
Bα.

Exercise 4.26 Show that Bα ⊂ Bβ if α ≥ β.

Exercise 4.27 Show that for α ∈ (0, 1) and x ∈ D(L), one has the identity

(−L)αx =
sinαπ
π

∫ ∞
0

tα−1(t− L)−1(−L)x dt .

Combine this with the identity (t−L)−1(−L) = 1−t(t−L)−1 to deduce that, for every α ∈ (0, 1),
there exists a constant C such that the bound ‖(−L)αx‖ ≤ C‖Lx‖α‖x‖1−α holds for every
x ∈ D(L).

Exercise 4.28 Let L and B be as in Exercise 4.35 and denote by SB the analytic semigroup with
generator L+B. Use the relation Rλ −R0

λ = R0
λBRλ to show that one has the identity

SB(t)x = S(t)x+
∫ t

0
S(t− s)BSB(s)x ds .

Hint: Start from the right hand side of the equation and use an argument similar to that of the
proof of Theorem 4.18.

Exercise 4.29 Show that (−L)α commutes with S(t) for every t > 0 and every α ∈ R. Deduce
that S(t) leaves Bα invariant for every α > 0.
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Exercise 4.30 It follows from Theorem 4.18 that the adjoint L∗ of the generator of an analytic
semigroup on B is the generator of an analytic semigroup on the dual space B∗. Denote by B̃α the
corresponding interpolation spaces. Show that one has the identity B̃α = B∗α for every α ∈ R.

We now show that an analytic semigroup S(t) always maps B into Bα for t > 0, so that it has a
‘smoothing effect’. Furthermore, the norm in the domains of integer powers of L can be bounded
by:

Proposition 4.31 For every t > 0 and every integer k > 0, S(t) maps B into D(Lk) and there
exists a constant Ck such that

‖LkS(t)x‖ ≤ Ck
tk

for every t ∈ (0, 1].

Proof. In order to show that S maps B into the domain of every power of L, we use (4.5), together
with the identity LRλ = λRλ − 1 which is an immediate consequence of the definition of the
resolvent Rλ of L. Since

∫
γϕ,b

etzdz = 0 for every t such that | arg t| < ϕ and since the domain
of Lk is complete under the graph norm, this shows that S(t)x ∈ D(Lk) and

LkS(t) =
1

2πi

∫
γϕ,b

zketzRz dz .

It follows that there exist positive constants ci such that

‖LkS(t)‖ ≤ 1
2π

∫
γϕ,b

|z|k|etz|‖Rz‖ d|z| ≤ c1

∫ ∞
0

(1 + x)ke−c2t(x−c3)(1 + x)−1dx .

Integrating by parts k − 1 times, we obtain

‖LkS(t)‖ ≤ c4

tk−1

∫ ∞
0

e−c2t(x−c4) dx =
c5e

c6t

tk
,

which implies the announced bound.

It turns out that a similar bound also holds for interpolation spaces with non-integer indices:

Proposition 4.32 For every t > 0 and every α > 0, S(t) maps B into Bα and there exists a
constant Cα such that

‖(−L)αS(t)x‖ ≤ Cα
tα

(4.8)

for every t ∈ (0, 1].

Proof. The fact that S(t) maps B into Bα follows from Proposition 4.31 since there exists n such
that D(Ln) ⊂ Bα. We assume again that the norm of S(t) decays exponentially for large t. The
claim for integer values of α is known to hold by Proposition 4.31, so we fix some α > 0 which is
not an integer. Note first that (−L)α = (−L)α−[α]−1(−L)[α]+1, were we denote by [α] the integer
part of α. We thus obtain from (4.7) the identity

(−L)αS(t) =
(−1)[α]+1

Γ([α]− α+ 1)

∫ ∞
0

s[α]−αL[α]+1S(t+ s) ds .
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Using the previous bound for k = [α], we thus get for some C > 0 the bound

‖(−L)αS(t)‖ ≤ C
∫ ∞

0
s[α]−α e−w(t+s)

(t+ s)[α]+1
ds ≤ Ct−α

∫ ∞
0

s[α]−α

(1 + s)[α]+1
ds ,

where we used the substitution s 7→ ts. Since the last function is integrable for every α > 0, the
claim follows at once.

Exercise 4.33 Using the fact that S(t) commutes with any power of its generator, show that S(t)
maps Bα into Bβ for every α, β ∈ R and that, for β > α, there exists a constant Cα,β such that
‖S(t)x‖Bβ ≤ Cα,β‖x‖Bαtα−β for all t ∈ (0, 1].

Exercise 4.34 Using the bound from the previous exercise and the definition of the resolvent,
show that for every α ∈ R and every β ∈ [α, α+ 1) there exists a constant C such that the bound
‖(t− L)−1x‖Bβ ≤ C(1 + t)β−α−1‖x‖Bα holds for all t ≥ 0.

Exercise 4.35 Let L be the generator of an analytic semigroup on B and denote by Bα the corre-
sponding interpolation spaces. Let B be a (possibly unbounded) operator on B. Using the results
from the previous exercise, show that if there exists α ∈ [0, 1) such that Bα ⊂ D(B) so that B is
a bounded operator from Bα to B, then one has the bound

‖Bx‖ ≤ C(ε‖Lx‖+ ε−α/(1−α)‖x‖) ,

for some constant C > 0 and for all ε ≤ 1. In particular, L+B is also the generator of an analytic
semigroup on B.

Exercise 4.36 Consider an analytic semigroup S(t) on B and denote by Bα the corresponding
interpolation spaces. Fix some γ ∈ R and denote by Ŝ(t) the semigroup S viewed as a semigroup
on Bγ . Denoting by B̂α the interpolation spaces corresponding to Ŝ(t), show that one has the
identity B̂α = Bγ+α for every α ∈ R.

Another question that can be answered in a satisfactory way with the help of interpolation
spaces is the speed of convergence of S(t)x to x as t → 0. We know that if x ∈ D(L), then
t 7→ S(t)x is differentiable at t = 0, so that ‖S(t)x−x‖ = t‖Lx‖+ o(t). Furthermore, one can in
general find elements x ∈ B so that the convergence S(t)x→ x is arbitrarily slow. This suggests
that if x ∈ D((−L)α) for α ∈ (0, 1), one has ‖S(t)x− x‖ = O(tα). This is indeed the case:

Proposition 4.37 Let S be an analytic semigroup with generator L on a Banach space B. Then,
for every α ∈ (0, 1), there exists a constant Cα, so that the bound

‖S(t)x− x‖ ≤ Cαtα‖x‖Bα (4.9)

holds for every x ∈ Bα and every t ∈ (0, 1].

Proof. By density, it is sufficient to show that (4.9) holds for every x ∈ D(L). For such an x, one
has indeed the chain of inequalities

‖S(t)x− x‖ =
∥∥∥∫ t

0
S(s)Lxdx

∥∥∥ =
∥∥∥∫ t

0
(−L)1−αS(s)(−L)αx dx

∥∥∥
≤ C‖x‖Bα

∫ t

0
‖(−L)1−αS(s)‖ dx ≤ C‖x‖Bα

∫ t

0
sα−1 ds = C‖x‖Bαtα .

Here, the constant C depends only on α and changes from one expression to the next.
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We conclude this section with a discussion on the interpolation spaces arising from a perturbed
analytic semigroup. As a consequence of Exercises 4.27 and 4.34, we have the following result:

Proposition 4.38 Let L0 be the generator of an analytic semigroup on B and denote by B0
γ the

corresponding interpolation spaces. Let B be a bounded operator from B0
α to B for some α ∈

[0, 1). Let furthermore Bγ be the interpolation spaces associated to L = L0 + B. Then, one has
Bγ = B0

γ for every γ ∈ [0, 1].

Proof. The statement is clear for γ = 0 and γ = 1. For intermediate values of γ, we will show
that there exists a constant C such that C−1‖(−L0)γx‖ ≤ ‖(−L)γx‖ ≤ C‖(−L0)γx‖ for every
x ∈ D(L0).

Since the domain of L is equal to the domain of L0, we know that the operatorBRt is bounded
for every t > 0, where Rt is the resolvent of L. Making use of the identity

Rt = R0
t +R0

tBRt , (4.10)

(where we similarly denoted by R0
t the resolvent of L0) it then follows from Exercise 4.34 and the

assumption on B that one has for every x ∈ B0
γ the bound

‖BRtx‖ ≤ ‖BR0
tx‖+ ‖BR0

tBRtx‖ ≤ C(‖R0
tx‖B0

α
+ ‖R0

tBRtx‖B0
α
)

≤ C(1 + t)α−γ−1‖x‖B0
γ

+ C(1 + t)α−1‖x‖B0
γ
‖BRtx‖ .

It follows that, for t sufficiently large, one has the bound

‖BRtx‖ ≤ C(1 + t)α−γ−1‖x‖B0
γ
. (4.11)

Since on the other hand one has the resolvent identity Rs = Rt + (t− s)RsRt, this bound can be
extended to all t > 0 by possibly changing the constant C.

We now show that ‖(−L)γx‖ can be bounded by ‖(−L0)γx‖. We make use of Exercise 4.27
to get, for x ∈ D(L0), the bound

‖x‖Bγ = C
∥∥∥∫ ∞

0
tγ−1LRtx dt

∥∥∥
≤ C

∥∥∥∫ ∞
0

tγ−1L0R
0
tx dt

∥∥∥+ C

∫ ∞
0

tγ−1‖(L0R
0
t + 1)BRtx‖ dt

≤ ‖x‖B0
γ

+ C

∫ ∞
0

tγ−1‖BRtx‖ dt

≤ ‖x‖B0
γ

+ C

∫ ∞
0

tγ−1(1 + t)α−γ−1 dt‖x‖B0
γ
.

Here, we used again the identity (4.10) to obtain the first inequality and we used (4.11) in the last
step. Since this integral converges, we have obtained the required bound.

In order to obtain the converse bound, we have similarly to before

‖x‖B0
γ
≤ ‖x‖Bγ + C

∫ ∞
0

tγ−1‖BRtx‖ dt .

Making use of the resolvent identity, this yields for arbitrary K > 0 the bound

‖x‖B0
γ
≤ ‖x‖Bγ + C

∫ ∞
0

tγ−1‖BRt+Kx‖ dt+ CK

∫ ∞
0

tγ−1‖BRKRtx‖ dt
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≤ ‖x‖Bγ + C

∫ ∞
0

tγ−1(t+K)α−γ−1 dt‖x‖B0
γ

+ CK

∫ ∞
0

tγ−1(1 + t)−1 dt‖x‖

≤ ‖x‖Bγ + CKα−1‖x‖B0
γ

+ CK‖x‖ .

By making K sufficiently large, the prefactor of the second term can be made smaller than 1, so
that the required bound follows.

Exercise 4.39 Assume that B = H is a Hilbert space and that the antisymmetric part of L is
‘small’ in the sense that D(L∗) = D(L) and, for every ε > 0 there exists a constant C such that
‖(L−L∗)x‖ ≤ ε‖Lx‖+C‖x‖ for every x ∈ D(L). Show that in this case the spaceH−α can be
identified with the dual ofHα (under the pairing given by the scalar product ofH) for α ∈ [0, 1].

It is interesting to note that the range [0, 1] appearing in the statement of Proposition 4.38 is not
just a restriction of the technique of proof employed here. There are examples of perturbations of
generators of analytic semigroups which induce changes in the corresponding interpolation spaces
Bα for α 6∈ [0, 1].

Consider for example the case B = L2([0, 1]) and L0 = ∆, the Laplacian with periodic
boundary conditions. Let now δ ∈ (0, 1) be arbitrary and let g ∈ B be such that g 6∈ B0

δ . Such
an element g exists since ∆ is an unbounded operator. Define B as the operator with domain
C([0, 1]) ⊂ B given by

(Bf)(x) = f ′(1/2)g(x) . (4.12)

It turns out that B0
α ⊂ C([0, 1]) for α > 3/4 (see Lemma 6.14), so that the assumptions of

Proposition 4.38 are indeed satisfied. Consider now the interpolation spaces of index 1 + δ. Since
we know that Bδ = B0

δ , we have the characterisations

B1+δ = {f ∈ D(∆) : ∆f + f ′(1/2)g ∈ B0
δ} ,

B0
1+δ = {f ∈ D(∆) : ∆f ∈ B0

δ} .

Since on the other hand g 6∈ B0
δ by assumption, it follows that B1+δ ∩ B0

1+δ consists of functions
with vanishing derivative at 1/2, so that in particular B1+δ 6= B0

1+δ.

Exercise 4.40 Show that in the example above, one has B−1/4 6= B0
−1/4. Hint: Consider the

adjoint of L as the generator of an analytic semigroup on H−2 = (B0
1)∗ and make use of Exer-

cise 4.30, using the fact that δ′ 6∈ B0
−3/4.

Exercise 4.41 Show, again in the same setting as above, that if g ∈ B0
δ for some δ > 0, then one

has Bα = B0
α for every α ∈ [0, 1 + δ).

Remark 4.42 The operatorB defined in (4.12) is not a closed operator on B. In fact, it is not even
closable! This is however of no consequence for Proposition 4.38 since the operator L = L0 +B
is closed and this is all that matters.

5 Linear SPDEs / Stochastic Convolutions

We now apply the knowledge gathered in the previous sections to discuss the solution to linear
stochastic PDEs. Most of the material from this section can be found in the monographs [DPZ92b,
DPZ96]. The aim of this section is to define what we mean by the solution to a linear stochastic
PDE of the form

dx = Lxdt+QdW (t) , x(0) = x0 , (5.1)
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where we want x to take values in a separable Banach spaceB, L is the generator of a C0 semigroup
on B, W is a cylindrical Wiener process on some Hilbert space K, and Q:K → B is a bounded
linear operator.

We do not in general expect x to take values in D(L) and we do not even in general expect
QW (t) to be a B-valued Wiener process, so that the usual way of defining solutions to (5.1) by
simply integrating both sides of the equality does not work. However, if we apply some ` ∈
D(L∗) to both sides of (5.1), then the usual definition makes sense. This motivates the following
definition:

Definition 5.1 A B-valued process x(t) is said to be a weak solution to (5.1) if, for every t > 0,∫ t
0 ‖x(s)‖ ds <∞ almost surely and the identity

〈`, x(t)〉 = 〈`, x0〉+
∫ t

0
〈L∗`, x(s)〉 ds+

∫ t

0
〈Q∗`, dW (s)〉 , (5.2)

holds almost surely for every ` ∈ D(L∗).

Remark 5.2 The stochastic integral in (5.2) can be interpreted in the sense of Section 3.4 since
the map Q∗`:K → R is Hilbert-Schmidt for every ` ∈ B∗.

Remark 5.3 The term ‘weak’ refers to the PDE notion of a weak solution and not to the proba-
bilistic notion of a weak solution to a stochastic differential equation.

Remark 5.4 Although separability of B was not required in the previous section on semigroup
theory, it is again needed in this section, since many of the results from the section on Gaussian
measure theory would not hold otherwise.

On the other hand, suppose that f : R+ → D(L) is a continuous function and consider the
function x: R+ → D(L) given by x(t) = S(t)x0 +

∫ t
0 S(t−s)f (s) ds, where S is the C0-semigroup

generated by L. If x0 ∈ D(L) as well, then this function is differentiable and it is easy to check,
using Proposition 4.6, that it satisfies the differential equation ∂tx = Lx+ f . Formally replacing
f (s) ds by QdW , this suggests the following alternative definition of a solution to (5.1):

Definition 5.5 A B-valued process x(t) is said to be a mild solution to (5.1) if the identity

x(t) = S(t)x0 +
∫ t

0
S(t− s)QdW (s) , (5.3)

holds almost surely for every t > 0. The right hand side of (5.3) is also sometimes called a
stochastic convolution.

Remark 5.6 By the results from Section 3.4, the right hand side of (5.3) makes sense in any
Hilbert spaceH containingB and such that

∫ t
0 tr ιS(t−s)QQ∗S(t−s)∗ι∗ ds <∞, where ι:B → H

is the inclusion map. The statement should then be interpreted as saying that the right hand side
belongs to B ⊂ H almost surely. In the case where B is itself a Hilbert space, (5.3) makes sense if
and only if

∫ t
0 trS(t− s)QQ∗S(t− s)∗ ds <∞.

It turns out that these two notions of solutions are actually equivalent. In order to prepare the
proof of this result, we first show that:

Lemma 5.7 If S(t) is a C0-semigroup on B, then S∗(t) is a C0-semigroup on the closure of D(L∗)
in B∗ and its generator is given by L∗.
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Proof. Since the resolvent of the adjoint is the adjoint of the resolvent, it is immediate that L∗

satisfies the conditions of the Hille-Yosida theorem on the closure of D(L∗) in B∗. It is therefore
the generator of a strongly continuous semigroup T (t). The fact that T (t) = S(t)∗ follows from
the corresponding relation between the semigroups generated by the Yosida approximations of L
and L∗.

Proposition 5.8 If the mild solution is almost surely integrable, then it is also a weak solution.
Conversely, every weak solution is a mild solution.

Proof. Note first that, by considering the process x(t)− S(t)x0 and using Proposition 4.6, we can
assume without loss of generality that x0 = 0.

We now assume that the process x(t) defined by (5.3) takes values in B almost surely and we
show that this implies that it satisfies (5.2). Fixing an arbitrary ` ∈ D(L∗), applying L∗` to both
sides of (5.3), and integrating the result between 0 and t, we obtain:∫ t

0
〈L∗`, x(s)〉 ds =

∫ t

0

∫ s

0
〈L∗`, S(s− r)QdW (r)〉 ds =

∫ t

0

〈∫ t

r
S∗(s− r)L∗` ds,Q dW (r)

〉
.

Using Proposition 4.6 and the fact that, by Lemma 5.7, S∗ is a strongly continuous semigroup on
B̄∗, the closure of D(L∗) in B∗, we obtain∫ t

0
〈L∗`, x(s)〉 ds =

∫ t

0
〈Q∗S∗(t− r)`, dW (r)〉 −

∫ t

0
〈Q∗`, dW (r)〉

=
〈
`,

∫ t

0
S(t− r)QdW (r)

〉
−
∫ t

0
〈Q∗`, dW (r)〉

= 〈`, x(t)〉 −
∫ t

0
〈Q∗`, dW (r)〉 ,

thus showing that x is indeed a weak solution to (5.1).
To show the converse, let now x(t) be any weak solution to (5.1) (again with x0 = 0). Fix an

arbitrary ` ∈ D(L∗), some final time t > 0, and consider the function f (s) = S∗(t − s)`. Since
` ∈ D(L∗), it follows from Proposition 4.6 that this function belongs to E def= C([0, t],D(L∗)) ∩
C1([0, t], B̄∗). We are going to show that one has for such functions the almost sure identity

〈f (t), x(t)〉 =
∫ t

0
〈ḟ (s) + L∗f (s), x(s)〉+

∫ t

0
〈f (s), Q dW (s)〉 . (5.4)

Since in our case ḟ (s) + L∗f (s) = 0, this implies that the identity

〈`, x(t)〉 =
∫ t

0
〈`, S(t− s)QdW (s)〉 ,

holds almost surely for all ` ∈ D(L∗). Since, by the closed graph theorem, D(L∗) is large enough
to separate points in B1 and since B is separable (so that countably many elements of D(L∗) are
sufficient), this implies that x is indeed a mild solution.

It remains to show that (5.4) holds for all f ∈ E . Since linear combinations of functions of
the type ϕ`(s) = `ϕ(s) for ϕ ∈ C1([0, t],R) and ` ∈ D(L∗) are dense in E (see Exercise 5.10

1Assume that, for some x, y ∈ B, we have 〈`, x〉 = 〈`, y〉 for every ` ∈ D(L∗). We can also assume without loss
of generality that the range of L is B, so that x = Lx′ and y = Ly′, thus yielding 〈L∗`, x′〉 = 〈L∗`, y′〉. Since L is
injective and has dense domain, the closed graph theorem states that the range of L∗ is all of B∗, so that x′ = y′ and
thus also x = y.
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below) and since x is almost surely integrable, it suffices to show that (5.4) holds for f = ϕ`.
Since 〈`,QW (s)〉 is a standard one-dimensional Brownian motion, we can apply Itô’s formula to
ϕ(s)〈`, x(s)〉, yielding

ϕ(t)〈`, x(t)〉 =
∫ t

0
ϕ(s)〈L∗`, x(s)〉+

∫ t

0
ϕ̇(s)〈`, x(s)〉+

∫ t

0
ϕ(s)〈`,Q dW (s)〉 ,

which coincides with (5.4) as required.

Remark 5.9 It is actually possible to show that if the right hand side of (5.3) makes sense for some
t, then it makes sense for all t and the resulting process belongs almost surely to Lp([0, T ],B) for
every p. Therefore, the concepts of mild and weak solution actually always coincide. This follows
from the fact that the covariance of x(t) increases with t, see for example [DJT95].

Exercise 5.10 Let f ∈ C([0, 1],D(L∗)) ∩ C1([0, 1], B̄∗) and, for n > 0, define fn on the interval
s ∈ [k/n, (k + 1)/n] by cubic spline interpolation:

fn(s) = f (k/n)(k + 1− ns)2(1 + 2ns− 2k) + f ((k + 1)/n)(ns− k)2(3− 2ns+ 2k)

+ (ns− k)(k + 1− ns)2n(f ((k + 1
2 )/n)− f ((k − 1

2 )/n))
+ (ns− k)2(ns− k − 1)n(f ((k + 3

2 )/n)− f ((k + 1
2 )/n)) .

Show that fn is a finite linear combinations of functions of the form `ϕ(s) with ϕ ∈ C1([0, 1],R)
and that fn → f in C([0, 1],D(L∗)) ∩ C1([0, 1], B̄∗).

5.1 Time and space regularity
In this subsection, we are going to study the space and time regularity of solutions to linear stochas-
tic PDEs. For example, we are going to see how one can easily derive the fact that the solutions to
the stochastic heat equation are ‘almost’ 1

4 -Hölder continuous in time and ‘almost’ 1
2 -Hölder con-

tinuous in space. Since we are often going to use the Hilbert-Schmidt norm of a linear operator,
we introduce the notation

‖A‖2HS = trAA∗ .

For most of this section, we are going to make use of the theory of analytic semigroups. How-
ever, we start with a very weak regularity result for the solutions to stochastic PDEs whose linear
operator L generates an arbitrary C0-semigroup:

Theorem 5.11 LetH andK be separable Hilbert spaces, letL be the generator of a C0-semigroup
on H, let Q:K → H be a bounded operator and let W be a cylindrical Wiener process on K.
Assume furthermore that ‖S(t)Q‖HS < ∞ for every t > 0 and that there exists α ∈ (0, 1

2 ) such
that

∫ 1
0 t
−2α‖S(t)Q‖2HS dt <∞. Then the solution x to (5.1) has almost surely continuous sample

paths inH.

Proof. Note first that ‖S(t+s)Q‖HS ≤ ‖S(s)‖‖S(t)Q‖HS, so that the assumptions of the theorem
imply that

∫ T
0 t−2α‖S(t)Q‖2HS dt < ∞ for every T > 0. Let us fix an arbitrary terminal time T

from now on. Defining the process y by

y(t) =
∫ t

0
(t− s)−αS(t− s)QdW (s) ,

we obtain the existence of a constant C such that

E‖y(t)‖2 =
∫ t

0
(t− s)−2α‖S(t− s)Q‖2HS ds =

∫ t

0
s−2α‖S(s)Q‖2HS ds ≤ C ,
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uniformly for t ∈ [0, T ]. It therefore follows from Fernique’s theorem that for every p > 0 there
exist a constant Cp such that

E
∫ T

0
‖y(t)‖p dt < Cp . (5.5)

Note now that there exists a constant cα (actually cα = (sin 2πα)/π) such that the identity∫ t

s
(t− r)α−1(r − s)−α dr =

1
cα

,

holds for every t > s. It follows that one has the identity

x(t) = S(t)x0 + cα

∫ t

0

∫ t

s
(t− r)α−1(r − s)−αS(t− s) dr QdW (s)

= S(t)x0 + cα

∫ t

0

∫ r

0
(t− r)α−1(r − s)−αS(t− s)QdW (s) dr

= S(t)x0 + cα

∫ t

0
S(t− r)

∫ r

0
(r − s)−αS(r − s)QdW (s) (t− r)α−1 dr

= S(t)x0 + cα

∫ t

0
S(t− r)y(r) (t− r)α−1 dr . (5.6)

The claim thus follows from (5.5) if we can show that for every α ∈ (0, 1
2 ) there exists p > 0 such

that the map

y 7→ Fy , Fy(t) =
∫ t

0
(t− r)α−1S(t− r)y(r) dr

maps Lp([0, T ],H) into C([0, T ],H). Since the semigroup t 7→ S(t) is uniformly bounded (in the
usual operator norm) on any bounded time interval and since t 7→ (t − r)α−1 belongs to Lq for
q ∈ [1, 1/(1−α)), we deduce from Hölder’s inequality that there exists a constantCT such that one
does indeed have the bound supt∈[0,T ] ‖Fy(t)‖p ≤ CT

∫ T
0 ‖y(t)‖p dt, provided that p > 1

α . Since
continuous functions are dense in Lp, the proof is complete if we can show that Fy is continuous
for every continuous function y with y(0) = 0.

Fixing such a y, we first show that Fy is right-continuous and then that it is left continuous.
Fixing t > 0, we have for h > 0 the bound

‖Fy(t+ h)− Fy(t)‖ ≤
∫ t

0
‖((t+ h− r)α−1S(h)− (t− r)α−1)S(t− r)y(r)‖ dr

+
∫ t+h

t
(t+ h− r)α−1‖S(t+ h− r)y(r)‖ dr

The second term is bounded by O(hδ) for some δ > 0 by Hölder’s inequality. It follows from
the strong continuity of S that the integrand of the first term converges to 0 pointwise as h → 0.
Since on the other hand the integrand is bounded by C(t − r)α−1‖y(r)‖ for some constant C,
this term also converges to 0 by the dominated convergence theorem. This shows that Fy is right
continuous.

To show that Fy is also left continuous, we write

‖Fy(t)− Fy(t− h)‖ ≤
∫ t−h

0
‖((t− r)α−1S(h)− (t− h− r)α−1)S(t− h− r)y(r)‖ dr

+
∫ t

t−h
(t− r)α−1‖S(t− r)y(r)‖ dr .
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We bound the second term by Hölder’s inequality as before. The second term can be rewritten as∫ t

0
‖((t+ h− r)α−1S(h)− (t− r)α−1)S(t− r)y(r − h)‖ dr ,

with the understanding that y(r) = 0 for r < 0. Since we assumed that y is continuous, we can
again use the dominated convergence theorem to show that this term tends to 0 as h→ 0.

Remark 5.12 The trick employed in (5.6) is sometimes called the “factorisation method” and
was introduced in the context of stochastic convolutions by Da Prato, Kwapień, and Zabczyk
[DPKZ87, DPZ92a].

This theorem is quite sharp in the sense that, without any further assumption on Q and L, it
is not possible in general to deduce that t 7→ x(t) has more regularity than just continuity, even if
we start with a very regular initial condition, say x0 = 0. We illustrate this fact with the following
exercise:

Exercise 5.13 Consider the case H = L2(R), K = R, L = ∂x and Q = g for some g ∈ L2(R)
such that g ≥ 0 and g(x) = |x|−β for some β ∈ (0, 1

2 ) and all |x| < 1. This satisfies the conditions
of Theorem 5.11 for any α < 1.

Since L generates the translation group, the solution to

du(x, t) = ∂xu(x, t) dt+ g(x) dW (t) , u(x, 0) = 0 ,

is given by

u(x, t) =
∫ t

0
g(x+ t− s) dW (s) .

Convince yourself that for fixed t, the map x 7→ u(x, t) is in general γ-Hölder continuous for
γ < 1

2 − β, but no better. Deduce from this that the map t 7→ u(·, t) is in general also γ-Hölder
continuous for γ < 1

2 − β (if we consider it either as anH-valued map or as a Cb(R)-valued map),
but cannot be expected to have more regularity than that. Since β can be chosen arbitrarily close
to 1

2 , it follows that the exponent α appearing in Theorem 5.11 is in general independent of the
Hölder regularity of the solution.

One of the main insights of regularity theory for parabolic PDEs (both deterministic and
stochastic) is that space regularity is intimately linked to time regularity in several ways. Very
often, the knowledge that a solution has a certain spatial regularity for fixed time implies that it
also has a certain temporal regularity at a given spatial location.

From a slightly different point of view, if we consider time-regularity of the solution to a PDE
viewed as an evolution equation in some infinite-dimensional space of functions, then the amount
of regularity that one obtains depends on the functional space under consideration. As a general
rule, the smaller the space (and therefore the more spatial regularity it imposes) the lower the
regularity of the solution, viewed as a function with values in that space.

We start by considering the case of linear SPDEs with a self-adjoint linear part that take val-
ues in a Hilbert space H and we obtain conditions for the solutions to take values in one of the
interpolation spaces:

Theorem 5.14 Consider (5.1) on a Hilbert space H, assume that L generates an analytic semi-
group, and denote by Hα the corresponding interpolation spaces. If there exists α ≥ 0 such that
Q:K → Hα is bounded and β ∈ (0, 1

2 +α] such that ‖(−L)−β‖HS <∞ then the solution x takes
values inHγ for every γ < γ0 = 1

2 + α− β.
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Proof. As usual, we can assume without loss of generality that 0 belongs to the resolvent set of L.
It suffices to show that

I(T ) def=
∫ T

0
‖(−L)γS(t)Q‖2HS dt <∞ , ∀T > 0 .

Since Q is assumed to be bounded from K toHα, there exists a constant C such that

I(T ) ≤ C
∫ T

0
‖(−L)γS(t)(−L)−α‖2HS dt = C

∫ T

0
‖(−L)γ−αS(t)‖2HS dt .

Since (−L)−β is Hilbert-Schmidt, we have the bound

‖(−L)γ−αS(t)‖HS ≤ ‖(−L)−β‖HS‖(−L)β+γ−αS(t)‖ ≤ C(1 ∨ tα−γ−β) .

For this expression to be square integrable near t = 0, we need α−γ−β > −1
2 , which is precisely

the stated condition.

Exercise 5.15 Show that if we are in the setting of Theorem 5.14 and L is selfadjoint, then the
solutions to (5.1) actually belong toHγ for γ = γ0.

Exercise 5.16 Show that the solution to the stochastic heat equation on [0, 1] with periodic bound-
ary conditions has solutions in the fractional Sobolev space Hs for every s < 1/2. Recall that Hs

is the Hilbert space with scalar product 〈f, g〉s =
∑
k f̂kĝk(1 + k2)s, where f̂k denotes the kth

Fourier coefficient of f .

Exercise 5.17 Consider the following modified stochastic heat equation on [0, 1]d with periodic
boundary conditions:

dx = ∆x dt+ (1−∆)−γ dW ,

where W is a cylindrical Wiener process on L2([0, 1]d). For any given s ≥ 0, how large does γ
need to be for x to take values in Hs ?

Using this knowledge about the spatial regularity of solutions, we can now turn to the time-
regularity. We have:

Theorem 5.18 Consider the same setting as in Theorem 5.14 and fix γ < γ0. Then, at all times
t > 0, the process x is almost surely δ-Hölder continuous inHγ for every δ < 1

2 ∧ (γ0 − γ).

Proof. It follows from Kolmogorov’s continuity criteria that it suffices to check that the bound

E‖x(t)− x(s)‖2γ ≤ C|t− s|1∧2(γ̃−γ)

holds uniformly in s, t ∈ [t0, T ] for every t0, T > 0 and for every γ̃ < γ0. Here and below, C is
an unspecified constant that changes from expression to expression. Assume that t > s from now
on. It follows from the semigroup property and the independence of the increments of W that

x(t) = S(t− s)x(s) +
∫ t

s
S(t− r)QdW (r) . (5.7)

Furthermore, x(s) is independent of the increments of W over the interval [s, t], so that Proposi-
tion 4.37 allows us to get the bound

E‖x(t)− x(s)‖2γ = E‖S(t− s)x(s)− x(s)‖2γ +
∫ t−s

0
‖(−L)γS(r)Q‖2HS dr

≤ C|t− s|2(γ̃−γ)∧2E‖x(s)‖2γ̃ + C

∫ t−s

0
(1 ∨ rα−γ−β)2 dr .

Here, we obtained the bound on the second term in exactly the same way as in the proof of
Theorem 5.14. The claim now follows from the fact that α− γ − β = (γ0 − γ)− 1

2 .
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5.2 Long-time behaviour
This section is devoted to the behaviour of the solutions to (5.1) for large times. Let’s again start
with an example that illustrates some of the possible behaviours.

Example 5.19 Let x 7→ V (x) be some smooth ‘potential’ and let H = L2(R, exp(−V (x)) dx).
Let S denote the translation semigroup (to the right) onH and denote its generator by−∂x. Let us
first discuss which conditions on V ensure that S is a strongly continuous semigroup on H. It is
clear that it is a semigroup and that S(t)u → u for u any smooth function with compact support.
It therefore only remains to show that ‖S(t)‖ is uniformly bounded for t ∈ [0, 1] say. We have

‖S(t)u‖2 =
∫
u2(x− t)e−V (x) dx =

∫
u2(x)e−V (x)eV (x)−V (x+t) dx . (5.8)

This shows that a necessary and sufficient condition for S to be a strongly continuous semigroup
on H is that, for every t > 0, there exists Ct such that supx∈R(V (x) − V (x + t)) ≤ Ct and
such that Ct remains bounded as t → 0. Examples of potentials leading to a C0-semigroup are x,√

1 + x2, log(1 + x2), etc or any increasing function. Note however that the potential V (x) = x2

does not lead to a strongly continuous semigroup. One different way of interpreting this is to
consider the unitary transformation K:u 7→ exp(1

2V )u from the ‘flat’ space L2 intoH. Under this
transformation, the generator −∂x is turned into

−(K−1∂xKu)(x) = −∂xu(x)− 1
2V
′(x)u(x) .

Considering the characterisation of generators of C0-semigroups given by the Hille-Yosida theo-
rem, one would expect this to be the generator of a strongly continuous semigroup if V ′ is bounded
from below, which is indeed a sufficient condition.

Let now V be such that S is a C0-semigroup and consider the SPDE onH given by

du(x, t) = −∂xu(x, t) dt+ f (x) dW (t) , (5.9)

where W is a one-dimensional Wiener process and f is some function inH. The solution to (5.9)
with initial condition u0 = 0 is given as before by

u(x, t) =
∫ t

0
f (x+ s− t) dW (s) . (5.10)

If we fix the time t, we can make the change of variable s 7→ t − s, so that u(x, t) is equal in
distribution to

∫ t
0 f (x− s) dW (s).

We see that if f happens to be also square integrable (we will assume that this is the case in the
sequel and we will also assume that f is not identically zero), then (5.10) has a limit in distribution
as t→∞ given by

ũ(x) =
∫ ∞

0
f (x− s) dW (s) . (5.11)

It is however not clear a priori that ũ does belong toH. On one hand, we have the bound

E
∫

R
ũ(x)2e−V (x) dx =

∫
R

∫ ∞
0

f2(x− t) dt e−V (x) dx ≤
∫

R
f2(t) dt

∫
R
e−V (x) dx ,

thus showing that ũ definitely belongs to H if e−V has finite mass. On the other hand, there are
examples where ũ ∈ H even though e−V has infinite mass. For example, if f (x) = 0 for x ≤ 0,
then it is necessary and sufficient to have

∫∞
0 e−V (x) dx <∞. Denote by ν the law of ũ for further

reference.
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Furthermore, if e−V is integrable, there are many measures on H that are invariant under the
action of the semigroup S. For example, given a function h ∈ H which is periodic with period
τ (that is S(τ )h = h), we can check that the push-forward of the Lebesgue measure on [0, τ ]
under the map t 7→ S(t)h is invariant under the action of S. This is simply a consequence of the
invariance of Lebesgue measure under the shift map. Given any invariant probability measure µh
of this type, let v be an H-valued random variable with law µh that is independent of W . We can
then consider the solution to (5.9) with initial condition v. Since the law of S(t)v is equal to the
law of v by construction, it follows that the law of the solution converges to the distribution of the
random variable ũ+ v, with the understanding that ũ and v are independent.

This shows that in the case
∫
e−V (x) dx < ∞, it is possible to construct solutions u to (5.9)

such that the law of u(· , t) converges to µh ? ν for any periodic function h.

Exercise 5.20 Construct an example of a potential V such that the semigroup S is not strongly
continuous by choosing it such that limt→0 ‖S(t)‖ = +∞, even though each of the operators S(t)
for t > 0 is bounded! Hint: Choose V of the form V (x) = x3 −

∑
n>0 nW (x−cnn ), where W is

an isolated ‘spike’ and cn are suitably chosen constants.

This example shows that in general, the long-time behaviour of solutions to (5.1) may depend
on the choice of initial condition. It also shows that depending on the behaviour of H, L and Q,
the law of the solutions may or may not converge to a limiting distribution in the space in which
solutions are considered.

In order to formalise the concept of ‘long-time behaviour of solutions’ for (5.1), it is convenient
to introduce the Markov semigroup associated to (5.1). Given a linear SPDE with solutions in B,
we can define a family Pt of bounded linear operators on Bb(B), the space of Borel measurable
bounded functions from B to R by

(Ptϕ)(x) = Eϕ
(
S(t)x+

∫ t

0
S(t− s)QdW (s)

)
. (5.12)

It follows from (5.7) and the independence of increments of W that Pt satisfies the semigroup
property Pt+s = Pt ◦ Ps for any two times s, t ≥ 0.

Exercise 5.21 Show that Pt maps the space Cb(B) of continuous bounded functions from B to R
into itself. (Recall that we assumed B to be separable.)

If we denote by Pt(x, · ) the law of S(t)x+
∫ t

0 S(t− s)QdW (s), then Pt can alternatively be
represented as

(Ptϕ)(x) =
∫
B
ϕ(y)Pt(x, dy) .

It follows that its dual P∗t acts on measures with finite total variation by

(P∗t µ)(A) =
∫
B
Pt(x,A)µ(dx) .

Since it preserves the mass of positive measures, P∗t is a continuous map from the space P1(B) of
Borel probability measures on B (endowed with the total variation topology) into itself. It follows
from (5.12) and the definition of the dual that Ptµ is nothing but the law at time t of the solution
to (5.1) with its initial condition u0 distributed according to µ, independently of the increments of
W over [0, t]. With these notations in place, we define:

Definition 5.22 A Borel probability measure µ on B is an invariant measure for (5.1) if P∗t µ = µ
for every t > 0, where Pt is the Markov semigroup associated to solutions of (5.1) via (5.12).
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In the case B = H where we consider (5.1) on a Hilbert spaceH, the situations in which such
an invariant measure exists are characterised in the following theorem:

Theorem 5.23 Consider (5.1) with solutions in a Hilbert spaceH and define the operatorQt:H →
H by

Qt =
∫ t

0
S(t)QQ∗S∗(t) dt .

Then there exists an invariant measure µ for (5.1) if and only if one of the following two equivalent
conditions are satisfied:

1. There exists a positive definite trace class operatorQ∞:H → H such that 2Re〈Q∞L∗x, x〉+
‖Q∗x‖2 = 0 for every x ∈ D(L∗).

2. One has supt>0 trQt <∞.

Furthermore, any invariant measure is of the form ν ? µ∞, where ν is a measure on H that is
invariant under the action of the semigroup S and µ∞ is the centred Gaussian measure with
covariance Q∞.

Proof. The proof goes as follows. We first show that µ being invariant implies that 2. holds. Then
we show that 2. implies 1., and we conclude the first part by showing that 1. implies the existence
of an invariant measure.

Let us start by showing that if µ is an invariant measure for (5.1), then 2. is satisfied. By
choosing ϕ(x) = ei〈h,x〉 for arbitrary h ∈ H, it follows from (5.12) that the Fourier transform of
Ptµ satisfies the equation

P̂tµ(x) = µ̂(S∗(t)x)e−
1
2
〈x,Qtx〉 . (5.13)

Taking logarithms and using the fact that |µ̂(x)| ≤ 1 for every x ∈ H and every probability
measure µ, It follows that if µ is invariant, then

〈x,Qtx〉 ≤ −2 log |µ̂(x)| , ∀x ∈ H , ∀t > 0 . (5.14)

Choose now a sufficiently large value of R > 0 so that µ(‖x‖ > R) < 1/8 (say) and define a
symmetric positive definite operator AR:H → H by

〈h,ARh〉 =
∫
‖x‖≤R

|〈x, h〉|2 µ(dx) .

Since, for any orthonormal basis, one has ‖x‖2 =
∑
n |〈x, en〉|2, it follows that AR is trace class

and that trAR ≤ R2. Furthermore, one has the bound

|1− µ̂(h)| ≤
∫
H
|1− ei〈h,x〉|µ(dx) ≤

√
〈h,ARh〉+

1
4
.

Combining this with (5.14), it follows that 〈x,Qtx〉 ≤ 2 log 4 for every x ∈ H such that 〈x,ARx〉 ≤
1/4 so that, by homogeneity,

〈x,Qtx〉 ≤ (8 log 4)〈x,ARx〉 .

It follows that trQt ≤ (8 log 4)R2, so that 2. is satisfied. To show that 2. implies 1., note that
sup trQt <∞ implies that

Q∞ =
∫ ∞

0
S(t)QQ∗S∗(t) dt ,
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is a well-defined positive definite trace class operator (since t 7→ Q
1/2
t forms a Cauchy sequence

in the space of Hilbert-Schmidt operators). Furthermore, one has the identity

〈x,Q∞x〉 = 〈S∗(t)x,Q∞S∗(t)x〉+
∫ t

0
‖Q∗S∗(s)x‖2 ds .

for x ∈ D(L∗), both terms on the right hand side of this expression are differentiable. Taking the
derivative at t = 0, we get

0 = 2Re〈Q∞L∗x, x〉+ ‖Q∗x‖2 ,

which is precisely the identity in 1.
Let now Q∞ be a given operator as in 1., we want to show that the centred Gaussian measure

µ∞ with covarianceQ∞ is indeed invariant for Pt. For x ∈ D(L∗), it follows from Proposition 4.6
that the map Fx: t 7→ 〈Q∞S∗(t)x, S∗(t)x〉 is differentiable with derivative given by ∂tFx(t) =
2Re〈Q∞L∗S∗(t)x, S∗(t)x〉. It follows that

Fx(t)− Fx(0) = 2
∫ t

0
Re〈Q∞L∗S∗(s)x, S∗(s)x〉 ds = −

∫ t

0
‖Q∗S∗(s)x‖2 ds ,

so that one has the identity

Q∞ = S(t)Q∞S∗(t) +
∫ t

0
S(s)QQ∗S∗(s) ds = S(t)Q∞S∗(t) +Qt .

Inserting this into (5.13), the claim follows. Here, we used the fact that D(L∗) is dense in H,
which is always the case on a Hilbert space, see [Yos95, p. 196].

Since it is obvious from (5.13) that every measure of the type ν ? µ∞ with ν invariant for S
is also invariant for Pt, it remains to show that the converse also holds. Let µ be invariant for Pt
and define µt as the push-forward of µ under the map S(t). Since µ̂t(x) = µ̂(S∗(t)x), it follows
from (5.13) and the invariance of µ that there exists a function ψ:H → R such that µ̂t(x)→ ψ(x)
uniformly on bounded sets, ψ ◦ S(t)∗ = ψ, and such that µ̂(x) = ψ(x) exp(−1

2〈x,Q∞x〉). It
therefore only remains to show that there exists a probability measure ν onH such that ψ = ν̂.

In order to show this, it suffices to show that the family of measures {µt} is tight, that is for
every ε > 0 there exists a compact setK such that µt(K) ≥ 1−ε for every t. Prokhorov’s theorem
[Bil68, p. 37] then ensures the existence of a sequence tn increasing to∞ and a measure ν such
that µtn → ν weakly. In particular, µ̂tn(x)→ ν̂(x) for every x ∈ H, thus concluding the proof.

To show tightness, denote by νt the centred Gaussian measure on H with covariance Qt and
note that one can find a sequence of bounded linear operators An:H → H with the following
properties:

a. One has ‖An+1x‖ ≥ ‖Anx‖ for every x ∈ H and every n ≥ 0.
b. The set BR = {x : supn ‖Anx‖ ≤ R} is compact for every R > 0.
c. One has supn trAnQ∞A∗n <∞.

(By diagonalisingQ∞, the construction of such a family of operators is similar to the construction,
given a positive sequence {λn} with

∑
n λn < ∞, of a positive sequence an with limn→∞ an =

+∞ and
∑
n anλn < ∞.) Let now ε > 0 be arbitrary. It follows from Prokhorov’s theorem that

there exists a compact set K̂ ⊂ H such that µ(H\ K̂) ≤ ε
2 . Furthermore, it follows from property

c. above and the fact that Q∞ ≥ Qt that there exists R > 0 such that νt(H \ BR) ≤ ε
2 . Define a

set K ⊂ H by
K = {z − y : z ∈ K̂ , y ∈ BR} .

It is straightforward to check, using the Heine-Borel theorem, that K is precompact.
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If we now take X and Y to be independent H-valued random variables with laws µt and νt
respectively, then it follows from the definition of a mild solution and the invariance of µ that Z =
X + Y has law µ. Since one has the obvious implication {Z ∈ K̂}&{Y ∈ BR} ⇒ {X ∈ K}, it
follows that

µt(H \K) = P(X 6∈ K) ≤ P(Z 6∈ K̂) + P(Y 6∈ BR) ≤ ε ,

thus showing that the sequence {µt} is tight as requested.

It is clear from Theorem 5.23 that if (5.1) does have a solution in some Hilbert space H and
if ‖S(t)‖ → 0 as t → ∞ in that same Hilbert space, then it also possesses a unique invariant
measure on H. It turns out that as far as the “uniqueness” part of this statement is concerned, it is
sufficient to have limt→∞ ‖S(t)x‖ = 0 for every x ∈ H:

Proposition 5.24 If limt→∞ ‖S(t)x‖ = 0 for every x ∈ H, then (5.1) can have at most one
invariant measure. Furthermore, if an invariant measure µ∞ exists in this situation, then one has
P∗t ν → µ∞ weakly for every probability measure ν onH.

Proof. In view of Theorem 5.23, the first claim follows if we show that δ0 is the only measure that
is invariant under the action of the semigroup S. Let ν be an arbitrary probability measure on H
such that S(t)∗ν = ν for every t > 0 and let ϕ:H → R be a bounded continuous function. On
then has indeed ∫

H
ϕ(x)ν(dx) = lim

t→∞

∫
H
ϕ(S(t)x)ν(dx) = ϕ(0) , (5.15)

where we first used the invariance of ν and then the dominated convergence theorem.
To show that P∗t ν → µ∞ whenever an invariant measure exists we use the fact that in this

case, by Theorem 5.23, one has Qt ↑ Q∞ in the trace class topology. Denoting by µt the centred
Gaussian measure with covariance Qt, the fact that L2 convergence implies weak convergence
then implies that there exists a measure µ̂∞ such that µt → µ̂∞ weakly. Furthermore, the same
reasoning as in (5.15) shows that S(t)∗ν → δ0 weakly as t → ∞. The claim then follows from
the fact that P∗t ν = (S(t)∗ν) ? µt and from the fact that convolving two probability measures is a
continuous operation in the topology of weak convergence.

Note that the condition limt→∞ ‖S(t)x‖ = 0 for every x is not sufficient in general to guaran-
tee the existence of an invariant measure for (5.1). This can be seen again with the aid of Exam-
ple 5.19. Take an increasing function V with limx→∞ V (x) = ∞, but such that

∫∞
0 e−V (x) dx =

∞. Then, since exp(V (x) − V (x + t)) ≤ 1 and limt→∞ exp(V (x) − V (x + t)) = 0 for every
x ∈ R, it follows from (5.8) and the dominated convergence theorem that limt→∞ ‖S(t)u‖ = 0 for
every u ∈ H. However, the fact that

∫∞
0 e−V (x) dx =∞ prevents the random process ũ defined in

(5.11) from belonging toH, so that (5.9) has no invariant measure in this particular situation.

Exercise 5.25 Show that if (5.1) has an invariant measure µ∞ but there exists x ∈ H such that
lim supt→∞ ‖S(t)x‖ > 0, then one cannot have P∗t δx → µ∞ weakly. In this sense, the statement
of Proposition 5.24 is sharp.

5.3 Convergence in other topologies
Proposition 5.24 shows that if (5.1) has an invariant measure µ∞, one can in many cases expect to
have P∗t ν → µ∞ weakly for every initial measure ν. It is however not clear a priori whether such
a convergence also holds in some stronger topologies on the space of probability measures. If we
consider the finite-dimensional case (that is H = Rn for some n > 0), the situation is clear: the
condition limt→∞ ‖S(t)x‖ = 0 for every x ∈ H then implies that limt→∞ ‖S(t)‖ = 0, so that L
has to be a matrix whose eigenvalues all have strictly negative real parts. One then has:
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Proposition 5.26 In the finite-dimensional case, assume that all eigenvalues of L strictly negative
real parts and that Q∞ has full rank. Then, there exists T > 0 such that P∗t δx has a smooth
density pt,x with respect to Lebesgue measure for every t > T . Furthermore, µ∞ has a smooth
density p∞ with respect to Lebesgue measure and there exists c > 0 such that, for every λ > 0,
one has

lim
t→∞

ect sup
y∈Rn

eλ|y||p∞(y)− pt,x(y)| = 0 .

In other words, pt,x converges to p∞ exponentially fast in any weighted norm with exponentially
increasing weight.

The proof of Proposition 5.26 is left as an exercise. It follows in a straightforward way from
the explicit expression for the density of a Gaussian measure.

In the infinite-dimensional case, the situation is much less straightforward. The reason is that
there exists no natural reference measure (the equivalent of the Lebesgue measure) with respect to
which one could form densities.

In particular, even though one always has ‖µt − µ∞‖∞ → 0 in the finite-dimensional case
(provided that µ∞ exists and that all eigenvalues of L have strictly negative real part), one cannot
expect this to be true in general. Consider for example the SPDE

dx = −x dt+QdW (t) , x(t) ∈ H ,

where W is a cylindrical process on H and Q:H → H is a Hilbert-Schmidt operator. One then
has

Qt =
1− e−2t

2
QQ∗ , Q∞ =

1
2
QQ∗ .

Combining this with Proposition 3.30 (dilates of an infinite-dimensional Gaussian measure are
mutually singular) shows that if QQ∗ has infinitely many non-zero eigenvalues, then µt and µ∞
are mutually singular in this case.

ν

µOne question that one may ask oneself is under which condi-
tions the convergence Pνt → µ∞ takes place in the total variation
norm. The total variation distance between two probability mea-
sures is determined by their ‘overlap’ as depicted in the figure on
the right: the total variation distance between µ and ν is given by
the dark gray area, which represents the parts that do not overlap.
If µ and ν have densitiesDµ andDν with respect to some common
reference measure π (one can always take π = 1

2 (µ+ν)), then one
has ‖µ− ν‖TV =

∫
|Dµ(x)−Dν(x)|π(dx).

Exercise 5.27 Show that this definition of the total variation distance does not depend on the
particular choice of a reference measure.

The total variation distance between two probability measures µ and ν on a separable Banach
space B can alternatively be characterised as

‖µ− ν‖TV = 2 inf
π∈C (µ,ν)

π({x 6= y}) , (5.16)

where the infimum runs over the set C (µ, ν) of all probability measures π on B×B with marginals
µ and ν. In other words, if the total variation distance between µ and ν is smaller than 2ε, then
it is possible to construct B-valued random variables X and Y with respective laws µ and ν such
that X = Y with probability larger than 1− ε.
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This yields a straightforward interpretation to the total variation convergence Pνt → µ∞: for
large times, a sample drawn from the invariant distribution is with high probability indistinguish-
able from a sample drawn from the Markov process at time t. Compare this with the notion of
weak convergence which relies on the topology of the underlying space and only asserts that the
two samples are close with high probability in the sense determined by the topology in question.
For example, ‖δx − δy‖ is always equal to 2 if x 6= y, whereas δx → δy weakly if x→ y.

Exercise 5.28 Show that the two definitions of the total variation distance given above are indeed
equivalent by constructing a coupling that realises the infimum in (5.16). It is useful for this to
consider the measure µ ∧ ν which, in µ and ν have densities Dµ and Dν with respect to some
common reference measure π, is given by (Dµ(x) ∧ Dν(x))π(dx).

An alternative characterisation of the total variation norm is as the dual norm to the supremum
norm on the space Bb(B) of bounded Borel measurable functions on B:

‖µ− ν‖TV = sup
{∫

ϕ(x)µ(dx)−
∫
ϕ(x)ν(dx) : sup

x∈B
|ϕ(x)| ≤ 1

}
.

It turns out that, instead of showing directly that P∗t ν → µ∞ in the total variation norm, it is
somewhat easier to show that one has P∗t ν → µ∞ in a type of ‘weighted total variation norm’,
which is slightly stronger than the usual total variation norm. Given a weight function V :B → R+,
we define a weighted supremum norm on measurable functions by

‖ϕ‖V = sup
x∈B

|ϕ(x)|
1 + V (x)

,

as well as the dual norm on measures by

‖µ− ν‖TV,V = sup
{∫

ϕ(x)µ(dx)−
∫
ϕ(x)ν(dx) : ‖ϕ‖V ≤ 1

}
. (5.17)

Since we assumed that V > 0, it is obvious that one has the relation ‖µ− ν‖TV ≤ ‖µ− ν‖TV,V ,
so that convergence in the weighted norm immediately implies convergence in the usual total
variation norm. By considering the Jordan decomposition of µ− ν = %+ − %−, it is clear that the
supremum in (5.17) is attained at functions ϕ such that ϕ(x) = 1 + V (x) for %+-almost every x
and ϕ(x) = −1 − V (x) for %−-almost every x. In other words, an alternative expression for the
weighted total variation norm is given by

‖µ− ν‖TV,V =
∫
X

(1 + V (x)) |µ− ν|(dx) , (5.18)

just like the total variation norm is given by ‖µ− ν‖TV = |µ− ν|(X ).
The reason why it turns out to be easier to work in a weighted norm is the following: For a

suitable choice of V , we are going to see that in a large class of examples, one can construct a
weight function V and find constants c < 1 and T > 0 such that

‖P∗Tµ− P∗T ν‖TV,V ≤ c‖µ− ν‖TV,V , (5.19)

for any two probability measures µ and ν. This implies that the map PT is a contraction on the
space of probability measures, which must therefore have exactly one fixed point, yielding both
the existence of an invariant measure µ∞ and the exponential convergence of P∗t ν to µ∞ for every
initial probability measure ν which integrates V .

This argument is based on the following abstract result that works for arbitrary Markov semi-
groups on Polish (that is separable, complete, metric) spaces:
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Theorem 5.29 (Harris) Let Pt be a Markov semigroup on a Polish space X such that there exists
a time T0 > 0 and a function V :X → R+ such that:

• The exist constants γ < 1 and K > 0 such that PT0V (x) ≤ γV (x) +K for every x ∈ X .

• For every K ′ > 0, there exists δ > 0 such that ‖P∗T0
δx − P∗T0

δy‖TV ≤ 2− δ for every pair
x, y such that V (x) + V (y) ≤ K ′.

Then, there exists T > 0 such that (5.19) holds for some c < 1.

In a nutshell, the argument for the proof of Theorem 5.29 is the following. There are two
mechanisms that allow to decrease the weighted total variation distance between two probability
measures:

2. The mass of the two measures moves into regions where the weight V (x) becomes smaller.
1. The two measures ‘spread out’ in such a way that there is an increase in the overlap between

them.
The two conditions of Theorem 5.29 are tailored such as to combine these two effects in order to
obtain an exponential convergence of P∗t µ to the unique invariant measure for Pt as t→∞.

Remark 5.30 Traditional proofs of Theorem 5.29 as given for example in [MT93] tend to make
use of coupling arguments and estimates of return times of the Markov process described by Pt to
level sets of V . Such proofs are quite involved at a technical level and are by consequent not easy
to follow. Furthermore, they require more background in advanced probability theory than what is
assumed for the scope of these notes. The elementary proof given here is taken from [HM08] and
is based on the arguments first exposed in [HM06]. It has the disadvantage of being less intuitively
appealing than proofs based on coupling arguments, but this is more than offset by the advantage
of fitting into less than two pages without having to appeal to advanced mathematical concepts. It
also has the advantage of being generalisable to situations where (5.19) does not hold, see [].

Before we turn to the proof of Theorem 5.29, we define for every β > 0 the distance function

dβ(x, y) =

{
0 if x = y

2 + βV (x) + βV (y) if x 6= y.

One can check that the positivity of V implies that this is indeed a distance function, albeit a rather
strange one. We define the corresponding ‘Lipschitz’ seminorm on functions ϕ:X → R by

‖ϕ‖Lipβ = sup
x 6=y

|ϕ(x)− ϕ(y)|
dβ(x, y)

.

We are going to make use of the following lemma:

Lemma 5.31 With the above notations, one has ‖ϕ‖Lipβ = infc∈R ‖ϕ+ c‖βV .

Proof. It is obvious that ‖ϕ‖Lipβ ≤ ‖ϕ + c‖βV for every c ∈ R. On the other hand, if x0 is any
fixed point in X , one has

|ϕ(x)| ≤ |ϕ(x0)|+ ‖ϕ‖Lipβ (2 + βV (x) + βV (x0)) , (5.20)

for all x ∈ X . Set now

c = − sup
x∈X

(ϕ(x)− ‖ϕ‖Lipβ (1 + βV (x))) .
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It follows from (5.20) that c is finite. Furthermore, one has

ϕ(y) + c ≤ ϕ(y)− (ϕ(y)− ‖ϕ‖Lipβ (1 + βV (y))) = ‖ϕ‖Lipβ (1 + βV (y)) ,

and

ϕ(y) + c = inf
x∈X

(ϕ(y)− ϕ(x) + ‖ϕ‖Lipβ (1 + βV (x)))

≥ inf
x∈X
‖ϕ‖Lipβ (1 + βV (x)− dβ(x, y)) = −‖ϕ‖Lipβ (1 + βV (y)) ,

which implies that ‖ϕ+ c‖βV ≤ ‖ϕ‖Lipβ .

Proof of Theorem 5.29. During this proof, we use the notation P def= PT0 for simplicity. We are
going to show that there exists a choice of β ∈ (0, 1) such that there is α < 1 satisfying the bound

|Pϕ(x)− Pϕ(y)| ≤ αdβ(x, y)‖ϕ‖Lipβ , (5.21)

uniformly over all measurable functions ϕ:X → R and all pairs x, y ∈ X . Note that this is
equivalent to the bound ‖Pϕ‖Lipβ ≤ α‖ϕ‖Lipβ . Combining this with Lemma 5.31 and (5.18), we
obtain that, for T = nT0, one has the bound

‖P∗Tµ− P∗T ν‖TV,V = inf
‖ϕ‖V ≤1

∫
X

(PTϕ)(x) (µ− ν)(dx)

= inf
‖ϕ‖V ≤1

inf
c∈R

∫
X

((PTϕ)(x) + c) (µ− ν)(dx)

≤ inf
‖ϕ‖V ≤1

inf
c∈R
‖PTϕ+ c‖V

∫
X

(1 + V (x)) |µ− ν|(dx)

= inf
‖ϕ‖V ≤1

β−1 inf
c∈R
‖PTϕ+ c‖βV ‖µ− ν‖TV,V

= β−1 inf
‖ϕ‖V ≤1

‖PTϕ‖Lipβ‖µ− ν‖TV,V

≤ αn

β
inf

‖ϕ‖V ≤1
‖ϕ‖Lipβ‖µ− ν‖TV,V ≤

αn

β2
‖µ− ν‖TV,V .

Since α < 1, the result (5.19) then follows at once by choosing n sufficiently large.
Let us turn now to (5.21). If x = y, there is nothing to prove, so we assume that x 6= y.

Fix an arbitrary non-constant function ϕ and assume without loss of generality that ‖ϕ‖Lipβ = 1.
It follows from Lemma 5.31 that, by adding a constant to it if necessary, we can assume that
|ϕ(x) + c| ≤ (1 + βV (x)).

This immediately implies the bound

|Pϕ(x)− Pϕ(y)| ≤ (2 + βPV (x) + βPV (y))
≤ 2 + 2βK + βγV (x) + βγV (y) .

Suppose now that x and y are such that V (x) + V (y) ≥ 2K+2
1−γ . A straightforward calculation

shows that in this case, for every β > 0 there exists α1 < 1 such that (5.21) holds. One can choose
for example

α1 = 1− 1
2

β

1− γ + βK + β
.
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Take now a pair x, y such that V (x) + V (y) ≤ 2K+2
1−γ . Note that we can write ϕ = ϕ1 + ϕ2

with |ϕ1(x)| ≤ 1 and |ϕ2(x)| ≤ βV (x). (Set ϕ1(x) = (ϕ(x) ∧ 1) ∨ (−1).) It follows from the
assumptions on V that there exists some δ > 0 such that

|Pϕ(x)− Pϕ(y)| ≤ |Pϕ1(x)− Pϕ1(y)|+ |Pϕ2(x)− Pϕ2(y)|
≤ ‖P∗δx − P∗δy‖TV + β(PV )(x) + β(PV )(y)

≤ 2− δ + β(2K + γV (x) + γV (y)) ≤ 2− δ + 2βK
1 + γ

1− γ
.

If we now choose β < δ
4K

1−γ
1+γ , (5.21) holds with α = 1− 1

2δ < 1. Combining this estimate with
the one obtained previously shows that one can indeed find α and β such that (5.21) holds for all
x and y in X , thus concluding the proof of Theorem 5.29.

One could argue that this theorem does not guarantee the existence of an invariant measure
since the fact that P∗Tµ = µ does not guarantee that Ptµ = µ for every t. However, one has:

Lemma 5.32 If there exists a probability measure such that P∗Tµ = µ for some fixed time T > 0,
then there also exists a probability measure µ∞ such that P∗t µ∞ = µ∞ for all t > 0.

Proof. Define the measure µ∞ by

µ∞(A) =
1
T

∫ T

0
P∗t µ(A) dt .

It is then a straightforward exercise to check that it does have the requested property.

We are now able to use this theorem to obtain the following result on the convergence of the
solutions to (5.1) to an invariant measure in the total variation topology:

Theorem 5.33 Assume that (5.1) has a solution in some Hilbert space H and that there exists a
time T such that ‖S(T )‖ < 1 and such that S(T ) maps H into the image of Q1/2

T . Then (5.1)
admits a unique invariant measure µ∞ and there exists γ > 0 such that

‖P∗t ν − µ∞‖TV ≤ C(ν)e−γt ,

for every probability measure ν onH with finite second moment.

Proof. Let V (x) = ‖x‖ and denote by µt the centred Gaussian measure with covariance Qt. We
then have

PtV (x) ≤ ‖S(t)x‖+
∫
H
‖x‖µt(dx) ,

which shows that the first assumption of Theorem 5.29 is satisfied. A simple variation of Exer-
cise 3.24 (use the decompositionH = H̃ ⊕ kerK) shows that the Cameron-Martin space of µT is
given by ImQ

1/2
T endowed with the norm

‖h‖T = inf{‖x‖ : h = Q
1/2
T x} .

Since we assumed that S(T ) maps H into the image of Q1/2
T , it follows from the closed graph

theorem that there exists a constant C such that ‖S(T )x‖T ≤ C‖x‖ for every x ∈ H. It follows
from the Cameron-Martin formula that the total variation distance between P∗T δx and P∗T δy is
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equal to the total variation distance between N (0, 1) and N (‖S(T )x − S(T )y‖T , 1), so that the
second assumption of Theorem 5.29 is also satisfied.

Both the existence of µ∞ and the exponential convergence of P∗t ν towards it is then a con-
sequence of Banach’s fixed point theorem in the dual to the space of measurable functions with
‖ϕ‖V <∞.

Remark 5.34 The proof of Theorem 5.33 shows that if its assumptions are satisfied, then the map
x 7→ P∗t δx is continuous in the total variation distance for t ≥ T .

Remark 5.35 Since ImS(t) decreases with t and ImQ
1/2
t increases with t, it follows that if

ImS(t) ⊂ ImQ
1/2
t for some t, then this also holds for any subsequent time. This is consis-

tent with the fact that Markov operators are contraction operators in the supremum norm, so that
if x 7→ P∗t δx is continuous in the total variation distance for some t, the same must be true for all
subsequent times.

While Theorem 5.33 is very general, it is sometimes not straightforward at all to verify its
assumptions for arbitrary linear SPDEs. In particular, it might be complicated a priori to determine
the image ofQ1/2

t . The task of identifying this subspace can be made easier by the following result:

Proposition 5.36 The image of Q1/2
t is equal to the image of the map At given by

At:L2([0, t],K)→ H , At:h 7→
∫ t

0
S(s)Qh(s) ds .

Proof. SinceQt = AtA
∗
t , we can use polar decomposition [RS80, Thm VI.10] to find an isometry

Jt of (kerAt)⊥ ⊂ H (which extends to H by setting Jtx = 0 for x ∈ kerAt) such that Q1/2
t =

AtJt.
Alternatively, one can show that, in the situation of Theorem 3.34, the Cameron-Martin space

of µ̃ = A∗µ is given by the image under A of the Cameron-Martin space of µ. This follows from
Proposition 3.21 since, as a consequence of the definition of the push-forward of a measure, the
composition with A yields an isometry between L2(B, µ) and L2(B, µ̃).

One case where it is straightforward to check whether S(t) maps H into the image of Q1/2
t is

the following:

Example 5.37 Consider the case where K = H, L is selfadjoint, and there exists a function
f : R→ R+ such that Q = f (L). (This identity should be interpreted in the sense of the functional
calculus already mentioned in Theorem 4.14.)

If we assume furthermore that f (λ) > 0 for every λ ∈ R, then the existence of an invariant
measure is equivalent to the existence of a constant c > 0 such that 〈x, Lx〉 ≤ −c‖x‖2 for every
x ∈ H. Using functional calculus, we see that the operator QT is then given by

QT =
f2(L)

2L
(1− e−2LT ) ,

and, for every T > 0, the Cameron-Martin norm for µT is equivalent to the norm

‖x‖f =
∥∥∥ √L
f (L)

x
∥∥∥ .

In order to obtain convergence P∗t ν → µ∞ in the total variation topology, it is therefore sufficient
that there exist constants c, C > 0 such that f (λ) ≥ Ce−cλ for λ ≥ 0.
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This shows that one cannot expect convergence in the total variation topology to take place
under similarly weak conditions as in Proposition 5.24. In particular, convergence in the total
variation topology requires some non-degeneracy of the driving noise which was not the case for
weak convergence.

Exercise 5.38 Consider again the caseK = H andL selfadjoint with 〈x, Lx〉 ≤ −c‖x‖2 for some
c > 0. Assume furthermore that Q is selfadjoint and that Q and L commute, so that there exists
a space L2(M, µ) isometric to H and such that both Q and L can be realised as multiplication
operators (say f and g respectively) on that space. Show that:

• In order for there to exist solutions in H, the set AQ
def= {λ ∈ M : f (λ) 6= 0} must be

‘essentially countable’ in the sense that it can be written as the union of a countable set and
a set of µ-measure 0.

• If there exists T > 0 such that ImS(T ) ⊂ ImQ
1/2
T , then µ is purely atomic and there exists

some possibly different time t > 0 such that S(t) is trace class.

Exercise 5.37 suggests that there are many cases where, if S(t) maps H to ImQ
1/2
t for some

t > 0, then it does so for all t > 0. It also shows that, in the case where L andQ are selfadjoint and
commute, Q must have an orthnormal basis of eigenvectors with all eigenvalues non-zero. Both
statements are certainly not true in general. We see from the following example that there can be
infinite-dimensional situations where S(t) mapsH to ImQ

1/2
t even though Q is of rank one!

Example 5.39 Consider the spaceH = R⊕L2([0, 1],R) and denote elements ofH by (a, u) with
a ∈ R. Consider the semigroup S onH given by

S(T )(a, u) = (a, ũ) , ũ(x) =

{
a for x ≤ t

u(x− t) for x > t.

It is easy to check that S is indeed a strongly continuous semigroup on H and we denote its
generator by (0, ∂x). We drive this equation by adding noise only on the first component of H. In
other words, we set K = R and Q1 = (1, 0) so that, formally, we are considering the equation

da = dW (t) , du = ∂xu dt .

Even though, at a formal level, the equations for a and u look decoupled, they are actually coupled
via the domain of the generator of S. In order to check whether S(t) maps H into Ht

def= ImQ
1/2
t ,

we make use of Proposition 5.36. This shows thatHt consists of elements of the form

∫ t

0
h(s)χs ds ,

where h ∈ L2([0, t]) and χs is the image of (1, 0) under S(s), which is given by (1, 1[0,s∧1]). On
the other hand, the image of S(t) consists of all elements (a, u) such that u(x) = a for x ≤ t.
Since one has χs(x) = 0 for x > s, it is obvious that ImS(t) 6⊂ Ht for t < 1.

On the other hand, for t > 1, given any a > 0, we can find a function h ∈ L2([0, t]) such that
h(x) = 0 for x ≤ 1 and

∫ t
0 h(x) dx = a. Since, for s ≥ 1, one has χs(x) = 1 for every x ∈ [0, 1],

it follows that one does have ImS(t) ⊂ Ht for t < 1.
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6 Semilinear SPDEs

Now that we have a good working knowledge of the behaviour of solutions to linear stochastic
PDEs, we are prepared to turn to nonlinear SPDEs. In these notes, we will restrict ourselves to the
study of semilinear SPDEs with additive noise.

In this context, a semilinear SPDE is one such that the nonlinearity can be treated as a pertur-
bation of the linear part of the equation. The word additive for the noise refers to the fact that, as
in (5.1), we will only consider noises described by a fixed operator Q:K → B, rather than by an
operator-valued function of the solution. We will therefore consider equations of the type

dx = Lxdt+ F (x) dt+QdW (t) , x(0) = x0 ∈ B , (6.1)

where L is the generator of a strongly continuous semigroup S on a separable Banach space B,
W is a cylindrical Wiener process on some separable Hilbert space K, and Q:K → B is bounded.
Furthermore, F is a measurable function from some linear subspace D(F ) ⊂ B into B. We will
say that a process t 7→ x(t) ∈ D(F ) is a mild solution to (6.1) if the identity

x(t) = S(t)x0 +
∫ t

0
S(t− s)F (x(s)) ds+

∫ t

0
S(t− s)QdW (s) . (6.2)

holds almost surely for every t > 0.

6.1 Local solutions
Throughout this section, we will make the standing assumption that the linearisation to (6.1) (that
is the corresponding equation with F = 0) does have a continuous solution with values in B. In
order to simplify notations, we are going to write

WL(t) def=
∫ t

0
S(t− s)QdW (s) ,

In the nonlinear case, there are situations where solutions explode after a finite (but possibly
random) time interval. In order to be able to account for such a situation, we introduce the no-
tion of a local solution. Recall first that, given a cylindrical Wiener process W defined on some
probability space (Ω,P), we can associate to it the natural filtration {Ft}t≥0 generated by the
increments of W .

In this context, a stopping time is a positive random variable τ such that the event {τ ≤ T} is
FT -measurable for every T ≥ 0. With this definition at hand, we have:

Definition 6.1 A local mild solution to (6.1) is a D(F )-valued stochastic process x together with
a stopping time τ such that τ > 0 almost surely and such that the identity

x(t) = S(t)x0 +
∫ t

0
S(t− s)F (x(s)) ds+WL(t) , (6.3)

holds almost surely for every stopping time t such that t < τ almost surely.

Remark 6.2 In some situations, it might be of advantage to allow F to be a map from D(F ) to B′
for some superspace B′ such that B ⊂ B′ densely and such that S(t) extends to a continuous linear
map from B′ to B. The prime example of such a space B′ is an interpolation space with negative
index in the case where the semigroup S is analytic. The definition of a mild solution carries over
to this situation without any change.
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A local mild solution (x, τ ) is called maximal if, for every mild solution (x̃, τ̃ ), one has τ̃ ≤ τ
almost surely.

Exercise 6.3 Show that mild solutions to (6.1) coincide with mild solutions to (6.1) with L re-
placed by L̃ = L− c and F replaced by F̃ = F + c for any constant c ∈ R.

Our first result on the existence and uniqueness of mild solutions to nonlinear SPDEs makes
the strong assumption that the nonlinearity F is defined on the whole space B and that it is locally
Lipschitz there:

Proposition 6.4 Consider (6.1) on a Banach space B and assume that WL is a continuous B-
valued process. Assume furthermore that F :B → B is such that it restriction to every bounded
set is Lipschitz continuous. Then, there exists a unique maximal mild solution (x, τ ) to (6.1).
Furthermore, this solution has continuous sample paths and one has limt↑τ ‖x(t)‖ = ∞ almost
surely on the set {τ <∞}.

If F is globally Lipschitz continuous, then τ =∞ almost surely.

Proof. Given any realisation WL ∈ C(R+,B) of the stochastic convolution, we are going to show
that there exists a time τ > 0 depending only onWL up to time τ and a unique continuous function
x: [0, τ ) → B such that (6.3) holds for every t < τ . Furthermore, the construction will be such
that either τ =∞, or one has limt↑τ ‖x(t)‖ =∞, thus showing that (x, τ ) is maximal.

The proof relies on the Banach fixed point theorem. Given a terminal time T > 0 and a
continuous function g: R+ → B, we define the map Mg,T : C([0, T ],B)→ C([0, T ],B) by

(Mg,Tu)(t) =
∫ t

0
S(t− s)F (u(s)) ds+ g(t) .

The proof then works in almost exactly the same way as the usual proof of uniqueness of a maximal
solution for ordinary differential equations with Lipschitz coefficients. Note that we can assume
without loss of generality that the semigroup S is bounded, since we can always subtract a constant
to L and add it back to F . Using the fact that ‖S(t)‖ ≤ M for some constant M , one has for any
T > 0 the bound

sup
t∈[0,T ]

‖Mg,Tu(t)−Mg,T v(t)‖ ≤MT sup
t∈[0,T ]

‖F (u(t))− F (v(t))‖ . (6.4)

Furthermore, one has

sup
t∈[0,T ]

‖Mg,Tu(t)− g(t)‖ ≤MT sup
t∈[0,T ]

‖F (u(t))‖ . (6.5)

Fix now an arbitrary constant R > 0. Since F is locally Lipschitz, it follows from (6.4) and
(6.5) that there exists a maximal T > 0 such that Mg,T maps the ball of radius R around g in
C([0, T ],B) into itself and is a contraction with contraction constant 1

2 there. This shows that
Mg,T has a unique fixed point for T small enough and the choice of T was obviously performed
by using knowledge of g only up to time T . Setting g(t) = S(t)x0 +WL(t), the pair (x, T ), where
T is as just constructed and x is the unique fixed point of Mg,T thus yields a local mild solution to
(6.1).

In order to construct the maximal solution, we iterate this construction in the same way as
in the finite-dimensional case. Uniqueness and continuity in time also follows as in the finite-
dimensional case. In the case where F is globally Lipschitz continuous, denote its Lipschitz
constant by K. We then see from (6.4) that Mg,T is a contraction on the whole space for T <
1/(KM ), so that the choice of T can be made independently of the initial condition, thus showing
that the solution exists for all times.
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While this setting is very straightforward and did not make use of any PDE theory, it never-
theless allows to construct solutions for an important class of examples, since every composition
operator of the form (N (u))(ξ) = (f ◦ u)(ξ) is locally Lipschitz on C(K,Rd) (for K a compact
subset of Rn, say), provided that f : Rd → Rd is locally Lipschitz continuous.

A much larger class of examples can be found if we restrict the regularity properties of F , but
assume that L generates an analytic semigroup:

Proposition 6.5 Let L generate an analytic semigroup on B (denote by Bα, α ∈ R the corre-
sponding interpolation spaces) and assume that Q is such that the stochastic convolution WL has
almost surely continuous sample paths in Bα for some α ≥ 0. Assume furthermore that there
exists γ ≥ 0 and δ ∈ [0, 1) such that, for every β ∈ [0, γ], the map F extends to a locally Lipschitz
continuous map from Bβ to Bβ−δ that grows at most polynomially.

Then, (6.1) has a unique maximal mild solution (x, τ ) with x taking values in Bβ for every
β < β?

def= α ∧ (γ + 1− δ).

Proof. In order to show that (6.1) has a unique mild solution, we proceed in a way similar to the
proof of Proposition 6.4 and we make use of Exercise 4.33 to bound ‖S(t − s)F (u(s))‖ in terms
of ‖F (u(s))‖−δ. This yields instead of (6.4) the bound

sup
t∈[0,T ]

‖Mg,Tu(t)−Mg,T v(t)‖ ≤MT 1−δ sup
t∈[0,T ]

‖F (u(t))− F (v(t))‖ , (6.6)

and similarly for (6.5), thus showing that (6.1) has a unique B-valued maximal mild solution (x, τ ).
In order to show that x(t) actually belongs to Bβ for t < τ and β ≤ α ∧ γ, we make use of a
‘bootstrapping’ argument, which is essentially an induction on β.

For notational convenience, we denote by WL(s, t) =
∫ t
s S(t − r)QdW (r) the stochastic

convolution between times s and t. We are actually going to show the following stronger statement.
Fix an arbitrary time T > 0. Then, for every β ∈ [0, β?) there exist exponents pβ ≥ 1 and qβ ≥ 0
and a constant C such that the bound

‖xt‖β ≤ Ct−qβ (1 + sup
s∈[ t

2
,t]
‖xs‖+ sup

t
2
≤s<r≤t

‖WL(s, r)‖β)pβ , (6.7)

holds almost surely for all t ∈ (0, T ].
The bound (6.7) is obviously true for β = 0 with pβ = 1 and qβ = 0. Assume now that, for

some a = a0 ∈ [1/2, 1) and for some β = β0 ∈ [0, γ], we have the bound

‖xt‖β ≤ Ct−qβ (1 + sup
s∈[at,t]

‖xs‖+ sup
at≤s<r≤t

‖WL(s, r)‖β)pβ , (6.8)

for all t ∈ (0, T ].
We will then argue that, for any arbitrary ε ∈ (0, 1 − δ), the statement (6.8) also holds for

β = β0 + ε (and therefore also for all intermediate values) and a = a2
0. Since it is possible to

go from β = 0 to any value of β < γ + 1 − δ in a finite number of such steps and since we are
allowed to choose a as close to 1 as we wish, the claim then follows at once.

From the definition of a mild solution, we have the identity

xt = S((1− a)t)xat +
∫ t

at
S(t− s)F (x(s)) ds+WL(at, t) .

Since β ≤ γ, it follows from our polynomial growth assumption on F that there exists n > 0 such
that, for t ∈ (0, T ],

‖xt‖β+ε ≤ Ct−ε‖xat‖β + ‖WL(at, t)‖β+ε + C

∫ t

at
(t− s)−(ε+δ)(1 + ‖xs‖β)n ds
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≤ C(t−ε + t1−ε−δ) sup
at≤s≤t

(1 + ‖xs‖nβ) + ‖WL(at, t)‖β+ε

≤ Ct−ε sup
at≤s≤t

(1 + ‖xs‖nβ) + ‖WL(at, t)‖β+ε .

Here, the constant C depends on everything but t and x0. Using the induction hypothesis, this
yields the bound

‖xt‖β+ε ≤ Ct−ε−nqβ (1 + sup
s∈[a2t,t]

‖xs‖+ sup
a2≤s<r≤t

‖WL(s, r)‖β)npβ + ‖WL(at, t)‖β+ε ,

thus showing that (6.8) does indeed hold for β = β0 + ε and a = a2
0 with pβ+ε = npβ and

qβ+ε = ε+ nqβ . This concludes the proof of Proposition 6.5.

Remark 6.6 We slightly cheated in this proof since it appears to rely on the fact that the quan-
tity supat≤s<r≤t ‖WL(s, r)‖α is almost surely finite, which does not immediately follow from
the fact that sup0≤s≤t ‖WL(s)‖α is almost surely finite. However, a closer inspection of the
proof shows that, in order to obtain (6.7) for some fixed t, one actually only needs to have
supn suptn≤s≤t ‖WL(tn, s)‖α <∞ for a finite number of values tn, which is always the case.

6.2 Interpolation inequalities and Sobolev embeddings
The kind of bootstrapping arguments used in the proof of Proposition 6.5 above are extremely
useful to obtain regularity properties of the solutions to semilinear parabolic stochastic PDEs.
However, they rely on obtaining bounds on the regularity of F from one interpolation space into
another. In many important situations, the interpolation spaces turn out to be given by fractional
Sobolev spaces. For the purpose of these notes, we are going to restrict ourselves to the analytically
easier situation where the space variable of the stochastic PDE under consideration takes values
in the d-dimensional torus Td. For the corresponding embeddings on more general manifolds or
unbounded domains, see for example the comprehensive monographs [Tri83, Tri92, Tri06].

Recall that, given a distribution u ∈ L2(Td), we can decompose it as a Fourier series:

u(x) =
∑
k∈Zd

uke
i〈k,x〉 ,

where the identity holds for (Lebesgue) almost every x ∈ Td. Furthermore, the L2 norm of u is
given by Parseval’s identity ‖u‖2 =

∑
|uk|2. We have

Definition 6.7 The fractional Sobolev space Hs(Td) for s ≥ 0 is given by the subspace of func-
tions u ∈ L2(Td) such that

‖u‖2Hs
def=
∑
k∈Zd

(1 + |k|2)s|uk|2 <∞ . (6.9)

Note that this is a separable Hilbert space and that H0 = L2. For s < 0, we define Hs as the
closure of L2 under the norm (6.9).

Remark 6.8 By the spectral decomposition theorem, Hs for s > 0 is the domain of (1 −∆)s/2

and we have ‖u‖Hs = ‖(1−∆)s/2u‖L2 .

A very important situation is the case where L is a differential operator with constant coef-
ficients (formally L = P (∂x) for some polynomial P : Rd → R) and H is either an L2 space or
some Sobolev space. In this case, one has
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Lemma 6.9 Assume that P : Rd → R is a polynomial of degree 2m such that there exist positive
constants c, C such that the bound

(−1)m+1c|k|2m ≤ P (k) ≤ (−1)m+1C|k|2m ,

holds for all k outside of some compact set. Then, the operator P (∂x) generates an analytic
semigroup on H = Hs for every s ∈ R and the corresponding interpolation spaces are given by
Hα = Hs+2mα.

Proof. By inspection, noting that P (∂x) is conjugate to the multiplication operator by P (ik) via
the Fourier decomposition.

Note first that for any two positive real numbers a and b and any pair of positive conjugate
exponents p and q, one has Young’s inequality

ab ≤ ap

p
+
bq

q
,

1
p

+
1
q

= 1 . (6.10)

As a corollary of this elementary bound, we obtain Hölder’s inequality, which can be viewed as a
generalisation of the Cauchy-Schwartz inequality:

Proposition 6.10 (Hölder’s inequality) Let (M, µ) be a measure space and let p and q be a pair
of positive conjugate exponents. Then, for any pair of measurable functions u, v:M → R, one
has ∫

M
|u(x)v(x)|µ(dx) ≤ ‖u‖p ‖v‖q ,

for any pair (p, q) of conjugate exponents.

Proof. It follows from (6.10) that, for every ε > 0, one has the bound∫
M
|u(x)v(x)|µ(dx) ≤

εp‖u‖pp
p

+
‖v‖qq
qεq

,

Setting ε = ‖v‖
1
p
q ‖u‖

1
p
−1

p concludes the proof.

One interesting consequence of Hölder’s inequality is the following interpolation inequality
for powers of selfadjoint operators:

Proposition 6.11 Let A be a positive definite selfadjoint operator on a separable Hilbert space
H and let α ∈ [0, 1]. Then, the bound ‖Aαu‖ ≤ ‖Au‖α‖u‖1−α holds for every u ∈ D(Aα) ⊂ H.

Proof. The extreme cases α ∈ {0, 1} are obvious, so we assume α ∈ (0, 1). By the spectral
theorem, we can assume that H = L2(M, µ) and that A is the multiplication operator by some
positive function f . Applying Hölder’s inequality with p = 1/α and q = 1/(1− α), one then has

‖Aαu‖2 =
∫
f2α(x)u2(x)µ(dx) =

∫
|fu|2α(x) |u|2−2α(x)µ(dx)

≤
(∫

f2(x)u2(x)µ(dx)
)α (∫

u2(x)µ(dx)
)1−α

,

which is exactly the bound we wanted to show.
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An immediate corollary is:

Corollary 6.12 For any t > s and any r ∈ [s, t], the bound

‖u‖t−sHr ≤ ‖u‖r−sHt ‖u‖t−rHs (6.11)

is valid for every u ∈ Ht.

Proof. Apply Proposition 6.11 withH = Hs, A = (1−∆)
t−s
2 , and α = (r − s)/(t− s).

Exercise 6.13 As a consequence of Hölder’s inequality, show that for any collection of n measur-
able functions and any exponents pi > 1 such that

∑n
i=1 p

−1
i = 1, one has the bound∫

M
|u1(x) · · ·un(x)|µ(dx) ≤ ‖u1‖p1 · · · ‖un‖pn .

Following our earlier discussion regarding fractional Sobolev spaces, it would be convenient
to be able to bound the Lp norm of a function in terms of one of the fractional Sobolev norms. It
turns out that bounding the L∞ norm is rather straightforward:

Lemma 6.14 For every s > d
2 , the spaceHs(Td) is contained in the space of continuous functions

and there exists a constant C such that ‖u‖L∞ ≤ C‖u‖Hs .

Proof. It follows from Cauchy-Schwarz that∑
k∈Zd
|uk| ≤

(∑
k∈Zd

(1 + |k|2)s|uk|2
)1/2(∑

k∈Zd
(1 + |k|2)−s

)1/2
.

Since the sum in the second factor converges if and only if s > d
2 , the claim follows.

Exercise 6.15 In dimension d = 2, find an example of an unbounded function u such that
‖u‖H1 <∞.

Exercise 6.16 Show that for s > d
2 , Hs is contained in the space Cα(Td) for every α < s− d

2 .

As a consequence of Lemma 6.14, we are able to obtain a more general Sobolev embedding
for all Lp spaces:

Theorem 6.17 (Sobolev embeddings) Let p ∈ [2,∞]. Then, for every s > d
2 −

d
p , the space

Hs(Td) is contained in the space Lp(Td) and there exists a constant C such that ‖u‖Lp ≤
C‖u‖Hs .

Proof. The case p = 2 is obvious and the case p = ∞ has already been shown, so it remains to
show the claim for p ∈ (2,∞). The idea is to divide Fourier space into ‘blocks’ corresponding to
different length scales and to estimate separately the Lp norm of every block. More precisely, we
define a sequence of functions u(n) by

u−1(x) = u0 , u(n)(x) =
∑

2n≤|k|<2n+1

uke
i〈k,x〉 ,

so that one has u =
∑
n≥−1 u

(n). For n ≥ 0, one has

‖u(n)‖pLp ≤ ‖u
(n)‖2L2‖u(n)‖2−pL∞ . (6.12)
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Choose now s′ = d
2 + ε and note that the construction of u(n), together with Lemma 6.14, guaran-

tees that one has the bounds

‖u(n)‖L2 ≤ 2−ns‖u(n)‖Hs , ‖u(n)‖L∞ ≤ C‖u(n)‖Hs′ ≤ C2n(s′−s)‖u(n)‖Hs .

Inserting this into (6.12), we obtain

‖u(n)‖Lp ≤ C‖u(n)‖Hs2n((s′−s) 2−p
p
− 2s
p

) = C‖u(n)‖Hs2n(
d
p
− d

2
−s) ≤ C‖u‖Hs2n(

d
p
− d

2
−s)

.

It follows that ‖u‖Lp ≤ |u0|+
∑
n≥0 ‖u(n)‖Lp ≤ C‖u‖Hs , provided that the exponent appearing

in this expression is negative, which is precisely the case whenever s > d
2 −

d
p .

Remark 6.18 For p 6=∞, one actually has Hs(Td) ⊂ Lp(Td) with s = d
2 −

d
p , but this borderline

case is more difficult to obtain.

Combining the Sobolev embedding theorem and Hölder’s inequality, it is eventually possible
to estimate in a similar way the fractional Sobolev norm of a product of two functions:

Theorem 6.19 Let r, s and t be positive exponents such that s ∧ r > t and s+ r > t+ d
2 . Then,

if u ∈ Hr and v ∈ Hs, the product w = uv belongs to Ht.

Proof. Define u(n) and v(m) as in the proof of the Sobolev embedding theorem and set w(m,n) =
u(m)v(n). Note that one has w(m,n)

k = 0 if |k| > 23+(m∨n). It then follows from Hölder’s inequality
that if p, q ≥ 2 are such that p−1 + q−1 = 1

2 , one has the bound

‖w(m,n)‖Ht ≤ C2t(m∨n)‖w(m,n)‖L2 ≤ C2t(m∨n)‖u(m)‖Lp‖v(n)‖Lq .

Assume now that m > n. The conditions on r, s and t are such that there exists a pair (p, q) as
above with

r > t+
d

2
− d

p
, s >

d

2
− d

q
.

In particular, we can find some ε > 0 such that

‖u(m)‖Lp ≤ C‖u(m)‖Hr−t−ε ≤ C2−m(t+ε)‖u‖Hr , ‖v(n)‖Lp ≤ C‖v(n)‖Hs−ε ≤ C2−mε‖v‖Hs .

Inserting this into the previous expression, we find that

‖w(m,n)‖Ht ≤ C2−mε−nε‖u‖Hr‖u‖Hs .

Since our assumptions are symmetric in u and v, we obtain a similar bound for the case m ≤ n,
so that

‖w‖Ht ≤
∑

m,n>0

‖w(m,n)‖Ht ≤ C‖u‖Hr‖u‖Hs

∑
m,n>0

2−mε−nε ≤ C‖u‖Hr‖u‖Hs ,

as requested.

Exercise 6.20 Show that the conclusion of Theorem 6.19 still holds if s = t = r is a positive
integer, provided that s > d

2 .

Exercise 6.21 Similarly to Exercise 6.13, show that one can iterate this bound so that if si > s ≥ 0
are exponents such that

∑
i si > s+ (n−1)d

2 , then one has the bound

‖u1 · · ·un‖s ≤ C‖u1‖s1 · · · ‖un‖sn .

Hint: The case s ≥ d
2 is simple, so it suffices to consider the case s < d

2 .

The functional inequalities from the previous section allow to check that the assumptions of
Propositions 6.4 and 6.5 are verified by a number of interesting equations.
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6.3 Reaction-Diffusion equations

This is a class of partial differential equations that model the evolution of reactants in a gel, de-
scribed by a spatial domain D. They are of the type

du = ∆u dt+ f ◦ u dt+QdW (t) , (6.13)

where u(x, t) ∈ Rd, x ∈ D, describes the density of the various components of the reaction at
time t and location x. The nonlinearity f : Rd → Rd describes the reaction itself and the term ∆u
describes the diffusion of the reactants in the gel. The noise term QdW should be interpreted as
a crude attempt to describe the fluctuations in the quantities of reactant due both to the discrete
nature of the underlying particle system and the interaction with the environment2.

Equations of the type (6.13) also appear in the theory of amplitude equations, where they ap-
pear as a kind of ‘normal form’ near a change of linear instability. In this particular case, one
often has d = 2 and f (u) = κu − u|u|2 for some κ ∈ R, see [BHP05]. A natural choice for the
Banach space B in which to consider solutions to (6.13) is the space of bounded continuous func-
tions B = C(D,Rd) since the composition operator u 7→ f ◦ u (also sometimes called Nemitskii
operator) then maps B into itself and inherits the regularity properties of f . If the domain D is
sufficiently regular then the semigroup generated by the Laplacian ∆ is the Markov semigroup for
a Brownian motion in D. The precise description of the domain of ∆ is related to the behaviour
of the corresponding Brownian motion when it hits the boundary of D. In order to avoid techni-
calities, let us assume from now on that D consists of the torus Tn, so that there is no boundary to
consider.

Exercise 6.22 Show that in this case, ∆ generates an analytic semigroup on B = C(Tn,Rd) and
that for α ∈ N, the interpolation space Bα is given by Bα = C2α(Tn,Rd).

IfQ is such that the stochastic convolution has continuous sample paths in B almost surely and
f is locally Lipschitz continuous, we can directly apply Proposition 6.4 to obtain the existence of
a unique local solution to (6.13) in C(Tn,Rd). We would like to obtain conditions on f that ensure
that this local solution is also a global solution, that is the blow-up time τ is equal to infinity almost
surely.

If f happens to be a globally Lipschitz continuous function, then the existence and uniqueness
of global solutions follows from Proposition 6.4. Obtaining global solutions when f is not globally
Lipschitz continuous is slightly more tricky. The idea is to obtain some a priori estimate on some
functional of the solution which dominates the supremum norm and ensures that it cannot blow up
in finite time.

Let us first consider the deterministic part of the equation alone. The structure we are going
to exploit is the fact that the Laplacian generates a Markov semigroup. We have the following
general result:

Lemma 6.23 LetPt be a Feller3 Markov semigroup over a Polish spaceX . Extend it to Cb(X ,Rd)
by applying it to each component independently. Let V : Rd → R+ be convex (that is V (αx+ (1−
α)y) ≤ αV (x) + (1 − α)V (y) for all x, y ∈ Rd and α ∈ [0, 1]) and define Ṽ : Cb(X ,Rd) → R+

by Ṽ (u) = supx∈X V (u(x)). Then Ṽ (Ptu) ≤ Ṽ (u) for every t ≥ 0 and every u ∈ Cb(X ,Rd).

2A more realistic description of these fluctuations would result in a covariance Q that depends on the solution u.
Since we have not developed the tools necessary to treat this type of equations, we restrict ourselves to the simple case
of a constant covariance operator Q.

3A Markov semigroup is Feller if it maps continuous functions into continuous functions.
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Proof. Note first that if V is convex, then it is continuous and, for every probability measure µ on
Rd, one has the inequality

V
(∫

Rd
xµ(dx)

)
≤
∫

Rd
V (x)µ(dx) . (6.14)

One can indeed check by induction that (6.14) holds if µ is a ‘simple’ measure consisting of a
convex combination of finitely many Dirac measures. The general case then follows from the
continuity of V and the fact that every probability measure on Rd can be approximated (in the
topology of weak convergence) by a sequence of simple measures.

Denote now by Pt(x, · ) the transition probabilities for Pt, so that (Ptu)(x) =∫
X u(y)Pt(x, dy). One then has

Ṽ (Ptu) = sup
x∈X

V
(∫
X
u(y)Pt(x, dy)

)
= sup

x∈X
V
(∫

Rd
v (u∗Pt(x, · ))(dv)

)
≤ sup

x∈X

∫
Rd
V (v) (u∗Pt(x, · ))(dv) = sup

x∈X

∫
X
V (u(y))Pt(x, dy)

≤ sup
y∈X

V (u(y)) = Ṽ (u) ,

as required.

In particular, this result can be applied to the semigroup S(t) generated by the Laplacian in
(6.13), so that Ṽ (S(t)u) ≤ Ṽ (u) for every convex V and every u ∈ C(Tn,Rd). This is the main
ingredient allowing us to obtain a priori estimates on the solution to (6.13):

Proposition 6.24 Consider the setting for equation (6.13) described above. Assume that Q is
such that W∆ has continuous sample paths in B = C(Tn,Rd) and that there exists a convex
twice differentiable function V : Rd → R+ such that lim|x|→∞ V (x) =∞ and such that, for every
R > 0, there exists a constant C such that 〈∇V (x), f (x + y)〉 ≤ CV (x) for every x ∈ Rd and
every y with |y| ≤ R. Then (6.13) has a global solution in B.

Proof. We denote by u(t) the local mild solution to (6.13). Our aim is to obtain a priori bounds on
Ṽ (u(t)) that are sufficiently good to show that one cannot have limt→τ ‖u(t)‖ = ∞ for any finite
(stopping) time τ .

Setting v(t) = u(t)−W∆(t), the definition of a mild solution shows that v satisfies the equation

v(t) = e∆tv(0) +
∫ t

0
e∆(t−s)(f ◦ (v(s) +W∆(s))) ds def= e∆tv(0) +

∫ t

0
e∆(t−s)F (s) ds .

Since t 7→ v(t) is continuous by Proposition 6.4 and the same holds for W∆ by assumption, the
function t 7→ F (t) is continuous in B. Therefore, one has

lim
h→0

1
h

(∫ h

0
e∆(h−s)F (s) ds− he∆hF (0)

)
= 0 .

We therefore obtain for Ṽ (v) the bound

lim sup
h→0

h−1(Ṽ (v(t+ h))− Ṽ (v(t))) = lim sup
h→0

h−1(Ṽ (v(t) + hF (t))− Ṽ (v(t))) .

Since V belongs to C2 by assumption, we have

Ṽ (v(t) + hF (t)) = sup
x∈Tn

(V (v(x, t)) + h〈∇V (v(x, t)), F (x, t)〉) +O(h2) .
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Using the definition of F and the assumptions on V , it follows that for every R > 0 there exists a
constant C such that, provided that ‖W∆(t)‖ ≤ R, one has

lim sup
h→0

h−1(Ṽ (v(t+ h))− Ṽ (v(t))) ≤ CṼ (v(t)) .

A standard comparison argument for ODEs then shows that Ṽ (v(t)) cannot blow up as long as
‖W∆(t)‖ does not blow up, thus concluding the proof.

Exercise 6.25 In the case d = 1, show that the assumptions of Proposition 6.24 are satisfied for
V (u) = u2 if f is any polynomial of odd degree with negative leading coefficient.

Exercise 6.26 Show that in the case d = 3, (6.13) has a unique global solution when we take for
f the right-hand side of the Lorentz attractor:

f (u) =

 σ(u2 − u1)
u1(%− u3)− u2

u1u2 − βu3

 ,

where %, σ and β are three arbitrary positive constants.

6.4 The stochastic Navier-Stokes equations
The incompressible stochastic Navier-Stokes equations on the torus R2 are given by

du = ν∆u dt− (u · ∇)u dt−∇p dt+QdW (t) , divu = 0 , (6.15)

where the pressure p is determined by the incompressibility condition divu = 0 and ν > 0 denotes
the kinematic viscosity of the fluid. In order to put these equations into the more familiar form
(6.1), we denote by Π the orthogonal projection onto the space of divergence-free vector fields. In
Fourier components, Π is given by

(Πu)k = uk −
k〈k, uk〉
|k|2

. (6.16)

(Note here that the Fourier coefficients of a vector field are themselves vectors.) With this notation,
one has

du = ν∆u dt+ Π(u · ∇)u dt+QdW (t) def= ∆u dt+ F (u) dt+QdW (t) .

It is clear from (6.16) that Π is a contraction in any fractional Sobolev space. For t ≥ 0, it therefore
follows that

‖F (u)‖Ht ≤ ‖u‖Hs‖∇u‖Hr ≤ C‖u‖2Hs , (6.17)

provided that s > t ∨ ( t2 + 1
2 + d

4) = t ∨ ( t2 + 1). In particular, this bound holds for s = t + 1,
provided that t > 0.

Furthermore, in this setting, since L is just the Laplacian, if we choose H = Hs, then the in-
terpolation spacesHα are given byHα = Hs+2α. This allows us to apply Proposition 6.5 to show
that the stochastic Navier-Stokes equations admit local solutions for any initial condition in Hs,
provided that s > 1, and that the stochastic convolution takes values in that space. Furthermore,
these solutions will immediately lie in any higher order Sobolev space, all the way up to the space
in which the stochastic convolution lies.

This line of reasoning does however not yield any a priori bounds on the solution, so that it
may blow up in finite time. The Navier-Stokes nonlinearity satisfies 〈u, F (u)〉 = 0 (the scalar
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product is the L2 scalar product), so one may expect bounds in L2, but we do not know at this
stage whether initial conditions in L2 do indeed lead to local solutions. We would therefore like
to obtain bounds on F (u) in negative Sobolev spaces. In order to do this, we exploit the fact that
H−s can naturally be identified with the dual of Hs, so that

‖F (u)‖H−s = sup
{∫

F (u)(x) v(x) dx , v ∈ C∞ , ‖v‖Hs ≤ 1
}
.

Making use of the fact that we are working with divergence-free vector fields, one has (using
Einstein’s convention of summation over repeated indices):∫

F (u) v dx = −
∫
vjui∂iuj dx ≤ ‖v‖Lp‖∇u‖L2‖u‖Lq ,

provided that p, q > 2 and 1
p + 1

q = 1
2 . We now make use of the fact that ‖u‖Lq ≤ Cq‖∇u‖2 for

every q ∈ [2,∞) (but q =∞ is excluded) to conclude that for every s > 0 there exists a constant
C such that

‖F (u)‖−s ≤ C‖∇u‖2L2 . (6.18)

In order to get a priori bounds for the solution to the 2D stochastic Navier-Stokes equations,
one can then make use of the following trick: introduce the vorticity w = ∇ ∧ u = ∂1u2 − ∂2u1.
Then, provided that

∫
u dx = 0 (which, provided that the range of Q consists of vector fields with

mean 0, is a condition that is preserved under the solutions to (6.15)), the vorticity is sufficient to
describe u completely by making use of the incompressibility assumption divu = 0. Actually, the
map w 7→ u can be described explicitly by

uk = (Kw)k =
k⊥wk
|k|2

, (k1, k2)⊥ = (−k2, k1) .

This shows in particular that K is actually a bounded operator from Hs into Hs+1 for every s. It
follows that one can rewrite (6.15) as

dw = ν∆w dt+ (Kw · ∇)w dt+ Q̃ dW (t) def= ∆w dt+ F̃ (w) dt+ Q̃ dW (t) . (6.19)

Since F̃ (w) = ∇∧ F (Kw), it follows from (6.18) that one has the bounds

‖F̃ (w)‖−1−s ≤ C‖w‖2L2 ,

so that F̃ is a locally Lipschitz continuous map from L2 into Hs for every s < −1. This shows
that (6.19) has unique local solutions for every initial condition in L2 and that these solutions
immediately become as regular as the corresponding stochastic convolution.

Denote now by W̃L the stochastic convolution

W̃L(t) =
∫ t

0
e∆(t−s)Q̃ dW (s) ,

and define the process v(t) = w(t) −WL(t). With this notation, v is the unique solution to the
random PDE

∂tv = ν∆v + F̃ (v + W̃L) .

It follows from (6.17) that ‖F̃ (w)‖H−s ≤ C‖w‖2Hs , provided that s > 1/3. For the sake of
simplicity, assume from now on that W̃L takes values in H1/2 almost surely. Using the fact that
〈v, F̃ (v)〉 = 0, we then obtain for the L2-norm of v the following a priori bound:

∂t‖v‖2 = −2ν‖∇v‖2 − 2〈W̃L, F̃ (v + W̃L)〉
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≤ −2ν‖∇v‖2 + 2‖W̃L‖H1/2‖v + W̃L‖2H1/2

≤ −2ν‖∇v‖2 + 4‖W̃L‖H1/2(‖v‖2H1/2 + ‖W̃L‖2H1/2)

≤ −2ν‖∇v‖2 + 4‖W̃L‖H1/2(‖v‖‖∇v‖+ ‖W̃L‖2H1/2)

≤ 8
ν
‖W̃L‖2H1/2‖v‖2 + 2‖W̃L‖3H1/2 ,

so that global existence of solutions then follows from Gronwall’s inequality.
This calculation is only format, since it is not known in general whether the norm of v is

differentiable in time. The bound that one obtains can however be made rigorous in exactly the
same way as for the example of the stochastic reaction-diffusion equation.
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