Exercises for week 9

Exercise 1 Let x be the autoregressive process on **R** defined by

$$x_{n+1} = \alpha x_n + \xi_n ,$$

for a sequence of i.i.d. normal random variables $\{\xi_n\}$.

- a. Show that $V(x) = |x|^p$ is a Lyapunov function for this system for every value of $p \ge 1$ if and only if $|\alpha| < 1$.
- b. Show that this system has a unique invariant measure if $|\alpha| < 1$.
- c. Show that this system has no invariant probability measure if $|\alpha| \ge 1$.

Exercise 2 Let x be a biased random walk on the natural numbers N. More precisely, for some $p \in (0, 1)$, we suppose that its transition probabilities are given by

$$P_{i+1,i} = p$$
, $P_{i-1,i} = 1 - p$,

for i > 0 and by $P_{1,0} = p$, $P_{0,0} = 1 - p$.

- a. For which values of λ and p is $k \mapsto \lambda^k$ a Lyapunov function for x?
- b. Compute the invariant measure for this random walk when $p \leq 1/2$.

Exercise 3 Let $F: S^1 \to S^1$ be an arbitrary continuous map from the circle S^1 to itself and let μ be a probability measure on S^1 which has a continuous density ρ with respect to the Lebesgue measure. Assume furthermore that $\rho(x) > 0$ for every $x \in S^1$. Define a Markov process on S^1 by

$$x_{n+1} = F(x_n) \cdot \xi_n ,$$

where ξ_n is a sequence of i.i.d. random variables with law μ and the multiplication operation on S^1 is the one obtained by identifying S^1 with the unit circle in **C**.

* Exercise 4 Let x be the Markov process on \mathbf{R}_+ defined by

$$x_{n+1} = \sqrt{x_n \xi_n} ,$$

for a sequence of i.i.d. random variables $\{\xi_n\}$ that are uniformly distributed in the interval [1, 2]. Show that

- a. The corresponding transition probabilities are Feller.
- b. The function $V(x) = x + \frac{1}{x}$ is a Lyapunov function for this system.
- c. Any invariant measure must have as its support the interval [1, 2].

Exercise 5 Let $\{\gamma_n\}$ be any sequence of numbers such that $\sum_n \gamma_n^2 < \infty$. Show that there always exists a positive increasing sequence $\{r_n\}$ with $r_n \to +\infty$ such that $\sum_n r_n^2 \gamma_n^2 < \infty$.

* Exercise 6 Let $\{r_n\}$ be any increasing sequence of positive numbers such that $\lim_{n\to\infty} r_n = \infty$. Show that the 'hyperball' $\Gamma = \{x \in \ell^2 \mid \sum_{n=1}^{\infty} r_n^2 x_n^2 \leq C\}$ is compact in ℓ^2 for any value of C.

Exercise 7 (Construction of infinite-dimensional Gaussian measures) Let $\{\gamma_n\}$ be as above and let ν_n denote the Gaussian measure on \mathbf{R}^n given by

$$\nu_n = \mathcal{N}(0, \gamma_1^2) \times \mathcal{N}(0, \gamma_2^2) \times \ldots \times \mathcal{N}(0, \gamma_n^2) .$$

Let $\iota_n: \mathbf{R}^n \to \ell^2$ be the canonical injection given by

$$\iota_n(x_1,\ldots,x_n) = (x_1,\ldots,x_n,0,\ldots)$$

and define $\mu_n = \iota_n^* \nu_n$. Using the previous two exercises and the Tchebycheff inequality, show that the sequence $\{\mu_n\}$ of probability measures on ℓ^2 is tight.