Parallel unprojection equations
for $\mathbb{Z}/3$ Godeaux surfaces

Miles Reid

Abstract
I construct a 9-dimensional affine “key variety” $V \subset \mathbb{A}^1^3$ by triple parallel unprojection from a hypersurface. With a basic choice of \mathbb{G}_m action (that is, grading), regular sections of V give rise to a number of varieties, including the universal cover of general $\mathbb{Z}/3$ Godeaux surfaces, together with a small menagerie of related curves, surfaces, 3-folds and 4-folds. The construction includes cases of $\mathbb{Z}/3$ Godeaux surfaces having an involution. As a by-product, the equations and syzygies of V lead to useful exercises illustrating general Gorenstein codimension 4 phenomena.

1 The key variety and the main result

Consider a hypersurface $F = 0$ with F in the intersection of the three codim 2 ideals
\[(x_0, y_0) \cap (x_1, y_1) \cap (x_2, y_2)\] (1)
where $x_0, y_0, x_1, y_1, x_2, y_2$ are six independent variables (viewed as three pairs), and such that the coefficient of $y_0y_1y_2$ in F equals 1. The general case is
\[y_0y_1y_2 = sx_0x_1x_2 + r_0x_1x_2y_0 + r_1x_0x_2y_1 + r_2x_0x_1y_2.\] (2)
Indeed, any terms with y_1y_2 can be tidied away by doing
\[y_0 \mapsto y_0 + \text{multiples of } x_i.\] (3)
For the moment, consider the coefficients s, r_0, r_1, r_2 also as independent indeterminates. Following Papadakis, treat the subvarieties $(x_i = y_i = 0)$
as unprojection divisors, and introduce the corresponding unprojection variables z_i, that is,

\[
\begin{align*}
 z_0 &= (y_1 y_2 - r_0 x_1 x_2)/x_0 \\
 &= (s x_1 x_2 + r_1 x_2 y_1 + r_2 x_1 y_2)/y_0 \\
 z_1 &= (y_0 y_2 - r_1 x_0 x_2)/x_1 \\
 &= (s x_0 x_2 + r_0 x_2 y_0 + r_2 x_0 y_2)/y_1 \\
 z_2 &= (y_0 y_1 - r_2 x_0 x_1)/x_2 \\
 &= (s x_0 x_1 + r_0 x_1 y_0 + r_1 x_0 y_1)/y_2
\end{align*}
\]

The z_i are subject to the linear unprojection equations deduced in the obvious way from these expressions; also, adding two of the z_i gives rise to a 5×5 Pfaffian format, which provides the bilinear relations for $z_i z_j$: for example

\[
\begin{pmatrix}
 x_1 & y_0 & z_2 & r_1 x_0 \\
 x_2 & y_1 & y_2 & r_2 x_0 \\
 r_2 x_0 & z_1 & \end{pmatrix}
\]

hence

\[
z_1 z_2 = s x_0 y_0 + r_0 y_0^2 + r_1 r_2 x_0^2.
\]

and similarly

\[
\begin{align*}
 z_0 z_2 &= s x_1 y_1 + r_1 y_1^2 + r_0 r_2 x_1^2, \\
 z_0 z_1 &= s x_2 y_2 + r_2 y_2^2 + r_0 r_1 x_2^2
\end{align*}
\]

Theorem 1.1 These 9 equations define a codimension 4 affine Gorenstein 9-fold $V \subset \mathbb{A}^1_{13}^{(x_i, y_i, z_i, r_i, s)}$. Its singular locus is $\mathbb{A}^4_{(r_0, r_1, r_2, s)}$ union the three planes $\mathbb{A}^2_{(r_i, x_i)}$ for $i = 0, 1, 2$. It has a diagonal action of the torus \mathbb{G}_m^6 and S_3 symmetry permuting the indices. Grading by

\[
\begin{align*}
 \text{wt } x_i &= 1, & \text{wt } y_i &= \text{wt } r_i = 2, & \text{wt } z_i &= \text{wt } s = 3
\end{align*}
\]

gives V canonical weight -12.

With this grading, regular sections of V provide the graded rings over the following varieties (among other possibilities):
(A) Set \(r_i \) equal to general combinations of \(x_i, y_i \) of weight 2, and \(s \) equal to a general combinations of \(x_i, y_i \) of weight 3; also, set \(x_0 + x_1 + x_2 = 0 \) and \(z_0 + z_1 + z_2 = 0 \). Then \(\text{Proj} \) of this ring is a canonical surface \(Y \subset \mathbb{P}^6(1,1,2,2,2,3,3)_{(x_1, x_2, y_0, y_1, y_2, z_0, z_1, z_2)} \) with \(p_g = 2, K^2 = 3 \). It is nonsingular in general.

Moreover, taking \(r_i \) and \(s \) symmetric under permuting the indices gives \(Y \) a fixed point free action of \(\mathbb{Z}/3 \), hence a quotient \(\mathbb{Z}/3 \) Godeaux surface \(X = Y/(\mathbb{Z}/3) \) as in [R1]; or an action of \(S_3 \), giving \(X \) with an involution (see Section 2 for a specific case).

(B) Omitting the sections \(\sum x_i = 0 \) and \(\sum z_i = 0 \) in (1) gives a quasismooth Fano 4-fold \(F \subset \mathbb{P}^6(1,1,1,2,2,2,3,3)_{(x_0, x_1, x_2, y_0, y_1, y_2, z_0, z_1, z_2)} \) with \(K_F = \mathcal{O}_F(-3) \) and \(3 \times \frac{1}{3}(1,1,2,2) \) orbifold points.

(C) Omitting the section \(x_0 + x_1 + x_2 = 0 \) in (1) gives a nonsingular Calabi–Yau 3-fold containing \(Y \) as a hyperplane section.

(D) Omitting the section \(z_0 + z_1 + z_2 = 0 \) in (1) gives a quasismooth Fano 3-fold \(W \subset \mathbb{P}^6(1,1,2,2,2,3,3)_{(x_1, x_2, y_0, y_1, y_2, z_0, z_1, z_2)} \) of index 2 with \(-K_W = 2A, A^3 = 1 \) having \(3 \times \frac{1}{3}(1,1,2,2) \) orbifold points [GRDB], No 40198.

The 4-fold in (2) and the 3-folds in (3) and (4) can be given fixed point free \(\mathbb{Z}/3 \) actions, or full \(S_3 \) symmetry, while maintaining the stated nonsingularity properties.

Remark 1.1 Specialising \(r_0, r_1, r_2 \) to 0 and \(s \) to 1 gives

\[
\bigwedge^2 \begin{pmatrix} x_0 & y_2 & z_1 \\ z_1 & x_1 & y_0 \\ y_1 & z_0 & x_2 \end{pmatrix} = 0.
\]

Thus \(V \) is a flat deformation of the cone over \(\text{Segre}(\mathbb{P}^2 \times \mathbb{P}^2) \).

The symmetric group \(S_3 \) acts on \(V \) by permuting the indices 0, 1, 2. My paper [R1] used the eigenbasis coming from the cyclotomic change of bases to \(x_0 + \varepsilon x_1 + \varepsilon^2 x \) with \(\varepsilon \in \mu_3 \) and similarly for the \(y_i \) and \(z_i \).

The general algebraic properties of the key variety \(V \) come directly by unprojection from the hypersurface (2). The hypersurface has the obvious \(\mathbb{G}_m^6 \) action, which is preserved by the unprojection. The singular locus of \(V \)
is discussed in the next section, along with the nonsingularity of its sections (A–D). As a preparation, note that the equations include 4 unprojection equations for z_0:

$$x_0z_0 = \cdots, \quad y_0z_0 = \cdots, \quad z_1z_0 = \cdots, \quad z_2z_0 = \cdots,$$

(6)

so that V is nonsingular where $z_0 \neq 0$, and similarly for z_1, z_2. They also include

$$y_0z_0 = \cdots, \quad y_0y_2 = \cdots, \quad y_0y_1 = \cdots, \quad y_0^2r_0 = \cdots,$$

(7)

so that V is also nonsingular where $y_0 \neq 0$, and similarly for y_1, y_2. Thus the singular locus of V is contained in $y_i = z_i = 0$. One sees that these define a reducible subvariety of V with many components, all of dimension ≤ 4. Thus V is at least normal.

2 Nonsingularity

I prove all the nonsingularity results in Theorem 1.1 by brute force computer algebra. I only describe the calculations for (A), since the others are practically identical, and the Magma files doing all of them are online at [], (currently Dropbox, NonSing_Calc_for_Godid.txt), and run in short order on the Magma online calculator http://magma.maths.usyd.edu.au/calc.

Claim 2.1 The S_3 symmetric surface Y that is the univeral cover of the $\mathbb{Z}/3$ Godeaux is nonsingular, and the $\mathbb{Z}/3$ action on it is free.

Start from the graded polynomial ring $R = k[x_1, x_2, y_0, y_1, y_2, z_1, z_2]$, and define x_0, z_0 by

$$x_0 = -x_1 - x_2 \quad \text{and} \quad z_0 = -z_1 - z_2.$$

I define the sections by

$$r_0 = y_0 + x_0^2 + 7x_1x_2, \quad r_1 = y_1 + x_1^2 + 7x_0x_2, \quad \text{and} \quad s = x_0^3 + x_1^3 + x_2^3.$$
The nine equations of $Y \subset \mathbb{P}^6(1,1,2,2,2,3,3)_{(x_1,x_2,y_0,y_1,y_2,z_1,z_2)}$ are then

\[
\begin{align*}
sx_0x_2 + r_0x_2y_0 + r_2x_0y_2 - y_1z_1, \\
-r_1r_2x_0^2 - sx_0y_0 - r_0y_0^2 + z_1z_2, \\
sx_0x_1 + r_0x_1y_0 + r_1x_0y_1 - y_2z_2, \\
-r_1x_0x_2 + y_0y_2 - x_1z_1, \\
r_2x_0x_1 - y_0y_1 + x_2z_2,
\end{align*}
\]

\[
\begin{align*}
r_0x_1x_2 - y_1y_2 + x_0z_0, \\
r_0r_2x_1^2 - sx_1y_1 - r_1y_1^2 + z_0z_2, \\
-ssx_1x_2 - r_1x_2y_1 - r_2x_1y_2 + y_0z_0, \\
-r_0r_1x_2^2 - sx_2y_2 - r_2y_2^2 + z_0z_1.
\end{align*}
\] (8)

Write $L = [L_1, \ldots, L_9]$ for these equations.

Brute force computer algebra frees us from heavy lifting, so simply define the 9×7 Jacobian matrix $\frac{\partial L_0}{\partial (x_i,y_i,z_i)}$ and its set of 4×4 minors J (with $\#J = \binom{9}{4} \times \binom{4}{1} = 4410$). Then Magma takes

1.3 seconds to verify that $z_0^4 \in \langle J \rangle$, the ideal generated by J, so that the singular locus of Y is contained in $z_0 = 0$, hence also in $z_0 = z_1 = z_2 = 0$. Similarly, it takes

0.8 seconds to verify that $y_0^5 \in \langle J \cup \{z_0, z_1, z_2\} \rangle$, and

0.8 seconds to verify that $x_0^{13} \in \langle J \cup \{z_0, z_1, z_2\} \cup \{y_0, y_1, y_2\} \rangle$.

This proves that Y is nonsingular.

To prove that Y is disjoint from the fixed point locus of $\mathbb{Z}/3$ on V, it is enough to check that, in the same coordinates, L together with the equations $x_0^3 = x_1^3 = x_2^3, y_0^3 = y_1^3 = y_2^3, z_0 = z_1 = z_2$ defines the empty set in $\text{Proj} \, R$. Obviously $z_0 + z_1 + z_2 = 0$ and $z_0 = z_1 = z_2$ implies that all the $z_i = 0$. In fact, Magma says at once that the ideal generated by

\[L \cup \{x_0^3 - x_1^3, x_2^3 - x_1^3, y_0^3 - y_1^3, y_2^3 - y_1^3, z_1 - z_0, z_2 - z_1 \} \]

defines the empty set in $\text{Proj} \, R$.

3 Applications to codimension 4 Gorenstein

I have so far applied the variety $V \subset \mathbb{A}^{13}$ to construct various varieties. In the rest of this note, I use it to illustrate the general structure theory of Gorenstein codimension 4 ideals, supporting [R2].
3.1 The 9 equations of V as extended Pfaffians

Adjoining z_0 to the 4×4 Pfaffians of (4) is a Tom$_3$ unprojection; recall that this means that the 6 entries m_{ij} of the matrix with $i, j \neq 3$ are in unprojection ideal (x_0, y_0, z_1, z_2) (a codimension 4 complete intersection), so that its Pfaffians are also in (x_0, y_0, z_1, z_2). Tom unprojections are usually related to $\mathbb{P}^2 \times \mathbb{P}^2$ (see [TJ], Section 9 for more details), and one can try to accommodate the unprojection equations as the 4×4 Pfaffians of a 6×6 skew matrix with extra symmetry. Since this case is Tom$_3$, if we put z_0 as the entry m_{36} then in Pfaffians it does not multiply any of the 4 entries in its own Row-and-Column 3, but it does multiply the other 6 entries in the unprojection ideal (x_0, y_0, z_1, z_2).

This gives

$$
\begin{pmatrix}
 r_1x_0 & y_2 & z_1 & r_0y_0 + sx_0 & r_0r_1x_2 + sy_2 \\
 x_1 & y_0 & z_2 & r_1y_1 + sx_1 \\
 x_2 & y_1 & r_2x_0 & z_0 \\
 r_2x_0 & r_2y_2 & r_1y_1 + sx_1 & r_0r_2x_1
\end{pmatrix},
$$

which contains all the equations except that $x_0z_0 - y_1y_2 + r_0x_1x_2$ only appears after cancelling r_1 or r_2. This is a common phenomenon. The general philosophical point is that the unprojection structure is basic, whereas the matrix format is secondary – the equation $z_0x_0 = \cdots$ is one of the unprojection equations, but it is not completely captured by the matrix.

In this case, the factor r_2 in the bottom 456 triangle floats over to the top 123 triangle to give

$$
\begin{pmatrix}
 r_1r_2x_0 & r_2y_2 & z_1 & r_0y_0 + sx_0 & r_0r_1x_2 + sy_2 \\
 r_2x_0 & y_0 & z_2 & r_1y_1 + sx_1 \\
 x_2 & y_1 & z_0 & r_2y_2 \\
 x_0 & y_2 & x_1 & r_0x_1
\end{pmatrix}.
$$

The r_2 should not really be included in the matrix, but should be thought of as a crazy-Pfaffian multiplier coming between 123 and 456.

The equations admit other partial expressions as extended Pfaffians, 6×6
or even 7×7 or bigger. For example,

\[
\begin{pmatrix}
 r_1 r_2 x_0 & r_2 y_2 & z_1 & r_0 y_0 & r_0 r_1 x_2 & 0 \\
 r_2 x_1 & y_0 & z_2 & r_1 y_1 + sx_1 & r_1 r_2 x_0 \\
 x_2 & y_1 & z_0 & r_2 y_2 \\
 x_0 & y_2 & z_1 & r_0 y_0 + sx_0 \\
 r_0 r_2 x_2 + sy_2
\end{pmatrix}
\]

(11)

and cancel r_0, r_2 from the Pfaffians as necessary. And so on, . . . It is not clear that any of this is useful.

3.2 Matrix of first syzygies

I order the relations L_i and choose their signs as in (8). The matrix M_1 of first syzygies in the approved $(A B)$ form of [R2], 2.1 is the transpose of

\[
\begin{pmatrix}
 . & x_1 & y_0 & z_2 & r_1 x_0 & . & . & . & . \\
 -x_1 & . & x_2 & y_1 & y_2 & . & . & . & . \\
 -y_0 & -x_2 & . & r_2 x_0 & z_1 & . & . & . & . \\
 -z_2 & -y_1 & -r_2 x_0 & . & sx_0 + r_0 y_0 & . & . & . & . \\
 -r_1 x_0 & -y_2 & -z_1 & -sx_0 - r_0 y_0 & . & . & . & . & . \\
 . & . & r_2 x_1 & . & -sx_1 - r_1 y_1 & . & y_0 & -z_2 & . \\
 . & . & x_2 & . & y_2 & . & -y_0 & . & x_0 & . \\
 . & . & -y_1 & . & -r_0 x_1 & . & z_2 & . & -x_0 & . \\
 . & . & . & . & . & . & . & . & . & . \\
 . & . & z_0 & . & -sx_2 - r_2 y_2 & . & -r_0 x_2 & y_1 & . \\
 . & z_0 & r_2 y_2 & . & -r_0 r_1 x_2 - sy_2 & r_1 r_2 x_0 + sy_0 & . & r_0 y_0 & -z_2 & . \\
 . & . & z_0 & . & . & -sx_1 - r_1 y_1 & y_2 & -r_0 x_1 & . \\
 . & . & . & z_0 & . & r_1 x_2 & . & -y_2 & x_1 & . \\
 . & . & . & . & z_0 & -r_2 x_1 & -x_2 & y_1 & . \\
 y_2 & . & . & -r_0 x_2 & . & . & . & . & x_0 \\
 r_1 y_1 & . & -r_2 y_2 & r_0 r_2 x_1 + sy_1 & r_0 r_1 x_2 + sy_2 & . & -z_1 & . & z_2 & . \\
 r_1 x_2 & . & sx_2 + r_2 y_2 & . & . & . & . & -z_1 & y_0 & .
\end{pmatrix}
\]

(12)

The spinor sets made up by $I = (4$ out of the first 5 rows, with i omitted) and the complementary $J = I^c$ have spinors of the form $z_1 P f_i$.

7
// Magma: Matrix of first syzygies
RR<r0, r1, r2, s, x0, x1, x2, y0, y1, y2, z0, z1, z2>
 := PolynomialRing(Rationals(), [2, 2, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3]);
L := [
s*x0*x2 + r0*x2*y0 + r2*x0*y2 - y1*z1,
 -r1*r2*x0^2 - s*x0*y0 - r0*y0^2 + z1*z2,
 s*x0*x1 + r0*x1*y0 + r1*x0*y1 - y2*z2,
 -r1*x0*x2 + y0*y2 - x1*z1,
 r2*x0*x1 - y0*y1 + x2*z2,
 r0*x1*x2 - y1*y2 + x0*z0,
 -r0*r2*x1^2 - s*x1*y1 - r1*y1^2 + z0*z2,
 -s*x1*x2 - r1*x2*y1 - r2*x1*y2 + y0*z0,
 -r0*r1*x2^2 - s*x2*y2 - r2*y2^2 + z0*z1
];
Mat := Matrix(9, [0, x1, y0, z2, r1*x0, 0, 0, 0, 0,
 -x1, 0, x2, y1, y2, 0, 0, 0, 0,
 -y0, -x2, 0, r2*x0, z1, 0, 0, 0, 0,
 -z2, -y1, -r2*x0, 0, s*x0+r0*y0, 0, 0, 0, 0,
 -r1*x0, -y2, -z1, -s*x0-r0*y0, 0, 0, 0, 0, 0,
 0, 0, r2*x1, 0, -s*x1-r1*y1, 0, y0, -z2, 0,
 0, 0, x2, 0, y2, -y0, 0, x0, 0,
 0, 0, -y1, 0, -r0*x1, z2, -x0, 0, 0,
 z0, 0, 0, 0, 0, -s*x2-r2*y2, 0, -r0*x2, y1,
 0, z0, r2*y2, 0, -r0*r1*x2-s*y2, r1*r2*x0+s*y0, 0, r0*y0, -z2,
 0, 0, z0, 0, 0, -s*x1-r1*y1, y2, -r0*x1, 0,
 0, 0, z0, 0, r1*x2, 0, -y2, x1,
 0, 0, 0, 0, z0, -r2*x1, -x2, y1, 0,
 y2, 0, 0, -r0*x2, 0, -z1, 0, 0, x0,
 r1*y1, 0, -r2*y2, r0*r2*x1+s*y1, r0*r1*x2+s*y2, 0, -z1, 0, z2,
 r1*x2, 0, 0, s*x2+r2*y2, 0, 0, 0, -z1, y0]);

Matrix(9, L)*Transpose(Mat); // check Mat is made of syzygies
printf("--------\n");

J0 := ZeroMatrix(RR, 16, 16);
for i in [1..8] do J0[i, i+8] := 1; end for;
J := J0 + Transpose(J0);
Transpose(Mat)*J*Mat; // check M satisfies ^tM*J*M=0
printf("--------\n");
L;
printf("--------\n");
Mat;

for i in [1..5] do
 I := Remove([1..5],i); J := [j+8 : j in [1..8] | j notin I];
 SquareRoot((-1)^i*Determinant(Submatrix(Mat,I cat J,[1..8])))
 div L[9]);
end for;

References

[GRDB] Gavin Brown and others, Graded Ring Database, grdb.lboro.ac.uk

[R1] M. Reid, Surfaces with $p_g = 0$, $K^2 = 1$, J. Fac. Sci. Univ. Tokyo
 Sect. IA Math. 25 (1978) 75–92

[Ki] M. Reid, Graded rings and birational geometry, in Proc. of algebraic
 geometry symposium (Kinosaki, Oct 2000), K. Ohno (Ed.), 1–72,
 get from
 www.warwick.ac.uk/~masda/3folds/Ki/Ki.pdf

[R2] M. Reid, Gorenstein in codimension 4 - the general structure theory,
 29 pp., submitted to Algebraic Geometry in East Asia (Taipei Nov
 get from www.warwick.ac.uk/~masda/codim4

[TJ] Gavin Brown, Michael Kerber and Miles Reid, Fano 3-folds in codi-
 mension 4, Tom and Jerry, Part I, Compositio 148 (2012) 1171–

Miles Reid,
Math Inst., Univ. of Warwick,
Coventry CV4 7AL, England
e-mail: miles@maths.warwick.ac.uk
web: www.maths.warwick.ac.uk/~miles