## Ergodic Properties of Markov Processes

## Exercises for week 9

Exercise 1 Let $x$ be the autoregressive process on $\mathbf{R}$ defined by

$$
x_{n+1}=\alpha x_{n}+\xi_{n},
$$

for a sequence of i.i.d. normal random variables $\left\{\xi_{n}\right\}$.
a. Show that $V(x)=|x|^{p}$ is a Lyapunov function for this system for every value of $p \geq 1$ if and only if $|\alpha|<1$.
b. Show that this system has a unique invariant measure if $|\alpha|<1$.
c. Show that this system has no invariant probability measure if $|\alpha| \geq 1$.

Exercise 2 Let $x$ be a biased random walk on the natural numbers $\mathbf{N}$. More precisely, for some $p \in(0,1)$, we suppose that its transition probabilities are given by

$$
P_{i+1, i}=p, \quad P_{i-1, i}=1-p
$$

for $i>0$ and by $P_{1,0}=p, P_{0,0}=1-p$.
a. For which values of $\lambda$ and $p$ is $k \mapsto \lambda^{k}$ a Lyapunov function for $x$ ?
b. Compute the invariant measure for this random walk when $p \leq 1 / 2$.

Exercise 3 Let $F: \mathcal{S}^{1} \rightarrow \mathcal{S}^{1}$ be an arbitrary continuous map from the circle $\mathcal{S}^{1}$ to itself and let $\mu$ be a probability measure on $\mathcal{S}^{1}$ which has a continuous density $\varrho$ with respect to the Lebesgue measure. Assume furthermore that $\varrho(x)>0$ for every $x \in \mathcal{S}^{1}$. Define a Markov process on $\mathcal{S}^{1}$ by

$$
x_{n+1}=F\left(x_{n}\right) \cdot \xi_{n},
$$

where $\xi_{n}$ is a sequence of i.i.d. random variables with law $\mu$ and the multiplication operation on $\mathcal{S}^{1}$ is the one obtained by identifying $\mathcal{S}^{1}$ with the unit circle in $\mathbf{C}$.

* Exercise 4 Let $x$ be the Markov process on $\mathbf{R}_{+}$defined by

$$
x_{n+1}=\sqrt{x_{n} \xi_{n}},
$$

for a sequence of i.i.d. random variables $\left\{\xi_{n}\right\}$ that are uniformly distributed in the interval [1, 2]. Show that
a. The corresponding transition probabilities are Feller.
b. The function $V(x)=x+\frac{1}{x}$ is a Lyapunov function for this system.
c. Any invariant measure must have as its support the interval [1, 2].

Exercise 5 Let $\left\{\gamma_{n}\right\}$ be any sequence of numbers such that $\sum_{n} \gamma_{n}^{2}<\infty$. Show that there always exists a positive increasing sequence $\left\{r_{n}\right\}$ with $r_{n} \rightarrow+\infty$ such that $\sum_{n} r_{n}^{2} \gamma_{n}^{2}<\infty$.

* Exercise 6 Let $\left\{r_{n}\right\}$ be any increasing sequence of positive numbers such that $\lim _{n \rightarrow \infty} r_{n}=\infty$. Show that the 'hyperball' $\Gamma=\left\{x \in \ell^{2} \mid \sum_{n=1}^{\infty} r_{n}^{2} x_{n}^{2} \leq C\right\}$ is compact in $\ell^{2}$ for any value of $C$.

Exercise 7 (Construction of infinite-dimensional Gaussian measures) Let $\left\{\gamma_{n}\right\}$ be as above and let $\nu_{n}$ denote the Gaussian measure on $\mathbf{R}^{n}$ given by

$$
\nu_{n}=\mathcal{N}\left(0, \gamma_{1}^{2}\right) \times \mathcal{N}\left(0, \gamma_{2}^{2}\right) \times \ldots \times \mathcal{N}\left(0, \gamma_{n}^{2}\right)
$$

Let $\iota_{n}: \mathbf{R}^{n} \rightarrow \ell^{2}$ be the canonical injection given by

$$
\iota_{n}\left(x_{1}, \ldots x_{n}\right)=\left(x_{1}, \ldots, x_{n}, 0, \ldots\right)
$$

and define $\mu_{n}=\iota_{n}^{*} \nu_{n}$. Using the previous two exercises and the Tchebycheff inequality, show that the sequence $\left\{\mu_{n}\right\}$ of probability measures on $\ell^{2}$ is tight.

