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Abstract

The first half of this article is expository; it contains a brief survey
of the famous ADE classification, and how it applies to six kinds of
objects, some old and some relatively new. The second half is a re-
search article, discussing the two dimensional McKay correspondence
from the new point of view of Hilbert schemes.

0 Introduction

There is a whole series of apparently unrelated phenomena that are governed
by the so-called ADE Dynkin diagram scheme. It is widely believed that,
despite the diverse nature of the objects concerned, there must be some hid-
den reasons for these coincidences. The ADE Dynkin diagrams provide a
classification of the following types of objects (among others):

(a) simple singularities (rational double points) of complex surfaces (Du
Val, Artin, Brieskorn),

(b) finite subgroups of SL(2,C),

(c) simple Lie groups and simple Lie algebras (Elie Cartan, Dynkin),

(d) quivers of finite type ([Gabriel72]),

(e) modular invariant partition functions in two dimensions (Capelli, Itzyk-
son and Zuber [CIZ87]),

(f) pairs of von Neumann algebras of type II1 ([Ocneanu88]).
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2 Hilbert schemes and simple singularities

0.1

The present article consists of two halves, an expository part and a research
part. The expository part occupies the first six sections. In Sections 1–4,
we recall briefly the above ADE classifications. Sections 2–3 report in some
detail on the relatively new subjects of modular invariant partition functions
and type II1 von Neumann algebras (II1 factors). In Section 4 we recall the
two dimensional McKay correspondence. Section 5 summarizes some of the
missing links between the six objects and related problems. We would like to
say that while much is known about these, much remains unknown.

Next, in Section 6, we recall some basic facts about Hilbert schemes for use
in the research part, and give a quick review on three dimensional quotient
singularities in Section 7. Section 7 is not directly related to the rest of the
paper, but it provides motivation for further study in the same direction as
Sections 8–16. For instance, a natural three dimensional generalization of
the McKay correspondence, quite different from that of Theorem 7.2, can
be obtained by applying similar ideas. This direction is still under research
and we simply mention [Reid97], [INkjm98] and [Nakamura98] as available
references for it.

In the second half of the article we discuss the two dimensional McKay
correspondence from a somewhat new point of view, namely by applying
the technique of Hilbert schemes. Any known explanations for the classical
McKay correspondence enables each irreducible component of the exceptional
set E to correspond naturally to an irreducible representation of a finite sub-
group G. In the present article we do a little more. In fact, to any point of
the exceptional set, we associate in a natural way a G-module, irreducible or
otherwise, whose equivalence class is constant along the irreducible compo-
nent of E. We discuss this in outline in Section 8, and in detail in Sections 8–
16. Some new progress and related problems are mentioned in Section 17.

0.2

There are a number of excellent reports on the first four topics (a)–(d),
for example: Hazewinkel, Hesselink, Siersma and Veldkamp [HHSV77] and
[Slodowy95]. See [Slodowy90] and [Gawedzki89] for the topic (e). See also
[Ocneanu88], Goodman, de la Harpe and Jones [GHJ89], [Jones91] and Evans
and Kawahigashi [EK97], Section 11 for the last topic (f). The authors hope
the readers to read or to have a glance at these reports too.

We have in mind both specialists in algebraic geometry and nonspecialists
as readers of the expository part. Therefore we have tried to include elemen-
tary examples and algebraic calculations, though they are not completely
self-contained.
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1 Simple singularities and ADE classification

1.1 Simple singularities (1)

We first recall the definition of simple singularities. A germ of a two dimen-
sional isolated hypersurface singularity is called a simple singularity if one of
the following equivalent conditions holds:

1. It is isomorphic to one of the following germs at the origin

An : xn+1 + y2 + z2 = 0 for n ≥ 1,

Dn : xn−1 + xy2 + z2 = 0 for n ≥ 4,

E6 : x4 + y3 + z2 = 0,

E7 : x3y + y3 + z2 = 0,

E8 : x5 + y3 + z2 = 0.

2. It is isomorphic to a germ of a weighted homogeneous hypersurface of
(C3, 0) of total weight one such that the sum of weights (w1, w2, w3) of
the variables is greater than one. The possible weights are ( 1

n+1
, 1

2
, 1

2
),

( 1
n−1

, n−2
2n−2

, 1
2
), (1

4
, 1

3
, 1

2
), (2

9
, 1

3
, 1

2
) and (1

5
, 1

3
, 1

2
).

3. It has a minimal resolution of singularities with exceptional set consist-
ing of smooth rational curves of selfintersection−2 intersecting transver-
sally.

4. It is a quotient of (C2, 0) by a finite subgroup of SL(2,C) ([Klein]).

5. Its (semi-)universal deformation contains only finitely many distinct
isomorphism classes ([Arnold74]).

Many other characterizations of the singularities are given in [Durfee79].
The third characterization of a simple singularity classifies the exceptional set
explicitly. In fact, the dual graph of the exceptional set is one of the Dynkin
diagrams of simply connected complex Lie groups shown in Figure 1.
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An v v v . . . v v (n vertices)
1 1 1 1 1

Dn v v v . . . v��v
@@v (n vertices)

1 2 2 2 1

1

E6 v v vv v v
1 2

2

3 2 1

E7 v v vv v v v
2 3

2

4 3 2 1

E8 v v vv v v v v
2 4

3

6 5 4 3 2

Figure 1: The Dynkin diagrams ADE

1.2 Simple singularities (2)

Let (S, 0) be a germ of simple singularities, π : X → S its minimal resolution,
E := π−1(0)red and Ei for 1 ≤ i ≤ r the irreducible component of E. It is
known that Ei ' P1 and (E2

i )X = −2. Let IrrE be the set {Ei; 1 ≤ i ≤
r}. We see that H2 = H2,SING(S) := H2(X,Z) =

⊕
1≤i≤r Z[Ei]. Then H2

has a negative definite intersection pairing ( , )SING : H2 × H2 → Z. Since
(EiEj)SING = 0 or 1 for i 6= j, the pairing ( , )SING can be expressed by a
finite graph with simple edges. We rephrase this as follows: we associate a
vertex v(E ′) to any irreducible component E ′ of E, and join two vertices v(E ′)
and v(E ′′) if and only if (E ′E ′′)SING = 1. Thus we have a finite graph with
simple edges, from which in turn the bilinear form ( , )SING can be recovered
in the obvious manner. We call this graph the dual graph of E, and denote
it by Γ(E) or ΓSING(S). Let H2 = H2

SING(S) := H2(X,Z).

There exists a unique divisor Efund, called the fundamental cycle of X,
which is the minimal nonzero effective divisor such that EfundEi ≤ 0 for all
i. Let Efund :=

∑r
i=1m

SING
i Ei and E0 := −Efund. For the simple singularities

we have E0Ei = 0 or 1 for any Ei ∈ IrrE except for the case A1, when
E0E1 = 2. Therefore we can draw a new graph Γ̃SING by adding the vertex
v(E0) to ΓSING(S). By a little abuse of notation we denote IrrE ∪ {E0} by
Irr∗E.

For instance let us consider the D5 case. Then E =
∑5

i=1Ei with E2
i = −2

and

−E0 = Efund = E1 + 2E2 + 2E3 + E4 + E5.
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Then E0E2 = E1E2 = E2E3 = E3E4 = E3E5 = 1, and all other EiEj = 0.
Hence (mSING

1 , . . . ,mSING
5 ) = (1, 2, 2, 1, 1), as indicated in Figure 2.

D5 v�� v v��v
@@v1

2 2 1

1

D̃5

v
v@@�� v v��v

@@v
1

1

2 2 1

1

Figure 2: The Dynkin diagrams D5 and D̃5

There are various ways of computing E. We check this starting from the
fact that D5 is the quotient singularity of A2 by the binary dihedral group
D3 of order 12. The binary dihedral group G := D3 is generated by σ and τ :

σ =

(
ε 0
0 ε−1

)
, τ =

(
0 1
−1 0

)
,

where ε := e2π
√
−1/6. We have σ6 = τ 4 = 1, σ3 = τ 2 and τστ−1 = σ−1. The

ring of G-invariants in C[x, y] is generated by three elements F := x6 + y6,
H := xy(x6 − y6) and I := x2y2. The quotient A2/G is isomorphic to the
hypersurface 4I4 +H2 − IF 2 = 0. Since G has a normal subgroup N := {σ}
of order 6, we first take the quotient A2/N and its minimal resolution XN .

Since P := x6, Q := y6 and R := xy are N -invariants, A2/N is a hyper-
surface PQ = R6. Hence XN has an exceptional set consisting of a chain of
5 smooth rational curves C1 + · · · + C5. The action of τ on A2 induces an
action on XN , which maps Ci into C5−i, so in particular takes C3 to itself.
The action of τ on XN has exactly two fixed points p+ and p− on C3, which
give rise to all the singularities of XN/{τ}.

The images of p± give smooth rational curves E4 and E5 on the minimal
resolution X of A2/G by resolving the singularities of XN/{τ} at p±. Thus on
X we have the images Ei of Ci for i = 1, 2, 3 and two new rational curves E4

and E5. This gives the exceptional set E of X. We see easily that (Ei)
2
SING =

−2. The intersection pairing ( , )SING is expressed with respect to the basis
Ei for 0 ≤ i ≤ 5 as a 6 × 6 symmetric matrix with diagonal entries equal to
−2. We write it down multiplied by −1 for convenience:

(−1) · (EiEj)SING =


2 0 −1 0 0 0
0 2 −1 0 0 0
−1 −1 2 −1 0 0
0 0 −1 2 −1 −1
0 0 0 −1 2 0
0 0 0 −1 0 2


Let vi := v(Ei) for 0 ≤ i ≤ 5. Then we obtain the Dynkin diagram

D5 from vi for 1 ≤ i ≤ 5 and the extended Dynkin diagram D̃5 from vi for
0 ≤ i ≤ 5, as in Figure 2.
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1.3 Simple singularities and simple Lie algebras (1)

Let G be a simply-laced simple Lie algebra and H a Cartan subalgebra of G.
We fix a lexicographical order of the roots of H and let ∆ (respectively ∆+,
∆simple) be the set of roots (respectively, positive roots, positive simple roots)
of G with respect to T . (See [Bourbaki] for more details.) Let r be the rank
of G (= dimH) and ∆simple = {αi; 1 ≤ i ≤ r}.

Let Q be the root lattice, namely the lattice spanned by ∆ over Z endowed
with the Cartan–Killing form ( , )LIE and P := HomZ(Q,Z) the dual lattice
of Q (the weight lattice):

Q :=
⊕
α∈∆

Zα =
⊕

α∈∆simple

Zα.

The Cartan–Killing form ( , )LIE with respect to the basis ∆simple is a
positive definite integral symmetric bilinear form with (α, α) = 2 for all α ∈
∆simple. Since (α, β)LIE = 0 or −1 for α 6= β ∈ ∆simple, we can express the
bilinear form by a finite graph with simple edges ΓLIE as we did for the dual
graph of the set of exceptional curves of simple singularities.

There is a maximal root in ∆ with respect to the given order, called the
highest root of ∆. (This name is justified by the fact that it is the highest
root of the adjoint representation of G. See Table 1.) Let the highest root
be α0 := αhighest =

∑r
i=1m

LIE
i αi. Then (α0, β) = 0 or −1 for any β ∈ ∆simple

(expect for the case A1, when (α0, β) = 2), so that we can draw a new graph

Γ̃LIE(G) (called the extended Dynkin diagram of G) by adding the vertex α0

to ΓLIE(G).

Type r (m0) m1,m2,m3, . . . ,mr−1;mr

An n 1 1, 1, . . . , 1, 1

Dn n 1 1, 2, 2, . . . , 2, 1, 1

E6 6 1 1, 2, 3, 2, 1; 2

E7 7 1 1, 2, 4, 3, 2, 1; 2

E8 8 1 2, 4, 6, 5, 4, 3, 2; 3

Table 1: Multiplicities of the highest root

Let us consider the D5 case as an example. The Lie algebra G := G(D5)
is given by o(10) := {X ∈ M10(C); tX + X = 0}. Its Cartan subalgebra H
is spanned by Hi := Ei,i+5 − Ei+5,i for 1 ≤ i ≤ 5 where Eij is the matrix
with (i, j)th entry equal to 1 and 0 elsewhere. We define εi ∈ HomC(H,C) by
εi(H) := ti for all H =

∑5
i=1 tiHi ∈ H. Then we can choose simple roots αi
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with order α1 > α2 > · · · > α5 as follows:

αi := εi − εi+1, α5 := ε4 + ε5 for 1 ≤ i ≤ 4.

The highest root α0 is ε1 + ε2 = α1 + 2α2 + 2α3 + α4 + α5. For each αi
we define an element H̃i ∈ H by αi(H) = −1

2
Tr(H̃iH) for all H ∈ H. We see

that H̃i = Hi −Hi+1 for 1 ≤ i ≤ 4, and H̃5 = H4 +H5. We define (αi, αj) :=

αi(H̃j) = αj(H̃i). Then we have (αi, αj) = −(Ei, Ej) for 0 ≤ i ≤ j ≤ 5
in the notation of 1.1–1.2. This shows that ΓSING(D5) = ΓLIE(G(D5)) and

Γ̃SING(D5) = Γ̃LIE(G(D5)).
We note that P =

∑5
i=1 Zεi and Q =

∑5
i=1 Zαi.

The first theorem to mention is the following:

Theorem 1.4 Let S be a simple singularity and Lie(S) a simple Lie algebra
of the same type as S. Then there is an isomorphism

i : H2
SING(S) ' P (Lie(S))

such that

1. i(H2,SING(S)) = Q(Lie(S));

2. i(Irr(E(S))) = ∆simple(Lie(S));

3. i(Efund(S)) = −αhighest(Lie(S));

4. ( , )SING = −i∗( , )LIE;

5. ΓSING(S) = ΓLIE(Lie(S)) and Γ̃SING(S) = Γ̃LIE(Lie(S)).

1.5 Simple singularities and simple Lie algebras (2)

There are two kinds of similar constructions of simple singularities from simple
Lie algebras: first of all, the Grothendieck–Brieskorn–Springer construction
and second, the Knop construction. Good references for this topic are for
instance [Slodowy80], [Slodowy95] and [Knop87].

1.6 Finite reflection groups and Coxeter exponents

Let V be a vector space over R endowed with a positive definite bilinear form
( , ). A linear automorphism s of V is called a reflection if there is a vector
α ∈ V and a hyperplane Hα orthogonal to α such that s(α) = −α, and the
restriction of s to Hα is trivial: s|Hα = idHα . There is a simple formula

s(v) = v − 2(v, α)

(α, α)
α. (1)
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A finite group generated by reflections is called a finite reflection group.
For instance, let Q be the root lattice of a simple Lie algebra G over C,
( , )LIE its Cartan–Killing form, and set V = Q ⊗ C. For any simple root
αi ∈ ∆simple, we define a reflection si := sαi of V by the formula (1). The
group W generated by all reflections sα for α ∈ ∆simple is finite, and is called
the Weyl group of G. The Weyl group W acts on the polynomial ring C[V ∗]
generated by V ∗ := HomZ(V,Z), the dual of V .

The product s =
∏r

i=1 si of reflections for all the simple roots is called
a Coxeter element of W . All s defined in this way for different choices of
lexicographical order of the roots are conjugate in W . Therefore the order
of s in W is uniquely determined, and we denote it by h and we call it the
Coxeter number of G.

Theorem 1.7 ([Chevalley55]) Let W be the Weyl group of a simple Lie
algebra G over C, and r the rank of G. Then

1. the invariant ring C[V ∗]W is generated by r algebraically independent
homogeneous polynomials f1, f2, . . . , fr. We order the fi so that deg fi
is monotonically increasing.

2. For any choice of the generators fi as above, the sequence of degrees
(deg f1, . . . , deg fr) is uniquely determined.

Definition 1.8 We define the Coxeter exponents ei by ei := deg fi − 1 for
1 ≤ i ≤ r.

Theorem 1.9 Let G be a simple Lie algebra, h its Coxeter number, and ei
its Coxeter exponents. Then we have

1. ei + er−i = h for all i;

2. |W | =
∏r

i=1(ei + 1).

For the proof, see [Humphreys90], Orlik and Terao [OT92] and [Bourbaki].
Let us look at the D5 case. From the root system given in 1.2–1.3 we see

easily that the Weyl group W (D5) is a group of order 24 · 5! = 1920 fitting in
the exact sequences

1→ W (D5)→ G
ψ→ Z/2Z→ 1

and
1→ (Z/2Z)⊕5 → G

ϕ→ S5 → 1.

The group G, hence the Weyl group W (D5) as a subgroup of G, acts on
C[H(D5)∗] ' C[x1, . . . , x5] by

σ∗(xi) = εixϕ(σ)(i),
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where σ ∈ G, εi = ±1 and ψ(σ) = ε1 · · · ε5. Write fj for the jth elementary
symmetric function of 5 variables. Then C[H(D5)∗]W (D5) is generated by
gj := fj(x

2
1, . . . , x

2
5) for j = 1, 2, 3, 4 and g5 := f5 = x1 · · ·x5. It follows that

{deg gj} = (2, 4, 6, 8, 5) so that the Coxeter exponents are 1, 3, 5, 7, 4. Since
the Coxeter number h(D5) equals 8, we have 8 = 1 + 7 = 3 + 5 = 4 + 4.
Moreover |W (D5)| = 1920 = 2 · 4 · 6 · 8 · 5.

Type r e1, e2, e3, . . . , er−1, er h

An n 1, 2, . . . , n− 1, n n+ 1

Dn n 1, 3, 5, . . . , 2n− 3, n− 1 2n− 2

E6 6 1, 4, 5, 7, 8, 11 12

E7 7 1, 5, 7, 9, 11, 13, 17 18

E8 8 1, 7, 11, 13, 17, 19, 23, 29 30

Table 2: Coxeter exponents and Coxeter numbers

1.10 Quivers (= oriented graphs) of finite type

Let Γ be a connected oriented graph. It consists of a finite set of vertices and
(simple) oriented edges joining two vertices. Write v(Γ) and e(Γ) for the set
of vertices and edges of Γ.

For an edge `, we define ∂(`) = β(`)− α(`), where α(`) and β(`) are the
starting and end points of `.

Definition 1.11 ([Gabriel72]) A representation V := {Vα, ϕ`} of Γ is a set
of finite dimensional vector spaces Vα, one for each α ∈ v(Γ), coupled with
a set of homomorphisms ϕ` : Vα(`) → Vβ(`) for all ` ∈ e(Γ). We define the
dimension vector of a representation V to be v = dim V := {dimVα;α ∈
v(Γ)}.

Two representations V = {Vα, ϕ`} and W = {Wα, ψ`} are equivalent if
there are isomorphisms fα : Vα → Wα such that ψ` · fα(`) = fβ(`) · ϕ` for any
` ∈ e(Γ). Two equivalent representations have the same dimension vector.

We say that Γ is a quiver of finite type if there are only finitely many
equivalence classes of representations of Γ for any fixed dimension vector.
This notion is independent of the choice of orientation of Γ.

Theorem 1.12 ([Gabriel72]) Let Γ be a quiver of finite type. Then Γ with
orientation forgotten is one of An, Dn and En. Conversely, if Γ is one of
these types, it is a quiver of finite type.



10 Hilbert schemes and simple singularities

Proof (Outline) Suppose that Γ is of finite type. Let v = (nα)α∈v(Γ) be a
vector with positive integer coefficients nα. We choose and fix a representation
V := {Vα, ϕ`} of Γ. Hence nα = dimVα. Then the set of representations of
Γ is the set M :=

∏
`∈e(Γ) Hom(Vα(`), Vβ(`)). Let G :=

∏
α∈v(Γ) End(Vα). Then

G acts on M by

(ϕ`) 7→ (gβ(`) · ϕ` · g−1
α(`)) for gα ∈ End(Vα).

The set of equivalence classes of representations of Γ with fixed dim V = v
is the quotient of M by the action of G. Since Γ is connected, the centre of
G consists of scalar matrices. Therefore dimM ≤ dimG− 1 by assumption.
It follows that

∑
`∈e(Γ) nαnβ ≤

∑
α∈v(Γ) n

2
α − 1. Since this holds for any

v ∈ (Z+)Card(v(Γ)), the bilinear form
∑

α∈v(Γ) x
2
α−

∑
`∈e(Γ) xα(`)xβ(`) is positive

definite. It follows from the same argument as in the classification of simple
Lie algebras that the graph Γ is one of ADE. �

Theorem 1.13 ([Gabriel72]) Let Γ be a quiver of finite type. Then the
map V 7→ dim V is a bijective correspondence between the set of equivalence
classes of indecomposable representations and the set of positive roots of the
root system corresponding to Γ.

2 Conformal field theory

2.1 Background from physics

In the study of conformal field theories, under certain physically natural as-
sumptions, if we consider the theory on a real two dimensional torus, or
equivalently the theory periodic in one time direction and one space direc-
tion, the system turns out to fit into an ADE classification.

We start by telling in very rough terms a story that physicists take for
granted. Suppose given an infinite dimensional vector spaceH and a finite set
of operators Aj on H. The space H is supposed to be a realization of various
physical states. The operators Aj are supposed to be selfadjoint insofar as
they correspond to actual physical operators or “observables”. In this sense,
the vector space H is required to have a Hermitian inner product, namely,
we require H to be unitary. Rather surprisingly, we will soon see that the
unitary assumption picks up mathematically interesting objects.

If we have a kind of Hamiltonian operator in the algebra A, the eigen-
value of the operator would be the energy of the (eigen)-state, and in general
any state is an infinite linear combination of eigenstates, like a Fourier se-
ries expansion. The operators Aj are supposed to correspond to physical
observables such as energy of particles in the system, and they correspond in
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mathematical terms to irreducible representations of some algebra A on H,
where the system is said to admit A-symmetry.

The system {A, Aj,H} is called a conformal field theory if the algebra A
contains a Virasoro algebra acting nontrivially on H.

The distribution of various energy levels is captured by the so-called par-
tition function of the system, which in mathematical terms is the generating
function of H weighted by the values of energy. If the system has space-time
symmetry, one proves by a physical argument that the partition function is
SL(2,Z)-invariant.

The problem is to determine all possible systems admitting space-time
symmetry; hence, as a first step, we consider the problem of classifying all
possible modular invariant partition functions, namely SL(2,Z)-invariant par-
tition functions in certain restricted situations. In the situations we are in-
terested in, the algebra A is either the affine Lie algebra A

(1)
1 or the minimal

unitary series of Virasoro algebras with central charge c = 1 − 6/m(m + 1)
for m ≥ 3. Although the minimal unitary series is more interesting, the par-
tition function for A

(1)
1 is easier to write down and more coherent to the ADE

classification. Therefore we limit ourselves to A
(1)
1 . It is not known whether

the modular invariant partition functions in the subsequent table (Table 3)
are partition functions of some conformal field theory admitting space-time
symmetry.

We now rephrase all this in more mathematically rigorous terms.

Definition 2.2 Write

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
for the standard generators of sl2(C). The Cartan–Killing form of sl2(C)

is given by (x, y)LIE = Tr(xy). The affine Lie algebra A
(1)
1 is an infinite

dimensional Lie algebra A over C spanned by sl2(C)⊗C[t, t−1], together with
a central element c, subject to the relations

[x(m), y(n)] = [x, y](m+ n) +mcδm+n,0(x, y)LIE and [c, x(m)] = 0,

for all m,n ∈ Z; here t is an indeterminate, and we write x(m) := x⊗ tm for
x ∈ sl2(C).

Theorem 2.3 Let k be a positive integer and s an integer with 0 ≤ s ≤ k.
We define an A

(1)
1 -module V (s, k) := A

(1)
1 · v(s, k) by

x(n)v(s, k) = 0, e(0)v(s, k) = 0 for x ∈ sl2(C) and n ≥ 1,

h(0)v(s, k) = sv(s, k), cv(s, k) = kv(s, k).
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Then V (s, k) is a unitary integrable irreducible A
(1)
1 -module having highest

weight vector v(s, k). Conversely, any unitary irreducible integrable highest

weight A
(1)
1 -module V is isomorphic to V (s, k) for some pair (s, k) as above.

By convention, we write v(s, k) as the ket |s, k〉. The integer k is called

the level of the A
(1)
1 -module V (s, k). By the Kac–Weyl character formula, we

have

Theorem 2.4 The character of V (s, k) is given by

χs,k(q, θ) =
∑
m∈Z

q(k+2)m2+(s+1)m(e
√
−1θ((k+2)m+ s

2
) − e−

√
−1θ((k+2)m+ s

2
+1))/D,

where the denominator is D = (1− e−
√
−1θ)ϕ(τ)ϕ+(τ)ϕ−(τ), and

ϕ(q) =
∏
n≥1

(1− qn), ϕ±(q, θ) =
∏
n≥1

(1− e±
√
−1θqn).

Although this may look different from the usual form of the Kac–Weyl
formula, the above form of the character is adjusted to the expression used
by physicists to write down partition functions. In Kac’s notation ([Kac90],
Chapter 6 and p. 173) and the notation in 2.6

χs,k = χL((k−s)Λ0+sΛ1))

= TrL((k−s)Λ0+sΛ1))(q
(k+2)L0e

√
−1(k+2)θh(0)/2).

We note that L0 = −d and c = K in the notation of [Kac90], Chapters 6–7.

Definition 2.5 The Virasoro algebra Virc with central charge c is the infinite
dimensional Lie algebra over C generated by Ln for n ∈ Z and c, subject to
the following relations

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0,

[Ln, c] = 0 for all n,m.

There is a way of constructing Ln from the affine Lie algebra A
(1)
1 , called

the Segal–Sugawara construction:

Ln =
1

2(k + 2)

∑
m∈Z

(
:e(n−m)f(m): + :f(n−m)e(m): + 1

2
:h(n−m)h(m):

)
.

Here : : is the normal ordering defined by

:x(m)y(n): =


x(m)y(n) if m < n,
1
2
(x(m)y(n) + y(n)x(m)) if m = n,

y(n)x(m) if m > n.
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Then we infer the relations

[Lm, Ln] = (m− n)Lm+n +
1

12
· 3k

k + 2
(m3 −m)δm+n,0,

[Lm, x(n)] = −nx(m+ n) and [L0, x(−n)] = nx(−n)

for all m,n ∈ Z and x ∈ sl2(C).

Thus given a system having A
(1)
1 symmetry of level k, the system ad-

mits a Virasoro algebra Virc symmetry with c = 3k/(k + 2). Write v :=
x(−n1)x(−n2) · · ·x(−np)|s, k〉; note that V (s, k) is spanned by vectors v of
this form for various ni > 0. The element L0 acts on v by

L0(v) =
{ 1

4(k + 2)
(s2 + 2s) + (n1 + n2 + · · ·+ np)

}
v

This shows that L0 behaves as if it measures the energy of the state v.

2.6 Modular invariant partition functions

Write A for the affine Lie algebra A
(1)
1 , and A∗ for its complex conjugate.

We fix the level k, and consider only unitary irreducible integrable A or A∗-
modules of level k. We consider the following particular A⊗A∗-module:

H =
⊕
`,`′

m`,`′V (`, k)⊗ (V (`′, k))∗,

where m`,`′ is the multiplicity of the copy V (`, k)⊗ (V (`′, k))∗.
This is what physicists call Hilbert spaces in such a situation, without

further qualifications. We only need to take the completion of H in order
to be mathematically rigorous. Mathematicians might guess why we have
to choose H as above. This is a special case of the factorization principle
widely accepted by physicists. Now L0 is supposed to play the same role as
the Hamiltonian operator of the system, and therefore the eigenvalues of L0

should express the energies. For the (physical) theory it is always important
to know the energy level distribution inside the system. Thus it is important
to know the eigenvalues of L0 and to count the dimension of the eigenspaces,
in other words to determine the partition function Z of the system. The
partition function Z of the system (= the A

(1)
1 -module) H is defined by

Z(q, θ, q̄, θ̄) := TrH

(
q(k+2)L0e

√
−1(k+2)θh(0)/2q̄(k+2)L̄0e−

√
−1(k+2)θ̄h̄(0)/2

)
=
∑
`,`′

m`,`′ χ`,k χ
∗
`′,k ,
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where q = e2π
√
−1τ with τ in the upper half plane, and θ is a real parameter.

When τ is pure imaginary, −iτ equals the ratio of sizes of time and one
dimensional space. For more details see [Cardy88] and [EY89].

In this situation, the physicists assume

1. m0,0 = 1;

2. Z(q, θ, q̄, θ̄) is SL(2,Z)-invariant.

Condition (1) means that the system has a unique state of lowest energy,
usually called the vacuum. This is one of the principles that physicists take for
granted. We therefore follow the physicists’ tradition, doing as the Romans
do. Next, (2) is the condition of discrete space-time symmetry. It means
that Z is invariant under the transformations τ 7→ −1/τ and θ 7→ θ + 1.
See [Cardy86] and [Cardy88] for more details. These assumptions have very
surprising consequences.

Theorem 2.7 Modular invariant partition functions are classified as in Ta-
ble 3. Write the partition function Z =

∑
aijχiχ

∗
j in terms of A

(1)
1 -characters.

Then the indices i with nonzero aii are Coxeter exponents of the Lie algebra
of the same type. Moreover the value k + 2 is equal to the Coxeter number.

Type k + 2 partition function Z(q, θ, q̄, θ̄)

An n+ 1
∑n

λ=1 |χλ|2

D2r 4r − 2
∑r−1

λ=1 |χ2λ−1 + χ4r+1−2λ|2 + 2|χ2r−1|2

D2r+1 4r
∑2r

λ=1 |χ2λ−1|2 +
∑r−1

λ=1(χ2λχ̄4r−2λ + χ̄2λχ4r−2λ) + |χ2r|2

E6 12 |χ1 + χ7|2 + |χ4 + χ8|2 + |χ5 + χ11|2

E7 18 |χ1 + χ17|2 + |χ5 + χ13|2 + |χ7 + χ11|2

+|χ9|2 + (χ3 + χ15)χ̄9 + χ9(χ̄3 + χ̄15)

E8 30 |χ1 + χ11 + χ19 + χ29|2 + |χ7 + χ13 + χ17 + χ23|2

Table 3: Modular invariant partition functions

For example, for k = 6 there are two modular invariant partition functions:

Z(A7) = |χ1|2 + |χ2|2 + · · ·+ |χ6|2 + |χ7|2,

Z(D5) =
∑
λ

|χ2λ−1|2 + (χ2χ
∗
6 + χ∗2χ6) + |χ4|2,
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where A7 (respectively D5) has Coxeter exponents {1, 2, . . . , 6, 7} (respec-
tively {1, 3, 5, 7, 4}). Note that the indices 2, 6 are not among the Coxeter
exponents of D5. For k = 10, there are three types of modular invariant
partition functions Z(A11), Z(D7) and Z(E6).

For more details, see Capelli, Itzykson and Zuber [CIZ87], Kato [Kato87],
Gepner and Witten [GW86] and Kac and Wakimoto [KW88]. Compare also
[Slodowy90]. Pasquier [Pasquier87a] and [Pasquier87b] used Dynkin diagrams
to construct some lattice models and rediscovered a series of associative al-
gebras (called the Temperly–Lieb algebras) which are expected to appear as
some algebra of operators on the Hilbert space in the continuum limit of the
models. See also 3.4 and [GHJ89], p. 87, p. 259. Although the relation of
the models with modular invariant partition functions remains obscure, the
partition function of Pasquier’s model is expected to coincide in some sense
with those classified in Table 3. See [Zuber90]. The connection of CFT with
graphs is studied by Petkova and Zuber [PZ96].

2.8 N = 2 super conformal field theories

There are other series of conformal field theories – the N = 2 superconformal
field theories or (induced) topological conformal field theories, which are more
intimately related to the theory of ADE singularities. However, these are a
priori close to the theory of singularities. See Blok and Varchenko [BV92].

The following result might be worth mentioning here.

Theorem 2.9 Suppose that there exists an irreducible unitary Virc-module,
namely an irreducible Virc-module admitting a Virc-invariant Hermitian inner
product. Then c ≥ 1 or c = 1− 6/m(m+ 1) for some m ∈ Z,m ≥ 3.

2.10 Minimal unitary series

Virasoro algebras of the second type are called the minimal c < 1 unitary se-
ries of Virasoro algebras. They attract attention because of their exceptional
characters. There is a series of von Neumann algebras with indices equal to
similar values 4 cos2(π/h) for h = 3, 4, . . . , where h is the Coxeter number in
a suitable interpretation. Conjecturally, the minimal unitary c < 1 series of
CFTs are deeply related to the class of subfactors which will be introduced in
§3. Much is already known about this topic. See [GHJ89], [Jones91], [EK97].
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3 Von Neumann algebras

3.1 Factors and subfactors

We give a brief explanation of von Neumann algebras, II1 factors of finite
type, and subfactors. The reader is invited to refer, for instance, to [GHJ89],
[Jones91], [EK97]. Let H be a Hilbert space over C and B(H) the space of
all bounded C-linear operators on H endowed with an operator seminorm
in some suitable sense. A von Neumann algebra M is by definition a closed
subalgebra of B(H) containing the identity and stable under conjugation
x 7→ x∗. This is equivalent to saying that M is ∗-stable and is equal to its
bicommutant. This is von Neumann’s bicommutant theorem. See [Jones91],
p. 2. The commutant of a subset S of B(H) is by definition the centralizer
of S in B(H). The bicommutant of M is the commutant of the commutant
of M . If M is a ∗-stable subset of B(H), then the bicommutant of M is the
smallest von Neumann algebra containing M .

A factor is defined to be a von Neumann algebra M with centre ZM
consisting only of constant multiples of the identity. Let M be a factor. A
factor N is called a subfactor of M if it is a closed ∗-stable C-subalgebra of M .
A II1 factor is by definition an infinite dimensional factor M which admits a
C-linear map tr : M → C (called the normalized trace) such that

1. tr(id) = 1,

2. tr(xy) = tr(yx) for all x, y ∈M ,

3. tr(x∗x) > 0 for all 0 6= x ∈M .

We note that the above normalized trace is unique. Let L2(M) be the
Hilbert space obtained by completing M with respect to the inner product
〈x | y〉 := tr(x∗y) for x, y ∈ M . The normalized trace induces a trace (not
necessarily normalized) TrM ′ on the commutant M ′ of M in B(H), called the
natural trace. If H = L2(M), then TrM ′(JxJ) = trM(x) for all x ∈ M where
J is the extension to L2(M) of the conjugation J(z) = z∗ of M .

A finite factor M is either a II1 factor or B(H) for a finite dimensional
Hilbert space H. Let M be a finite factor, and N a subfactor of M . Then the
Jones index [M : N ] is defined to be dimN L

2(M) := TrN ′(idL2(M)), where N ′

is the commutant of N . In general [M : N ] ∈ [1,∞] is a (possibly irrational)
positive number.

For instance, M = EndC(W ) is a factor (a simple algebra) for any finite
dimensional C-vector space W . If N = EndC(V ) is a subfactor of M , then
we have a representation of N = EndC(V ) on W , in other words, W is an
EndC(V )-module. We recall that

1. any EndC(V )-module is completely reducible, and
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2. V is a unique nontrivial irreducible EndC(V )-module up to isomor-
phism.

Therefore W ' V ⊗CU for some C-vector space U . Hence dimCW is divisible
by dimC V . Since M is complete with respect to the inner product, we have
[M : N ] = dimN L

2(M) = dimN M = (dimCM)(dimCN)−1 = (dimC U)2, a
square integer. See [GHJ89], p. 38.

The importance of the index [M : N ] is explained by the following result:

Theorem 3.2 ([GHJ89], p. 138) Suppose that M is a finite factor, and
let H and H ′ be M-modules which are separable Hilbert spaces. Then

1. dimM H = dimM H ′ if and only if H and H ′ are isomorphic as M-
modules.

2. dimM H = 1 if and only if H = L2(M).

3. dimM H is finite if and only if EndM(H) is a finite factor.

Theorem 3.3 ([GHJ89], p. 186) Suppose that N ⊂ M is a pair of II1

factors whose principal graph is finite.

1. If [M : N ] < 4 then [M : N ] = 4 cos2(π/h) for some integer h ≥ 3.

2. If [M : N ] = 4 cos2(π/h) < 4, the principal graph of the pair N ⊂ M
is one of the Dynkin diagrams An, Dn and En with Coxeter number h.
(Only An, D2n, E6 and E8 can appear, see [Izumi91], p. 972. This was
proved independently by Kawahigashi and Izumi.)

3. If [M : N ] = 4 then the principal graph of the pair N ⊂ M is one of

the extended Dynkin diagrams Ãn, D̃n and Ẽn.

4. Conversely for any value λ = 4 or 4 cos2(π/h), there exists a pair of II1

factors N ⊂M with [M : N ] = λ.

See [GHJ89], [Jones91], p. 35. See [GHJ89], p. 186 for principal graphs. See
also 3.8-3.10 where to each tower of finite-dimensional semisimple algebras we
associate a finite graph Γ analogous to a principal graph for a pair of factors.
This will help us to guess principal graphs for factors.

3.4 The fundamental construction and Temperly–Lieb
algebras

Why do the constants 4 cos2(π/h) appear? Let us explain this briefly.
Given a pair of finite II1 factors N ⊂ M with β := [M : N ] < ∞, there

exists a tower of finite II1 factors Mk for k = 0, 1, 2, . . . such that
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1. M0 = N , M1 = M ,

2. Mk+1 := EndMk−1
Mk is the von Neumann algebra of operators on

L2(Mk) generated by Mk and an orthogonal projection ek : L2(Mk) →
L2(Mk−1) for any k ≥ 1, where Mk is viewed as a subalgebra of Mk+1

under right multiplication.

By Theorem 3.2, (3), Mk+1 is a finite II1 factor. The sequence {ek}k=1,2,...

of projections on M∞ :=
⋃
k≥0Mk satisfies the relations

e2
i = ei, e∗i = ei,

ei = βeiejei for |i− j| = 1,

eiej = ejei for |i− j| ≥ 2.

We define Aβ,k to be the C-algebra generated by 1, e1, . . . , ek−1 subject
to the above relations, and Aβ :=

⋃∞
k=1 Aβ,k. The algebra Aβ is called the

Temperly–Lieb algebra. Compare also [GHJ89], p. 259.
Thus given a pair of II1 factors, the fundamental construction gives rise

to a unitary representation of the Temperly–Lieb algebra. However, the con-
dition that the representation is unitary restricts the possible values of β, as
Theorem 3.5 shows.

Theorem 3.3, (1) follows from the following result

Theorem 3.5 ([Wenzl87]) Suppose given an infinite sequence {ek}k=1,2,...

of projections on a complex Hilbert space satisfying the following relations:

e2
i = ei, e∗i = ei,

ei = βeiejei for |i− j| = 1,

eiej = ejei for |i− j| ≥ 2.

If e1 6= 0, then β ≥ 4 or β = 4 cos2(π/`) for an integer ` ≥ 3.

Proof We give an idea of the proof of Theorem 3.5. Suppose we are given a
homomorphism ϕ : Aβ → B(H) for some Hilbert space H, that is, a unitary
representation of Aβ. For simplicity we identify ϕ(x) with x for x ∈ Aβ.

First we see that 0 ≤ e∗1e1 = e2
1 = e1 = βe1e2e1 = β(e2e1)∗(e2e1). Hence

β ≥ 0. If β = 0 then e1 = 0, contradicting the assumption. Hence β > 0.
Next we assume 0 < β < 1 to derive a contradiction by using Aβ,3. Let

δ2 := 1 − e1. Then the assumptions of Theorem 3.5 imply δ∗2 = δ2, δ2
2 = δ2.

Hence

0 ≤ (δ2e2δ2)∗(δ2e2δ2) = (δ2e2δ2)2 = (1− β−1)(δ2e2δ2) ≤ 0,
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because δ2e2δ2 = (e2δ2)∗(e2δ2) ≥ 0. Thus e2δ2 = 0. It follows that e2 = e1e2,
and e2 = e2

2 = e2e1e2 = β−1e2, so that e2 = 0. Therefore e1 = βe1e2e1 = 0,
contradicting the assumption. If 4 cos2(π/`) < β < 4 cos2(π/(`+ 1)), then we
derive a contradiction by using Aβ,`+1. See [GHJ89], pp. 272–273. �

3.6 Bipartite graphs

A bipartite graph Γ with multiple edges is a (finite, connected) graph with
black and white vertices and multiple edges such that any edge connects a
white and black vertex, starting from a white one (see, for example, Figure 3).
If any edge is simple, then Γ is an oriented graph (a quiver) in the sense of
Section 1. Let Γ be a connected bipartite finite graph with multiple oriented
edges. Let w(Γ) (respectively b(Γ)) be the number of white (respectively
black) vertices of Γ. We define the adjacency matrix Λ := Λ(Γ) of size b(Γ)×
w(Γ) by

Λb,w =

{
m(e) if there exists e s.t. ∂e = b− w);

0 otherwise.

where m(e) is the multiplicity of the edge e.
We define the norm ‖Γ‖ as follows,

‖X‖ = max
{
‖Xx‖EUCL; ‖x‖EUCL ≤ 1

}
;

‖Γ‖ = ‖Λ(Γ)‖ =

∥∥∥∥( 0 Λ(Γ)
Λ(Γ)t 0

)∥∥∥∥ ,
where X is a matrix, x a vector and ‖ ‖EUCL the Euclidean norm. We note
that when X is a square matrix, ‖X‖ is the maximum of the absolute values
of eigenvalues of X.

D5

v
f f

v v
@

@@
�
��

Figure 3: The Dynkin diagram D5 as a bipartite graph

Lemma 3.7 Assume Γ is a connected finite graph with multiple edges. Then

1. if ‖Γ‖ ≤ 2 and if Γ has a multiple edge, ‖Γ‖ = 2 and Γ = Ã1.

2. ‖Γ‖ < 2 if and only if Γ is one of the Dynkin diagrams A,D,E. In
this case ‖Γ‖ = 2 cos(π/h), where h is the Coxeter number of Γ.

3. ‖Γ‖ = 2 if and only if Γ is one of the extended Dynkin diagrams

Ã, D̃, Ẽ.
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Lemma 3.7 is easy to prove. For instance, if there is a row or column
vector of Γ with norm a, then ‖Γ‖ ≥ a. See also [GHJ89], p. 19.

3.8 The tower of semisimple algebras

Why is Theorem 3.3, (2) true? The interested reader is invited to see [GHJ89].
Here we explain it in a much simpler situation.

Recall that a matrix algebra of finite rank is a finite factor by definition.
This is an elementary analogue of a finite II1 factor with a finite dimensional
Hilbert space. So let us see what happens if we consider the fundamental
construction for a pair N ⊂M of (sums of) matrix algebras. We call N and
M (a pair of) semisimple algebras (over C).

Let Γ be a connected bipartite graph with multiple edges, v(Γ) and e(Γ)
its set of vertices and edges. Let W (w) be a C-vector space for a white vertex
w. Let W (b, w) be a C-vector space for an edge e with ∂e = b − w and
V (b) =

⊕
∂e=b−wW (b, w) ⊗W (w) for a black vertex b, where the sum runs

over all edges of Γ ending at b. Set

N :=
⊕
w:white

EndC(W (w)),

M :=
⊕
b:black

EndC(V (b)),

=
⊕
b:black

⊕
∂e=b−w

EndC(W (b, w))⊗ EndC(W (w)).

Now let ϕ0 : N →M be the homomorphism defined by

ϕ0 =
⊕
b

ϕ0,b, ϕ0,b =
⊕

∂e=b−w

idW (b,w) ⊗ idEnd(W (w)),

where idW (b,w) is the identity homomorphism of W (b, w). This is a repre-
sentation of the oriented graph Γ in the sense of Definition 1.11 if m(e) =
dimW (b, w) ≤ 1 for any edge e.

Let Λ(M,N) := Λ(Γ). We call it the inclusion matrix of M in N .

Let us consider a tower of semisimple algebras arising from the funda-
mental construction for the pair N ⊂ M . We define M0 = N , M1 = M and
Mk+1 := EndMk−1

(Mk) inductively.

Let M2 = EndN M , ϕ1 the monomorphism of M1 into M2 by right multi-
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plication. Let V (b, w) = EndC(W (b, w)). Then we see that

EndN M =
⊕
w:white

U(w),

U(w) :=
⊕

∂e=b−w

EndW (w) V (b)

=
⊕

∂e=b−w

EndC(V (b, w))⊗ EndC(W (w)),

ϕ1 =
⊕
w

ϕ1,w, ϕ1,w =
⊕

∂e=b−w

right mult.V (b,w) ⊗ idEnd(W (w)).

The construction shows that the graph Γ describe the inclusion of Mk−1

into Mk by interchanging the roles of white and black vertices, and reversing
the orientation of edges at each step. We see Λ(M2k+1,M2k) = Λ(M,N)t,
Λ(M2k,M2k−1) = Λ(M,N).

We set [M : N ] := limk→∞
(
dimMk/ dimM0

)1/k
. (This is one of the

equivalent definitions of the Jones index [M : N ].) We compute this in the
simplest case when Γ is a connected graph with two vertices and a single edge
e. Let m(e) be the multiplicity of e, and ∂e = b− w. Then we see that

M0 = N = EndC(W (w)),

M1 = M = EndC(V (b)) ' EndC(W (b, w))⊗M0,

M2 = EndC(EndC(W (b, w)))⊗ EndC(W (w)),

' EndC(W (b, w))⊗ EndC(V (b)) ' EndC(W (b, w))⊗M1.

Hence we see that dimCMk/Mk−1 = dimC EndC(W (b, w)) = dimC(M/N). It
follows readily that [M : N ] = dimC(M/N), as was remarked in 3.1.

In this situation, the following result is proved.

Theorem 3.9 ([GHJ89], pp. 32–33) 1. The following are equivalent:

(a) there exists a row b(Γ)-vector s and β ∈ C∗ with sΛΛt = βs such
that every coordinate of s and sΛ is nonzero,

(b) there exist C-linear maps ek : Mk →Mk−1 such that e2
k = ek and

(i) Mk is generated by Mk−1 and ek,

(ii) ek satisfies ei = βeiejei if |i − j| = 1 and eiej = ejei if
|i− j| ≥ 2.

2. If one of the equivalent conditions in (1) holds, then

β = ‖Λ(Γ)Λ(Γ)t‖ = ‖Λ(Γ)‖2 = [M : N ].
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This is nontrivial, but is just linear algebra. By Theorem 3.9, we have a
situation similar to a pair of II1 factors N ⊂ M as well as a Temperly–Lieb
algebra Aβ.

From Lemma 3.7, we infer the following result.

Corollary 3.10 Let M0 = N ⊂ M1 = M ⊂ · · · ⊂ Mk ⊂ · · · be a tower of
semisimple algebras. We have a Temperly–Lieb algebra Aβ from the tower if
and only if β = [M : N ] and β ≥ 4 or β = 4 cos2(π/h) for h = 3, 4, 5, . . . .
Moreover

1. if β = 4 cos2(π/h), then the graph Γ is one of A, D, E;

2. if β = 4, then the graph Γ is one of Ã, D̃, Ẽ.

For a pair of II1 factors N ⊂ M , we can always carry out the same
construction as for a pair of semisimple algebras, and we find the same graphs
(principal graphs), because the pair in fact satisfies the stronger restrictions
of (infinite dimensional) II1 factors. As a consequence, the cases Dodd and E7

are excluded.

4 Two dimensional McKay correspondence

4.1 Finite subgroups of SL(2,C)

Up to conjugacy, any finite subgroup of SL(2,C) is one of the subgroups
listed in Table 4; see [Klein]. The triple (d1, d2, d3) specifies the degrees of
the generators of the G-invariant polynomial ring (compare Section 11).

Type G name order h (d1, d2, d3)

An Zn+1 cyclic n+ 1 n+ 1 (2, n+ 1, n+ 1)

Dn Dn−2 binary dihedral 4(n− 2) 2n− 2 (4, 2n− 4, 2n− 2)

E6 T binary tetrahedral 24 12 (6, 8, 12)

E7 O binary octahedral 48 18 (8, 12, 18)

E8 I binary icosahedral 120 30 (12, 20, 30)

Table 4: Finite subgroups of SL(2,C)
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4.2 McKay’s observation

As we mentioned in Section 1, any simple singularity is a quotient singular-
ity by a finite subgroup G of SL(2,C), and so has a corresponding Dynkin
diagram. McKay [McKay80] showed how one can recover the same graph
purely in terms of the representation theory of G, without passing through
the geometry of A2/G.

To be more precise, let G be a finite subgroup of SL(2,C). Clearly, G has
a two dimensional representation, which maps G injectively into SL(2,C);
we call this the natural representation ρnat. Let Irr∗G, respectively IrrG, be
the set of all equivalence classes of irreducible representations, respectively
nontrivial ones. (Caution: note that this goes against the familiar notation
of group theory.) Thus by definition, Irr∗G = IrrG ∪ {ρ0}, where ρ0 is the
one dimensional trivial representation. Any representation of G over C is
completely reducible, that is, is a direct sum of irreducible representations up
to equivalence. Therefore for any ρ ∈ Irr∗G, we have

ρ⊗ ρnat =
∑

ρ′∈Irr∗G

aρ,ρ′ρ
′

where aρ,ρ′ are certain nonnegative integers. In our situation, we see that
aρ,ρ′ = 0 or 1 (except for the case A1, when aρ,ρ′ = 0 or 2).

Let us look at the example D5, the case of a binary dihedral group G := D3

of order 12. The group G is generated by σ and τ :

σ =

(
ε 0
0 ε−1

)
, τ =

(
0 1
−1 0

)
where ε = e2π

√
−1/6.

We note that Tr(σ) = 1, Tr(τ) = 0, hence in this case, the natural repre-
sentation is ρ2 in Table 5.

ρ Tr ρ 1 σ τ

ρ0 χ0 1 1 1

ρ1 χ1 1 1 −1

ρ2 χ2 2 1 0

ρ3 χ3 2 −1 0

ρ4 χ4 1 −1
√
−1

ρ5 χ5 1 −1 −
√
−1

Table 5: Character table of D5
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Definition 4.3 The graph Γ̃GROUP(G) is defined to be the graph consisting
of vertices v(ρ) for ρ ∈ Irr∗G, and simple edges connecting any pair of vertices
v(ρ) and v(ρ′) with aρ,ρ′ = 1. We denote by ΓGROUP(G) the full subgraph

of Γ̃GROUP(G) consisting of the vertices v(ρ) for ρ ∈ IrrG and all the edges
between them.

For example, let us look at the D5 case. Let χj := Tr(ρj) be the character
of ρj. Then from Table 5 we see that

χ2(g)χ2(g) = χ0(g) + χ1(g) + χ3(g), for g = 1, σ or τ .

Hence χ2χ2 = χ0 + χ1 + χ3. General representation theory says that an
irreducible representation of G is uniquely determined up to equivalence by
its character. Therefore ρ2⊗ρ2 = ρ0 +ρ1 +ρ3. Hence aρ2,ρj = 1 for j = 0, 1, 3
and aρ2,ρj = 0 for j = 2, 4, 5. Similarly, we see that

χ0χ2 = χ2, χ1χ2 = χ2,

χ3χ2 = χ0 + χ1 + χ4,

χ4χ2 = χ3 and χ5χ2 = χ3.

In this way we obtain a graph – the extended Dynkin diagram D̃5 of Figure 4.
It is also interesting to note that the degrees of the characters deg ρj = χj(1)
are equal to the multiplicities of the fundamental cycle we computed in Sec-
tion 1. This is true in the other cases. Namely the graph ΓGROUP(G) turns

out to be one of the Dynkin diagrams ADE, while Γ̃GROUP(G) is the corre-
sponding extended Dynkin diagram (see Figure 5). This is the observation of
[McKay80].

D̃5

v
v@@�� v v��v

@@vρ1

ρ0 ρ2 ρ3
ρ4

ρ5

Figure 4: McKay correspondence for D̃5

4.4 The Gonzalez-Sprinberg–Verdier construction

Let G be a finite subgroup of SL(2,C), X the minimal resolution of S :=
A2/G, and E the exceptional set. Gonzalez-Sprinberg and Verdier [GSV83]
constructed a locally free sheaf Vρ on X for any ρ ∈ IrrG such that there
exists a unique Eρ ∈ IrrE satisfying

deg(c1(Vρ)|Eρ) = 1 and deg(c1(Vρ)|E′) = 0 for E ′ 6= Eρ, E
′ ∈ IrrE.
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Thus the map ρ 7→ Eρ turns out to be a bijection from IrrG onto IrrE.
Their construction of Vρ is essentially as follows [Knörrer85], p. 178. Let

ρ : G → GL(V (ρ)) be a nontrivial irreducible representation of G. Then the
associated free OA2-module V(ρ) := OA2⊗CV (ρ) admits a canonical G-action
defined by g · (x, v) = (gx, gv). Let V(ρ)G be the OS-module consisting of
G-invariant sections in V(ρ). The (locally free) OX-module Vρ is defined to
be

Vρ := OX ⊗OS V(ρ)G/OX-torsion.

Theorem 4.5 Let G be a finite subgroup of SL(2,C), S = A2/G, X the
minimal resolution of S and E the exceptional set. Then there is a bijection
j of Irr∗G to Irr∗E such that

1. j(ρ0) = E0 =: Eρ0 and j(ρ) = Eρ for ρ ∈ IrrG;

2. deg(ρ) = mSING
Eρ

for all ρ ∈ Irr∗G;

3. aρ,ρ′ = (Eρ, Eρ′)SING for ρ 6= ρ′ ∈ Irr∗G.

In particular:

Corollary 4.6 ΓGROUP(G) = ΓSING(A2/G) and Γ̃GROUP(G) = Γ̃SING(A2/G).

See [McKay80] and [GSV83]. Using invariant theory, [Knörrer85] gave a
different proof of Theorem 4.5 based on the construction in [GSV83]. We dis-
cuss again the construction of [GSV83] from the viewpoint of Hilbert schemes
in Sections 8–16, and give there our own proof of Theorem 4.5.

5 Missing links and problems

5.1 Known links

We review briefly what is known about links between any pair of the objects
(a)–(f) – namely,

(a) simple singularities, (b) finite subgroups of SL(2,C),

(c) simple Lie algebras, (d) quivers, (e) CFT, (f) subfactors.

A very deep understanding of the link from (c) to (a) is provided by work of
Grothendieck, Brieskorn, Slodowy and Springer. See [Slodowy80]. However,
no intrinsic converse construction of simple Lie algebras starting from (a) is
known.

The link from (b) to (a) is on the one hand the obvious quotient singular-
ity construction, and on the other the very nontrivial McKay correspondence.
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The construction of [GSV83] gives an explanation for the McKay correspon-
dence. See also [Knörrer85] and Section 4. We will show a new way of
understanding the link (the McKay correspondence) in Sections 8-16. Quiv-
ers of finite type appear in the course of this, which provides a link from (b)
to (d) alongside the link from (b) to (a). This path has already been found
in [Kronheimer89] in a slightly different manner.

For a given pair of II1 factors one can construct a tower of II1 factors by
a certain procedure which specialists call mirror image transformations. In
order to have an ADE classification we had better look at the same tower
construction for a pair of semisimple algebras (semisimple algebras over C
are sums of matrix algebras). In the tower of semisimple algebras the initial
pair N ⊂M is described as a representation of an ADE quiver, while the rest
of the tower is generated automatically from this. Therefore the link between
(d) and (f) is firmly established, though the subfactors are only possible with
the exception of Dodd and E7. The link between (e) and (f) does not seem to
be perfectly known. See [EK97].

Infinite dimensional Heisenberg/Clifford algebras and their representa-
tions on Fock space enter the theory of Hilbert schemes. See [Nakajima96b],
[Grojnowski96] and Section 6. This strongly suggests as yet unrevealed rela-
tions between the theory of Hilbert schemes with modular invariant partitions
and II1 (sub)factors.

The most desirable outcome would be a theory in which all six kinds of
objects (a)–(f) arise naturally in various forms from one and the same object,
for instance, from a finite subgroup of SL(2,C).

5.2 Problems

The following problems are worth further investigation.

1. What are the Coxeter exponents and the Coxeter number for a finite
subgroup of SL(2,C), and why? (It is known that the Coxeter number
equals the largest degree of the three homogeneous generators of the
G-invariant polynomial ring. But why?)

2. What are the multiplicities of the highest weight for (e) and (f)?

3. Why do indices other than Coxeter exponents appear in Table 3 of
Theorem 2.7?

4. The link from (b) to (c)? Can we recover the Lie algebras?

5. The link from (a) to (c)? Can we recover the Lie algebras?

6. The links from (b) to (e) and (f)?
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7. Theorem 2.9 and Theorem 3.3 hint at an ADE classification of c < 1
minimal unitary series. If so, what do they look like? What is the link
from (e) to (f) via this route?

6 Hilbert schemes of n points

6.1 Projectivity

Let X be a projective scheme of dimension k over C. Then HilbnX is by defi-
nition the universal scheme parametrizing all zero-dimensional subschemes Z
of X such that h0(Z,OZ) = dim(OZ) = n, which does exist by a theorem of
Grothendieck [FGA] Exposé 221. See Theorem 6.2. Set-theoretically

HilbnX = {Z ⊂ X; dim(OZ) = n}
' {I ⊂ OX ; I an ideal of OX , dim(OX/I) = n}

Let us show very roughly that HilbnX is a projective scheme.
Let OX(1) be a very ample invertible sheaf on X and OX(m) := OX(1)⊗m.

Let us prove first that for any large m fixed HilbnX is regarded as a subset of
the Grassman variety of n-codimensional subspaces of H0(X,OX(m)).

Let Z ∈ HilbnX be a zero-dimensional subscheme, I the ideal ofOX defining
Z with h0(Z,OZ) = dimOX/I = n. Then we have an exact sequence

0→ IOX(m)→ OX(m)→ OZ(m) (' OZ)→ 0

If the support of Z is P1, · · · , Ps (s ≤ n), then we see easily mkn
1 · · ·mkn

s ⊂ I
where mi is the maximal ideal of OX,Pi . If H1(mkn

1 · · ·mkn
s OX(m)) = 0, then

we see that the natural homomorphism

H0(OX(m))→ H0(OX(m)/mkn−1
1 · · ·mkn

s OX(m))→ H0(OX(m)/IOX(m))

is surjective. Since all the ideals mkn
1 · · ·mkn

s is parametrized by an open
subscheme {(P1, · · · , Ps) ∈ Xs;Pi 6= Pj, i 6= j} of Xs (s ≤ n), there is a
constant m0 by Serre vanishing and the upper semi-continuity of dimH1

such that H1(mkn
1 · · ·mkn

s OX(m)) = 0 for any m ≥ m0. This constant
m0 depends only on n and X. It follows that the natural homomorphism
H0(OX(m)) → H0(OZ) is surjective for any Z ∈ HilbnX and any m ≥ m0.
Thus to each Z ∈ HilbnX is associated a point Grassm(Z) of the Grassmann va-
riety Grass(H0(OX(m)), n). Let ni = dimOZ,Pi . Then since mkn

i ⊂ I at Pi it
is clear that Z is parametrized by Pi and Grass(OX,Pi/mkn

i , ni), the Grassman
variety of ni-codimensional subspaces of OX,Pi/mkn

i . Therefore again by Serre
vanishing plus some standard arguments we may assume that the natural ho-
momorphism H0(IOX(m))⊗OX → IOX(m) is surjective for m ≥ m1 (≥ m0)
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by choosing a larger m1 if necessary. We may assume that this m1 depends
only on n and X.

Since H0(IOX(m)) is the kernel of the restriction map H0(OX(m)) →
H0(OX(m)⊗OZ) ' H0(OZ), Grassm(Z) determines H0(IOX(m)) uniquely.
Since H0(IOX(m))⊗OX → IOX(m) is surjective, H0(IOX(m)) determines
IOX(m) uniquely, hence Grassm(Z) determines Z uniquely. In other words,
if m ≥ m1, then for any pair of subschemes Z and Z ′ in HilbnX , Grassm(Z) =
Grassm(Z ′) if and only if Z = Z ′. This shows roughly that HilbnX is a sub-
scheme of the Grassman variety.

Next we give a rough proof that HilbnX in is a closed subscheme of the
Grassman variety. In fact, if we are given a one parameter flat family of
subschemes Zt ∈ HilbnX (say, 0 6= t ∈ D := {|t| < 1}), then we have
a one parameter family of ideals It defining Zt and a one parameter fam-
ily of subspaces H0(ItOX(m)) of H0(OX(m)). Hence we have a one pa-
rameter family of points Grassm(Zt) in Grass(H0(OX(m)), n) for any m ≥
m1. Since Grass(H0(X,OX(m)), n) is projective, there is a limit Vm =
limt→0H

0(ItOX(m)) in Grass(H0(OX(m)), n) (without taking a nontrivial
finite cover of D because dimD = 1). Let Im := VmOX(−m). Then Im is
an ideal of OX . We see Im ⊂ Im+1 because VmH

0(OX(1)) ⊂ Vm+1. Since the
increasing sequence Im is stationary by the noetherian property of OX , there
exists m2 (≥ m1) such that we have Im = Im+1 = · · · for any m ≥ m2. Let
I = Im = Im+1 = · · · and OZ := OX/I. As usual we have an exact sequence

0→ IOX(m)→ OX(m)→ OZ(m)→ 0

By Serre vanishing there exists m3 ≥ m2 such that H1(IOX(m)) = 0
for any m ≥ m3. By their definitions Vm ⊂ H0(IOX(m)). It follows from
H1(IOX(m)) = 0 that dimH0(OZ(m)) ≤ n for any m ≥ m3, hence Z is
zero-dimensional. But we can do the same construction of I as above in
relative version because dimH0(ItOX(m)) is constant and equal to dimVm.
As a consequence we see that there exists an ideal sheaf I of OX×D such that
I|X×t = It (t 6= 0) and I|X×0 = I. Therefore by the upper semicontinuity
of dimH0 we see dimH0(OZ) = n. Thus I is the ideal sheaf of OX with
dimOX/I = n, and Z ∈ HilbnX . This shows that HilbnX is a projective
scheme.

Let U be an open subscheme of X. Then HilbnU is an open subscheme of
HilbnX consisting of the subschemes of X whose supports are contained in U .
We call HilbnU the Hilbert scheme of n points in U . Refer [FGA] Exposé 221
for the details on Hilbert schemes.

For later use we quote the theorem of Grothendieck guaranteeing existence
and universality of HilbnX . This theorem will be made use of to determine the
precise structure of HilbGX defined in § 8 by their universal property.



Y. Ito and I. Nakamura 29

Theorem 6.2 Let X be any projective scheme and n any positive integer.
Then there exist a projective scheme HilbnX (possibly with finitely many irre-
ducible components) and a universal proper flat family πuniv : Zn → HilbnX of
zero-dimensional subschemes of X such that

1. any fibre of πuniv belongs to HilbnX ,

2. Zn
t = Zn

s if and only if t = s, where Zn
t := π−1

univ(t) for t ∈ HilbnX ,

3. given any flat family π : Y → S of zero-dimensional subschemes of X
with length n, there exists a unique morphism ϕ : S → HilbnX such that
(Y, π) ' ϕ∗(Zn, πuniv).

6.3 Hilbert-Chow morphism

Write Sn(A2) for the nth symmetric product of the affine plane A2. This is
by definition the quotient of the products of n copies of A2 by the natural
permutation action of the symmetric group Sn on n letters. It is the set of
formal sums of n points, in other words, the set of unordered n-tuples of
points.

We call Hilbn(A2) the Hilbert scheme of n points in A2. It is a quasipro-
jective scheme of dimension 2n. Any Z ∈ Hilbn(A2) is a zero dimensional
subscheme with h0(Z,OZ) = dim(OZ) = n. Suppose that Z is reduced.
Then Z is a union of n distinct points. Since being reduced is an open and
generic condition, Hilbn(A2) contains a Zariski open subset consisting of for-
mal sums of n distinct points. This is why we call Hilbn(A2) the Hilbert
scheme of n points on A2.

We have a natural morphism π from Hilbn(A2) onto Sn(A2) defined by

π : Z 7→
∑

p∈Supp(Z)

dim(OZ,p)p

We call π the Hilbert-Chow morphism (of A2). Let D be the subset of
Sn(A2) consisting of formal sums of n points with at least two coincident
points. It is clear that π is the identity over Sn(A2)\D, hence is birational. If
n = 2 and if Z is nonreduced with Supp(Z) the origin, then Z is a subscheme
defined by the ideal

I = (ax+ by, x2, xy, y2), where (a, b) 6= (0, 0).

Thus the set of these subschemes is P1 parametrizing the ratios a : b. It follows
that Hilb2(A2) is the quotient by the symmetric group S2 of the blowup of
the nonsingular fourfold A2 × A2 along the diagonal A2. For all n there is a
relatively simple description, due to Barth, of HilbnA2 as a scheme, in terms of
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monads. See [OSS80] and [Nakajima96b], Chapter 2. We write some of these
down explicitly in Sections 12–16.

One of the most remarkable features of Hilbn(A2) is the following result.

Theorem 6.4 ([Fogarty68]) Hilbn(A2) is a smooth quasiprojective scheme,
and π : Hilbn(A2)→ Sn(A2) is a resolution of singularities of the symmetric
product.

A simpler proof of Theorem 6.4 is given in [Nakajima96b]. We note that
smoothness of Hilbn(A2) is peculiar to dimA2 = 2. If n ≥ 3, then a subscheme
Z ⊂ An can be very complicated in general [Göttsche91]. See [Iarrobino77],
[Briançon77]. [Göttsche91], p. 60 writes that Hilbn(Ak) is known to be sin-
gular for k ≥ 3 and n ≥ 4 while it is smooth for any k if n = 3. Hilbn(Ak) is
connected for any n and k by [Fogarty68], while it is reducible hence singular
for any k and any large n >> k by [Iarrobino72].

Besides smoothness, Hilbn(A2) has various mysterious nice properties.
Among others, the following is relevant to our subsequent study of HilbG(A2).

Theorem 6.5 ([Beauville83]) Hilbn(A2) admits a holomorphic symplectic
structure.

Proof See also [Fujiki83] for n = 2, and [Mukai84] for a more general case.
The sketch proof below, mostly taken from [Beauville83], shows that the
theorem also holds for Hilbn(S) if S is a smooth complex surface with a
nowhere vanishing holomorphic two form. Let ω be a nowhere vanishing
closed holomorphic 2-form on S := A2, say dx ∧ dy in terms of the linear
coordinates on S. The product Sn of n copies of S has the holomorphic 2-
form ψ :=

∑n
i=1 p

∗
i (ω), where pi is the ith projection. We show that ψ induces

a symplectic form on S[n] := Hilbn(S).

Let S(n) = Sn(S) for the nth symmetric product of S, that is, by definition
the quotient of the products of n copies of S by the natural permutation action
of the symmetric group Sn on n letters. Let ε : Sn → S(n) be the natural
morphism. Let D∗ be the open subset of D consisting of all 0-cycles of the
form 2x1+x2+· · ·+xn−1 with all the xi distinct. We set S

(n)
∗ := S(n)\(D\D∗),

S
[n]
∗ = π−1(S

(n)
∗ ), Sn∗ := ε−1(S

(n)
∗ ) and ∆∗ = ε−1(D∗). Then ∆∗ is smooth and

of codimension 2 in S
(n)
∗ . Then by [Beauville83], p. 766, S

[n]
∗ is isomorphic to

the quotient of the blowup of Bl∆∗(S
(n)
∗ ) of S

(n)
∗ along ∆∗ by the symmetric

group Sn. Hence we have a natural morphism ρ : BlD(S
(n)
∗ ) → S

[n]
∗ . We see

easily that ψ induces a holomorphic 2-form ϕ on S
[n]
∗ , which extends to S[n]

because the codimension of the inverse image of S[n] \ S[n]
∗ in S[n] is greater

than one.
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Let E∗ be the inverse image of ∆∗ in Bl∆∗(S
(n)
∗ ). Then the canonical

bundle of Bl∆∗(S
(n)
∗ ) is E∗, because that of Sn is trivial. On the other hand,

it is the sum of the divisor ρ∗(ϕn) and the ramification divisor R of ρ. Since

R = E∗ on Bl∆∗(S
(n)
∗ ), we see that (ϕ)n is everywhere nonvanishing on S

[n]
∗ ,

hence also on S[n] [Beauville83]. Thus ϕ is a nowhere degenerate 2-form, that
is, a holomorphic symplectic form on S[n]. �

Definition 6.6 The infinite dimensional Heisenberg algebra s is by definition
the Lie algebra generated by pi, qi for i ≥ 1 and c, subject to the relations

[pi, qj] = cδij, [pi, pj] = [qi, qj] = [pi, c] = [qi, c] = 0.

It is known that for any a ∈ C∗, the Lie algebra s has the canonical
commutation relations representation σa on Fock space R := C[x1, x2, . . . ],
that is, the ring of polynomials in infinitely many indeterminates xi; the
representation is defined by

σa(pi) = a
∂

∂xi
, σa(qi) = xi, σa(c) = a · idR.

We denote this s-module by Ra. We also define a derivation d0 of s by

[d0, qi] = iqi, [d0, pi] = −ipi, [d0, c] = 0.

The following fact is important (see [Kac90], pp. 162–163):

Theorem 6.7 An irreducible s-module with generator v0 is isomorphic to Ra

if pi(v0) = 0 for all i and c(v0) = av0 for some a 6= 0. The character of Ra is
given by

TrRa(q
d0) =

∞∏
i=1

(1− qi)−1.

The vector v0 in the above theorem is called a vacuum vector of V . We
quote one of the surprising results of [Nakajima96b].

Theorem 6.8 Let s be the infinite dimensional Heisenberg algebra. Then
the direct sum of all the cohomology groups

⊕
n≥0H

∗(Hilbn(A2),C) is an
irreducible s-module with a = 1 whose vacuum vector v0 is a generator of
H0(Hilb0(A2),C).

By Theorem 6.7, the above theorem gives in a sense the complete structure
of the s-module. However we should mention that its irreducibility follows
from comparison with the following Theorem 6.9.

[Nakajima96b] derives a similar conclusion when A2 is replaced by a
smooth quasiprojective complex surface X. Then

⊕
n≥0H

∗(Hilbn(X),C) is
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an infinite dimensional Heisenberg/Clifford algebra module. Its irreducibility
again follows from Theorem 6.9.

Cell decompositions of Hilbn(P2) and Hilbn(A2), and hence complete for-
mulas for the Betti numbers of Hilbn(P2) and Hilbn(A2), are known by Ellings-
rud and Strømme [ES87]. The formulas for the Betti numbers of Hilbn(P2)
and Hilbn(A2) are written by [Göttsche91] more generally in the following
beautiful manner.

To state the theorem, we define the Poincaré polynomial p(X, z) of a
smooth complex variety X by p(X, z) :=

∑∞
i=0 dimH i(X,Q)zi. Moreover we

define p(X, z, t) :=
∑∞

n=0 p(Hilbn(X), z)tn for a smooth complex surface X.

Theorem 6.9 ([Göttsche91]) Let X be a smooth projective complex sur-
face. Then

p(X, z, t) =
∞∏
m=1

(1 + z2m−1tm)b1(X)(1 + z2m+1tm)b3(X)

(1− z2m−2tm)b0(X)(1− z2mtm)b2(X)(1− z2m+2tm)b4(X)
,

where bi(S) is the ith Betti number of S.

7 Three dimensional quotient singularities

7.1 Classification of finite subgroups of SL(3,C)

Threefold Gorenstein quotient singularities have attracted the attention of
both mathematicians and physicists in connection with Calabi–Yau three-
folds, mirror symmetry and superstring theory. For a finite subgroup G of
GL(n,C), the quotient An/G is Gorenstein if and only if G ⊂ SL(n,C); see
[Khinich76] and [Watanabe74].

Now we review the classification of finite subgroups of SL(3,C) from
the very classical works of [Blichfeldt17], and Miller, Blichfeldt and Dick-
son [MBD16]. In these works they nearly completed the classification of finite
subgroups of SL(3,C) up to conjugacy. Unfortunately, however, there were
two missing classes, which were supplemented later by Stephen S.-T. Yau and
Y. Yu [YY93], p. 2.

There is an obvious series of finite subgroups coming from subgroups of
GL(2,C). In fact, associating (det g)−1 ⊕ g to each g ∈ GL(2,C), we have
a finite subgroup of SL(3,C) for any subgroup of GL(2,C). Including this
series, there are exactly four infinite series of finite subgroups of SL(3,C):

1. diagonal Abelian groups;

2. groups coming from finite subgroups in GL(2,C);
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3. groups generated by (1) and T ;

4. groups generated by (3) and Q.

Here

T =

0 1 0
0 0 1
1 0 0

 , Q =
1√
−3

1 1 1
1 ω ω2

1 ω2 ω

 , where ω := e2π
√
−1/3.

There are exactly eight sporadic classes, each of which contains a unique
finite subgroup up to conjugacy, of order 108, 216, 648, 60, 168, 180, 504 and
1080 respectively. Only two finite simple groups appear: A5 (' PSL(2,F5))
of order 60, and PSL(2,F7) of order 168.

The subgroup PSL(2,F7) of SL(3,C) is the automorphism group of the
Klein quartic curve x3

0x1 + x3
1x2 + x3

2x0 = 0. On the other hand, A5 is
realized as a subgroup of SL(3,C) as follows. Let G be the binary icosahedral
subgroup of SL(2,C) of order 120 (compare Section 16). This acts on the
space of polynomials of homogeneous degree two on A2, with ±1 ∈ G acting
trivially. Therefore this is an irreducible representation of G/{±1} (' A5)
of rank three. This realizes A5 as a finite subgroup of SL(3,C). Or, more
simply, A5 ⊂ SO(3) is the group of automorphisms of the icosahedron.

In the case of order 108, the quotient A3/G is a complete intersection
defined by two equations, while it is a hypersurface in the remaining seven
cases. The defining equations are completely known; in contrast with the
two dimensional case, they are not all weighted homogeneous. The weighted
homogeneous ones are the cases of order 108, 648, 60, 180 and 1080 [YY93].

All finite subgroups of GL(2,C) are known by Behnke and Riemenschnei-
der [BR95]. We note that in the easiest series (1) the quotients are torus em-
beddings. Therefore their smooth resolutions are constructed through torus
embeddings. See [Roan89].

Outstanding in this area is the following theorem, which generalizes the
two dimensional McKay correspondence to some extent.

Theorem 7.2 For any finite subgroup G of SL(3,C), there exists a smooth
resolution X of the quotient A3/G such that the canonical bundle of X is triv-
ial (X is then called a crepant resolution of A3/G). For any such resolution
X, H∗(X,Z) is a free Z-module of rank equal to the number of the conjugacy
classes of G.

[Ito95a], [Ito95b], [Markushevich92], [Roan94] and [Roan96] contribute to
the proof of this theorem. It seems desirable to simplify the proofs for the
complicated sporadic classes. Ito and Reid [IR96] generalized the theorem
and sharpened it especially in dimension three by finding a bijective cor-
respondence between irreducible exceptional divisors of the resolution and
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conjugacy classes of G (called junior) with certain type of eigenvalues: they
defined the notion of age of a conjugacy class; the junior conjugacy classes
are those of age equal to one. The junior ones play a more important role in
the study of crepant resolutions.

8 Hilbert schemes and simple singularities

Introduction

The second half of the article starts here. In it, we study the link from (b) to
(a).

8.1 Abstract

For any finite subgroup G of SL(2,C) of order n, we consider the G-orbit
Hilbert scheme, namely, a certain subscheme HilbG(A2) of Hilbn(A2) that
parametrizes G-invariant subschemes. We first give a direct proof, indepen-
dent of the classification of finite subgroups of SL(2,C), that HilbG(A2) is a
minimal resolution of a simple singularity A2/G. Any point of the exceptional
set E is a G-invariant 0-dimensional subscheme Z of A2 with support the ori-
gin. Let I be the ideal sheaf defining Z. Then I is an infinite dimensional
G-module. Dividing it by a natural G-submodule of I gives a finite G-module
V (I), which turns out to be either an irreducible G-module or the sum of two
inequivalent irreducible G-modules. This gives the McKay correspondence as
described in Section 4.

8.2 Summary of main results

We explain in a little more detail. Let Sn(A2) be the nth symmetric product of
A2 (that is, the Chow variety Chown(A2)), and Hilbn(A2) the Hilbert scheme
of n points of A2. By Theorems 6.4 and 6.5, Hilbn(A2) is a crepant resolution
of Sn(A2) with a holomorphic symplectic structure.

Let G be an arbitrary finite subgroup of SL(2,C); it acts on A2, and
therefore has a canonical action on both Hilbn(A2) and Sn(A2). Now we
consider the particular case where n equals the order of G. Then it is easy
to see that the G-fixed point set Sn(A2)G in Sn(A2) is isomorphic to the
quotient A2/G. The G-fixed point set Hilbn(A2)G in Hilbn(A2) is always
nonsingular, but could a priori be disconnected. There is however a unique
irreducible component of Hilbn(A2)G dominating Sn(A2)G, which we denote
by HilbG(A2). Since HilbG(A2) inherits a holomorphic symplectic structure
from Hilbn(A2), HilbG(A2) is a crepant (that is, minimal) resolution of A2/G
(see Theorem 9.3).
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Our aim in this part is to study in detail the structure of HilbG(A2) using
representations of G defined in terms of spaces of homogeneous polynomials
or symmetric tensors.

Let m (respectively mS) be the maximal ideal of the origin of A2 (respec-
tively S := A2/G) and set n = mSOA2 . A point p of HilbG(A2) is a G-invariant
0-dimensional subscheme Z of A2, and to it we associate the G-invariant ideal
subsheaf I defining Z, and the exact sequence

0→ I → OA2 → OZ → 0.

We assume that p is in the exceptional set E of HilbG(A2); since G acts freely
outside the origin, Z is then supported at the origin, and I ⊂ m. As is easily
shown, I contains n (Corollary 9.6). Let V (I) := I/(mI + n). The finite
G-module V (I) is isomorphic to a minimal G-submodule of I/n generating
the OA2-module I/n.

If p is a smooth point of E, we prove that V (I) is a nontrivial irreducible
G-module; while if p ∈ E is a singular point, V (I) is the direct sum of two
inequivalent nontrivial irreducible G-modules. For any equivalence class of a
nontrivial irreducible G-module ρ we define the subset E(ρ) of E consisting
of all I ∈ HilbG(A2) such that V (I) contains ρ as a G-submodule. We will
see that E(ρ) is naturally identified with the set of all nontrivial proper G-
submodules of ρ⊕2, which is isomorphic to a smooth rational curve by Schur’s
lemma (Theorem 10.7). The map ρ 7→ E(ρ) gives a bijective correspondence
(Theorem 10.4) between the set IrrG of all the equivalence classes of irre-
ducible G-modules and the set IrrE of all the irreducible components of E,
which turns out to be the classical McKay correspondence [McKay80].

We also give an explanation of why it is that tensoring by the natural rep-
resentation appears as the key ingredient in the McKay correspondence. An
outline of the story is given in 13.5. The most remarkable point, in addition
to the McKay correspondence itself, is that there are two kinds of dualities
(Theorems 10.6 and 12.4) in the G-module decomposition of the algebra m/n.
(After completing the present work, we were informed by Shinoda that the
dualities also follow from [Steinberg64].) It is the second duality (for instance,
Theorem 10.6) that explains why tensoring by the natural representation ap-
pears in the McKay correspondence.

Our results hold also in characteristic p provided that the ground field k
is algebraically closed and the order of G is coprime to p.

The research part of the article is organized as follows. In Section 9 we
prove that HilbG(A2) is a crepant (or minimal) resolution of A2/G. We also
give some elementary lemmas on representations of finite groups. In Sec-
tion 10 we formulate our main theorem and relevant theorems. We give a
complete description of the ideals corresponding to the points of the excep-
tional set E. In Section 11 we prove the dualities independently of the classi-
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fication of finite subgroups of SL(2,C). In Sections 12–16 we study HilbG(A2)
and prove the main theorem separately in the cases An, Dn, E6, E7 and E8

respectively.
In Section 17, we raise some unsolved questions.

9 The crepant (minimal) resolution

Lemma 9.1 Let G be a finite subgroup of GL(2,C), and Hilbn(A2)G the
subset of Hilbn(A2) consisting of all points fixed by G. Then Hilbn(A2)G is
nonsingular.

Proof By Theorem 6.4, Hilbn(A2) is nonsingular. Let p be a point of
Hilbn(A2)G. Since the action of G on Hilbn(A2) at p is linearized. In other
words we see that there exist local parameters xi of Hilbn(A2) at p and some
constants aij(g) ∈ C such that g∗xi =

∑
aij(g)xj for any g ∈ G. The fixed

locus Hilbn(A2)G at p is by definition the reduced subscheme of Hilbn(A2)G

defined by xi −
∑
aij(g)xj = 0 (∀g ∈ G). Hence it is nonsingular. �

Lemma 9.2 Let G be a finite subgroup of SL(2,C) of order n, and Sn(A2)G

the subset of Sn(A2) consisting of all points of Sn(A2) fixed by G. Then
Sn(A2)G ' A2/G.

Proof Let 0 6= q ∈ A2 be a point. Then since q is not fixed by any element
of G other than the identity, the set G · q := {g(q); g ∈ G} determines
a point in Sn(A2)G. Conversely, any point of Sn(A2)G is an unordered G-
invariant set Σ in A2. If Σ contains a point q 6= 0, it must contain the set
G · q. Since |Σ| = n = |G|, we have Σ = G · q. Note G · q = G · q′ for
a pair of points q, q′ 6= 0 if and only if q′ ∈ G · q. Therefore we have the
isomorphism Sn(A2 \ {0})G ' (A2 \ {0})/G, which extends naturally to a
bijective morphism of Sn(A2)G onto A2/G. It follows that Sn(A2)G ' A2/G
because A2/G is normal. �

Theorem 9.3 Let G ⊂ SL(2,C) be a finite subgroup of order n. Then there
is a unique irreducible component HilbG(A2) of Hilbn(A2)G dominating A2/G,
which is a crepant (or equivalently a minimal) resolution of A2/G.

Proof We have the Hilbert-Chow morphism of Hilbn(A2) onto Sn(A2) de-
fined by π(Z) = Supp(Z) (counted with the appropriate multiplicities) for a
zero-dimensional subscheme Z of A2. Since Hilbn(P2) is a projective scheme
by Theorem 6.2, the Hilbert-Chow morphism of Hilbn(P2) is proper. Hence
the Hilbert-Chow morphism of Hilbn(A2) is proper because it is obtained by
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restricting the image variety Sn(P2) to Sn(A2). This induces a natural mor-
phism of HilbG(A2) onto Sn(A2)G ' A2/G. Any point of Sn(A2)G \ {0} is
a G-orbit of a point 0 6= p ∈ A2, which is a reduced zero-dimensional sub-
scheme invariant under G. It follows that HilbG(A2) is birationally equivalent
to Sn(A2)G, so that it is a resolution of Sn(A2)G ' A2/G.

By [Fujiki83], Proposition 2.6, HilbG(A2) inherits a canonical holomorphic
symplectic structure from Hilb(A2). Since dim HilbG(A2) = dimA2/G = 2,
this implies that the dualizing sheaf of HilbG(A2) is trivial. This completes
the proof. �

Lemma 9.4 Let G be a finite subgroup of GL(n,C). Let S be a connected
reduced scheme, and I an ideal of OAn×S such that OAn×S/I is flat over S.
Let Is := I ⊗ OAn×{s}. Suppose that we are given a regular action of G on
An × S possibly depending nontrivially on S. If dim Supp(OAn×{s}/Is) = 0
for any s ∈ S, then the equivalence class of the G-module OAn×{s}/Is is
independent of s.

Proof By the assumption h1(OAn×{s}/Is) = 0. Therefore h0(OAn×{s}/Is) is
constant on S because χ(OAn×{s}/Is) is constant by [Hartshorne77], Chapter
III. Hence again by [ibid.] OAn×S/I is a locally free sheaf of OS-modules
of finite rank. Let E := OAn×S/I and ∆(g, x) := det(x · id − T (g)) be
the characteristic polynomial of the action T (g) of g ∈ G on E. Clearly
∆(g, x) is independent of a local trivialization of the sheaf E. It follows that
∆(g, x) ∈ Hom(detE, detE)[x] ' Γ(OS)[x], the polynomial ring of x over
Γ(OS). Moreover coefficients of the polynomial ∆(g, x) in x are elementary
symmetric polynomials of eigenvalues of T (g). Since all the eigenvalues of
T (g) are n-th roots of unity where n = |G|, coefficients of ∆(g, x) take values
in a finite subset of C over S. Since S is connected and reduced, they are con-
stant. It follows that ∆(g, x) ∈ C[x]. In particular the character TrT (g), the
coefficient of x in ∆(g, x) is independent of s ∈ S. Since any finite G-module
is uniquely determined up to equivalence by its character, the equivalence
class of the G-module OAn×{s}/Is is independent of s ∈ S. �

Corollary 9.5 Let G be a finite subgroup of SL(2,C), and I an ideal of
OA2 with I ∈ HilbG(A2). Then as G-modules OA2/I ' C[G], the regular
representation of G.

Corollary 9.6 Let I be an ideal of OA2 with I ∈ HilbG(A2). Any G-invariant
function vanishing at the origin is contained in I.
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Proof OA2/I ' C[G] by Corollary 9.5. This implies that OA2/I has a
unique trivial G-submodule spanned by constant functions of A2. It follows
that any G-invariant function vanishing at the origin is contained in I. �

Remark 9.7 By [Nakajima96b], Theorem 4.4, for I ∈ Hilbn(A2), the follow-
ing conditions are equivalent,

1. I ∈ HilbG(A2);

2. OA2/I ' C[G];

3. HomOA2
(I,OA2/I)G 6= 0.

10 The Main Theorem

10.1 Stratification of HilbG(A2) by IrrG

Let G be a finite subgroup of SL(2,C). As in Section 4.2, we write IrrG
for the set of all the equivalence classes of nontrivial irreducible G-modules,
and Irr∗G for the union of IrrG and the trivial one dimensional G-module.
Let V (ρ) ∈ IrrG be a G-module, and ρ : G → GL(V (ρ)) the corresponding
homomorphism.

Let X = XG := HilbG(A2) and S = SG := A2/G. Write m (respectively
mS) for the maximal ideal of A2 (respectively S) at the origin 0, and set
n := mSOA2 . Let π : X → S be the natural morphism and E the exceptional
set of π. Let IrrE be the set of irreducible components of E. Any I ∈ X
contained in E (to be exact, the subscheme defined by I belongs to X) is a
G-invariant ideal of OA2 which contains n by Corollary 9.6. For any ρ, ρ′,
and ρ′′ ∈ IrrG, we define

V (I) := I/(mI + n),

E(ρ) :=
{
I ∈ HilbG(A2);V (I) ⊃ V (ρ)

}
,

P (ρ, ρ′) :=
{
I ∈ HilbG(A2);V (I) ⊃ V (ρ)⊕ V (ρ′)

}
,

Q(ρ, ρ′, ρ′′) :=
{
I ∈ HilbG(A2);V (I) ⊃ V (ρ)⊕ V (ρ′)⊕ V (ρ′′)

}
.

Remark 10.2 Note that we allow ρ = ρ′ in the definition of P (ρ, ρ′). Of
course if ρ 6= ρ′, then P (ρ, ρ′) = E(ρ) ∩ E(ρ′).

Definition 10.3 Two irreducible G-modules ρ and ρ′ are said to be adjacent
if ρ⊗ ρnat contains ρ′ if and only if ρ′ ⊗ ρnat contains ρ.
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In fact, since G ⊂ SL(2,C), we have χnat(x
−1) = χnat(x) (∀x ∈ G) where

χnat := Tr(ρnat). Hence for any characters χ and χ′ of G

(χχnat , χ
′) = (1/|G|)

∑
x∈G

χ(x)χnat(x)χ′(x−1) = (χ, χ′χnat).

Thus the multilicity of ρ′ in ρ⊗ ρnat equals that of ρ in ρ′ ⊗ ρnat .
The Dynkin diagram Γ(IrrG) or the extended Dynkin diagram Γ(Irr∗G)

of G is the graph whose vertices are IrrG or Irr∗G respectively, with ρ and
ρ′ joined by a simple edge if and only if ρ and ρ′ are adjacent.

Ãn
v@@

v. . .vv
��vv
@@ v v . . . v��vρ1

ρ0

ρn ρn−1

ρ2 ρ3

D̃n

v
@@v�� v v . . . v��v

@@vρ′1

ρ′0 ρ2 ρ3 ρn−2
ρ′n−1

ρ′n

Ẽ6 v v vv
v

v v
ρ′1 ρ′2

ρ2

ρ0

ρ3 ρ′′2 ρ′′1

Ẽ7 v v v vv v v v
ρ′1 ρ′2

ρ′′2

ρ′3 ρ4 ρ3 ρ2 ρ0

Ẽ8 v v vv v v v v v
ρ′2 ρ′4

ρ′′3

ρ6 ρ5 ρ4 ρ3 ρ2 ρ0

Figure 5: The extended Dynkin diagrams and representations

Then our main theorem is stated as follows.

Theorem 10.4 Let G be a finite subgroup of SL(2,C). Then

1. the map ρ 7→ E(ρ) is a bijective correspondence between IrrG and IrrE;
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2. E(ρ) is a smooth rational curve with E(ρ)2 = −2 for any ρ ∈ IrrG;

3. P (ρ, ρ′) 6= ∅ if and only if ρ and ρ′ are adjacent. In this case P (ρ, ρ′) is a
single (reduced) point, at which E(ρ) and E(ρ′) intersect transversally;

4. P (ρ, ρ) = Q(ρ, ρ′, ρ′′) = ∅ for any ρ, ρ′, ρ′′ ∈ IrrG.

In the An case Theorem 10.4 follows from Theorem 9.3 and Theorems
in Section 12. In the other cases Theorem 10.4 follows from Theorem 9.3,
Theorem 10.7 and Remark 10.8.

By Theorem 10.4, (3), Γ(IrrG) is the same thing as the dual graph Γ(IrrE)
of E, in other words, the Dynkin diagram of the singularity SG. Let h be the
Coxeter number of Γ(IrrE). We also call h the Coxeter number of G. See
Table 2 and Subsection 11.1.

We define nonnegative integers d(ρ) for any ρ ∈ IrrG as follows. If G
is cyclic, choose a character χ of G such that ρnat = χ ⊕ χ−1, and define
e(χk) = k, d(χk) = |n+1

2
−k|. Although there are two choices of the generator

χ, the definition of the pair
(
h
2
− d(ρ), h

2
+ d(ρ)

)
=
(
e(ρ), n + 1 − e(ρ)

)
is

independent of the choice. If G is not cyclic, then Γ(IrrG) is star-shaped
with a unique centre. For any ρ ∈ IrrG, we define d(ρ) to be the distance
from the vertex ρ to the centre. It is obvious that d(ρ) = d(ρ′) ± 1 if ρ and
ρ′ ∈ IrrG are adjacent. Also in the cyclic case if we define the centre to be
the midpoint of the graph, then d(ρ) is the distance from the centre.

For any positive integer m let Sm := Sm(ρnat) be the symmetric m-tensors
of ρnat, that is, the space of homogeneous polynomials of degree m. We say
that a G-submodule W of m/n is homogeneous of degree m if it is generated
over C by homogeneous polynomials of degree m.

The G-module m/n splits as a direct sum of irreducible homogeneous G-
modules. If W is a direct sum of homogeneous G-submodules, then we denote
the homogeneous part of W of degree m by Sm(W ). For any G-module W in
some Sm(m/n), we write Sj ·W for the G-submodule of Sm+j(m/n) generated
over C by the products of Sj(m/n) and W . We denote by W [ρ] the ρ factor
of W , that is, the sum of all the copies of ρ in W ; and similarly, we denote
by [W : ρ] the multiplicity of ρ ∈ IrrG in a G-module W .

We define
SMcKay(m/n) =

∑
ρ∈IrrG

Sh
2
±d(ρ)(m/n)[ρ].

Theorem 10.5 (First duality theorem) Let G be any finite subgroup of
SL(2,C) and h its Coxeter number. Then as G-modules, we have

1. m/n =
∑

ρ∈IrrG 2(deg ρ)ρ;

2. SMcKay(m/n) '
∑

ρ∈IrrG 2ρ;
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3. Sh
2
−k(m/n) ' Sh

2
+k(m/n) for any k;

4. Sk(m/n) = 0 for k ≥ h.

Theorem 10.6 (Second duality theorem) Assume that G is not cyclic.
Let h be the Coxeter number of G and Vh

2
±d(ρ)(ρ) := Sh

2
±d(ρ)(m/n)[ρ] for any

ρ ∈ IrrG. Then

1. Vh
2
−d(ρ)(ρ) ' Vh

2
+d(ρ)(ρ) ' ρ⊕2 or ρ if d(ρ) = 0, respectively d(ρ) ≥ 1.

2. If ρ and ρ′ are adjacent with d(ρ′) = d(ρ) + 1 ≥ 2, then

Vh
2
−d(ρ)(ρ) = {S1 · Vh

2
−d(ρ′)(ρ

′)}[ρ],

and Vh
2

+d(ρ′)(ρ
′) = {S1 · Vh

2
+d(ρ)(ρ)}[ρ′].

3. If d(ρ) = 0, we write ρi ∈ IrrG for i = 1, 2, 3 for the three irreducible
representations adjacent to ρ; then

{S1 · Vh
2
−1(ρi)}[ρ] ' ρ,

Vh
2

+1(ρi) = {S1 · Vh
2
(ρ)}[ρi] ' ρi for i = 1, 2, 3; and

Vh
2
(ρ) = {S1 · Vh

2
−1(ρi)}[ρ] + {S1 · Vh

2
−1(ρj)}[ρ] ' ρ⊕2 for i 6= j.

See Section 11 for the proof of Theorems 10.5–10.6. It is the detailed form
of the duality in Theorems 10.6 and 12.4 that we need for the explanation of
the McKay observation in 13.5.

The exceptional sets of HilbG(A2) are described in Theorems 10.7 and
12.3.

Theorem 10.7 Assume that G is not cyclic.

1. Assume that ρ is one of the endpoints of the Dynkin diagram. Then

I ∈ E(ρ) \
(⋃

ρ′ P (ρ, ρ′)
)

if and only if V (I) is a nonzero irreducible

G-submodule (' ρ) of Vh
2
−d(ρ)(ρ)⊕Vh

2
+d(ρ)(ρ) different from Vh

2
+d(ρ)(ρ).

2. Assume d(ρ) ≥ 1 and that ρ is none of the endpoints of the Dynkin

diagram. Then I ∈ E(ρ)\
(⋃

ρ′ P (ρ, ρ′)
)

if and only if V (I) is a nonzero

irreducible G-submodule (' ρ) of Vh
2
−d(ρ)(ρ)⊕Vh

2
+d(ρ)(ρ) different from

Vh
2
−d(ρ)(ρ) and Vh

2
+d(ρ)(ρ).

3. Let ρ and ρ′ be an adjacent pair with d(ρ′) = d(ρ) + 1 ≥ 2. Then
I ∈ P (ρ, ρ′) if and only if

V (I) = Vh
2
−d(ρ)(ρ)⊕ Vh

2
+d(ρ′)(ρ

′).

We define the latter to be W (ρ, ρ′).
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4. Assume d(ρ) = 0.

(a) I ∈ E(ρ) \
(⋃

ρ′ P (ρ, ρ′)
)

if and only if V (I) is a nonzero irre-

ducible G-module of Vh
2
(ρ) different from {S1 ·Vh

2
−1(ρ′)}[ρ] for any

ρ′ adjacent to ρ where we note Vh
2
(ρ) ' ρ⊕2.

(b) I ∈ P (ρ, ρ′) 6= ∅ if and only if

V (I) = {S1 · Vh
2
−1(ρ′)}[ρ]⊕ Vh

2
+1(ρ′).

We define the latter to be W (ρ, ρ′).

The proofs of Theorems 10.4–10.7 are given in Sections 12–16 in the re-
spective cases.

Remark 10.8 One can recover I from V (I) by defining I = V (I)OA2 +n. By
Theorem 10.7, the curve E(ρ) is identified with P(ρ⊕ ρ) ' P1, the projective
space of nontrivial proper G-submodules ρ in ρ⊕ ρ.

Remark 10.9 The relations in Theorem 10.6, (2)–(3) as well as the following
observation explain why tensoring by ρnat enters the McKay correspondence.
We observe

W (ρ, ρ′) = Vh
2
−d(ρ)(ρ)⊕ Vh

2
+d(ρ′)(ρ

′) for d(ρ) ≥ 1, d(ρ′) = d(ρ) + 1

= {S1 · Vh
2
−d(ρ′)(ρ

′)}[ρ]⊕ Vh
2

+d(ρ′)(ρ
′)

= Vh
2
−d(ρ)(ρ)⊕ {S1 · Vh

2
+d(ρ)(ρ)}[ρ′],

W (ρ, ρ′) = {S1 · Vh
2
−1(ρ′)}[ρ]⊕ Vh

2
+1(ρ′) for d(ρ) = 0, d(ρ′) = 1

= {S1 · Vh
2
−1(ρ′)}[ρ]⊕ {S1 · Vh

2
(ρ)}[ρ′].

11 Duality

11.1 Degrees of homogeneous generators

Let G be a noncyclic finite subgroup of SL(2,C). In this section we prove
Theorem 10.5, (3) and (4). Also assuming Theorem 10.6, (1) we prove Theo-
rem 10.6, (2) and the first half of (3). Theorem 10.5, (2) follows readily from
Theorem 10.6, (1). It remains to prove Theorem 10.5, (1), Theorem 10.6, (1)
and the second half of (3), which we prove by case by case examinations in
Sections 13–16. The cyclic case is treated in Section 12.

There are three G-invariant homogeneous polynomials ϕi for i = 1, 2, 3
which generate the ring of all G-invariant polynomials. Let di := degϕi. We
may assume that d1 ≤ d2 ≤ deg d3 = h, where h is the Coxeter number
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of G. We know that d1 + d2 = d3 + 2. We note that the triple di can
computed without using the classification of G, using instead the method
of [Pinkham80]. See Section 4, Table 4 for the values of the di. We set
Sm := Sm(m/n).

Lemma 11.2 Sm 6= 0 for 1 ≤ m ≤ h− 1 and Sm = 0 for m ≥ h.

Proof Choosing suitable ϕi we may assume that the quotient space A2/G
is defined by the equation ϕ2

3 = F (ϕ1, ϕ2) as given in Subsection 1.1. See
[Klein] and [Pinkham80]. We also see h = degϕ3 = degϕ1 + degϕ2 − 2 by
[Pinkham80]. Now we prove that there are no trivial common factors of ϕ1

and ϕ2 as polynomials in x and y. For otherwise, there is ϕ ∈ C[x, y] such
that degϕ < d1, and ϕ divides ϕi. Therefore ϕ divides ϕ3 by the relation
ϕ2

3 = F (ϕ1, ϕ2). This implies that a one-dimensional subscheme of A2 defined
by ϕ = 0 is mapped to the origin of A2/G. This contradicts that A2 is finite
over A2/G.

Thus there are no common factors of ϕ1 and ϕ2. Hence ϕ1Sm−d1 ∩
ϕ2Sm−d2 = ϕ1ϕ2Sm−d1−d2 = 0 for m ≤ h. Hence dimSm = dimSm −
dimSm−d1 − dimSm−d2 for m < h. It follows that

dimSm =


m+ 1 for 1 ≤ m ≤ d1 − 1,

d1 for d1 ≤ m ≤ d2 − 1,

d1 + d2 −m− 1 for d2 ≤ m ≤ d3 − 1.

Similarly we have

dimSh = dimSh/Cϕ3 − dimSh−d1 − dimSh−d2
= h− (h+ 1− d1)− (h+ 1− d2) = d1 + d2 − h− 2 = 0.

�

Corollary 11.3 dimm/n = d1d2 − 2 = 2|G| − 2.

This corollary is not used elsewhere.

Proof The first equality is clear from the proof of Lemma 11.2. The second
d1d2 = 2|G| follows from the classfication of G. �

11.4 The bilinear form (f, g) on m/n

Let f, g ∈ m be homogeneous. Then we define a bilinear form (f, g) as follows.
First we define (f, g) = 0 if deg(f)+deg(g) 6= h. If deg(f)+deg(g) = h, then
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in view of Lemma 11.2 we can express fg as a linear combination of ϕi with
coefficients in OA2 , say fg = a1ϕ1 +a2ϕ2 +a3ϕ3 where ai is homogeneous and
a3 is a constant. We define

(f, g) := a3.

This is well defined. In fact, assume that fg = b1ϕ1 + b2ϕ2 + b3ϕ3. Then we
have (a3− b3)ϕ3 = (b1− a1)ϕ1 + (b2− a2)ϕ2. By the proof of Lemma 11.2, ϕ3

is not a linear combination of ϕ1 and ϕ2 with coefficients in OA2 . It follows
that a3 = b3. Moreover if either f ∈ n or g ∈ n, then (f, g) = 0. Therefore
the bilinear form is well defined on m/n.

Lemma 11.5 1. (fg, h) = (f, gh) for all f, g, h ∈ m;

2. (f, g) = (σ∗(f), σ∗(g)) and (σ∗(f), g) = (f, (σ−1)
∗
(g)) for all f, g ∈ m,

and all σ ∈ G;

3. ( , ) : f × g 7→ (f, g) is a nondegenerate bilinear form on m/n.

Proof (1) and (2) are clear. We prove (3). For it, we prove the following
claim.

Claim 11.6 Let f(x, y) be a homogeneous polynomial of degree p < h. If
xf(x, y) = yf(x, y) = 0 in m/n, then f(x, y) = 0 in m/n.

In fact, by the assumption, there exist homogeneous ai and bi ∈ m such
that xf = a1ϕ1 + a2ϕ2 and yf = b1ϕ1 + b2ϕ2. Hence we have

(ya1 − xb1)ϕ1 + (ya2 − xb2)ϕ2 = 0.

We see that deg(yai−xbi) = p+ 2−di < h+ 2−di ≤ d1 +d2−di for i = 1, 2,
because h + 2 = d1 + d2. Meanwhile ϕ1 and ϕ2 have no nontrivial common
factors. It follows that yai − xbi = 0. This implies that x | ai and y | bi.
Hence f = 0 in m/n. �

We now proceed with the proof of Lemma 11.5, (3). Let f ∈ m be homo-
geneous. Assume that (f, g) = 0 for any g ∈ m/n. We prove that f = 0 in m/n
by descending induction on p := deg f . If p = h−1, then f = 0 by Claim 11.6.
Assume p < h − 1. By the assumption, we get (xf, g) = (f, xg) = 0 and
(yf, g) = (f, yg) = 0 for any g ∈ m/n. By the induction hypothesis, xf = 0
and yf = 0 in m/n. Then by Claim 11.6 we have f = 0 in m/n. �

Lemma 11.7 Let V be a G-submodule of S(h/2)−k, and V ∗ a G-submodule
of S(h/2)+k dual to V with respect to the bilinear form ( , ), in the sense that
( , ) defines a perfect pairing between V and V ∗. Then V is isomorphic to
the complex conjugate of V ∗ as G-modules.
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Proof Let V c be an arbitrary G-module of S(h/2)−k complementary to V .
Then we define V ∗ to be the orthogonal complement in S(h/2)+k to V c. By
Lemma 11.5, (2), σ∗(V ∗) ⊂ V ∗ for any σ ∈ G. Moreover by Lemma 11.5, (2)
Tr(σ∗|V ) = Tr((σ−1)

∗
|V ∗), which is equal to the complex conjugate of Tr(σ∗|V ∗)

because any eigenvalue of Tr(σ∗|V ∗) is a root of unity. Although the definition
of V ∗ depends on the choice of V c, we always have V ' the complex conjugate
of V ∗. �

Corollary 11.8 Let V , V ′ be G-submodules of m/n. If V and the complex
conjugate of V ′ are not isomorphic as G-modules, then V and V ′ are orthog-
onal.

Lemma 11.9 Let ρ and ρ′ be equivalence classes of irreducible G-modules
with ρ 6= ρ′. Let V ' ρ and W ' ρ′ be G-submodules in S(h/2)−k and
S(h/2)−k+1 respectively, and W ∗ ' (ρ′)∗ a dual to W in S(h/2)+k−1. If W ⊂
S1 ·V , there is a G-submodule V ∗ of S1 ·W ∗ dual to V . If [ρnat⊗(ρ′)∗ : ρ] = 1,
then V ∗ is uniquely determined.

Proof Let V c and W c be (homogeneous) complementary G-submodules to
V and W respectively. Thus by definition,

V ⊕ V c = S(h/2)−k and W ⊕W c = S(h/2)−k+1.

Let W ∗ be the orthogonal complement to W c in S(h/2)+k−1 with respect to
( , ). If W ⊂ S1V , then there exists g, h ∈ V such that xg + yh ∈ W . By
Lemma 11.5, (3), there exists f ∗ ∈ W ∗ such that (f ∗, xg+yh) 6= 0 so that we
first assume that (xf ∗, g) = (f ∗, xg) 6= 0. Let U be a minimal G-submodule of
m/n containing xf ∗. Then U contains V ∗ dual to V by Lemma 11.5, (3) and
(xf ∗, g) 6= 0. Obviously V ∗ ⊂ S1W

∗ and V ∗ ' the complex conjugate of V
by Lemma 11.7. If [S1 · W ∗ : ρ′] ≤ [ρnat ⊗ (ρ′)∗ : ρ] = 1, then uniqueness
of V ∗ is clear. If (yf ∗, g) = (f ∗, yg) 6= 0, then we see the same by the same
argument. �

Remark 11.10 For any ρ′′ ∈ IrrG, ρnat⊗ ρ′′ is a sum of G-submodules with
multiplicity one [McKay80] (recall that G ⊂ SL(2,C)), so that ρ has multi-
plicity at most one in S1 ·W ∗. Therefore the dual V ∗ is uniquely determined
and it is the orthogonal complement of V c in (S1 ·W ∗) ∩ S(h/2)+k−1.

Lemma 11.9 implies the following. In the case of E6, since

S1 · S3[ρ′2] = S4[ρ′1] + S4[ρ3] and S1 · S3[ρ′′2] = S4[ρ′′1] + S4[ρ3],

we have S1·S8[ρ′1] = S9[ρ′2], S1·S8[ρ′′1] = S9[ρ′′2] and S1·S8[ρ3] = S9[ρ′2]+S9[ρ′2],
and vice versa. See Section 14.
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11.11 Partial proofs of Theorems 10.5 and 10.6.

Since TrSk is real for any k, Sk contains any G-module and its complex con-
jugate with equal multiplicities. Theorem 10.5, (3) is clear from Lemma 11.5,
(3) and Lemma 11.7. Theorem 10.5, (4) follows from Lemma 11.2. Theo-
rem 10.6, (2) as well as the first half of (3) are clear from Lemma 11.9.

12 The cyclic groups An

12.1 Characters

Let x, y be coordinates on A2 and m = (x, y) be the maximal ideal of A2 at
the origin. Let G be the cyclic group of order n + 1 with generator σ. Let ε
be a primitive (n + 1)st root of unity. We define the action of the generator
σ on C2 by (x, y) 7→ (x, y)σ = (εx, ε−1y). The simple singularity of type An
is the quotient SG = A2/G. Let mS be the maximal ideal of SG at the origin
and n := mSOA2 .

The Coxeter number h of An is equal to n + 1. Let ρ0 be the trivial
character, and ρi for 1 ≤ i ≤ n the character with ρi(σ) = εi. Then e(ρi) = i
and h− e(ρi) = n+ 1− i.

Lemma 12.2 Any I ∈ HilbG(A2) is one of the following ideals of colength
n+ 1:

I(Σ) :=
∏
p∈Σ

mp = (xn+1 − an+1, xy − ab, yn+1 − bn+1),

where Σ = G · (a, b) is a G-orbit of A2 disjoint from the origin; or

Ii(pi : qi) := (pix
i − qiyn+1−i, xy, xi+1, yn+2−i),

for some 1 ≤ i ≤ n and some [pi, qi] ∈ P1.

Proof Let I ∈ HilbG(A2) with I ⊂ m. Then by Corollary 9.5, OA2/I '
C[G] '

⊕n
i=0 ρi as G-modules. Thanks to Corollary 9.6, we define N := m/n

and M := I/n, and for each i 6= 0, let M [ρi] and N [ρi] be the ρi-part of
M , respectively N . Then N [ρi] ' ρ⊕2

i , spanned by xi and yn+1−i, while
M [ρi] ' ρi for all i 6= 0. It follows that for each i, there exists [pi, qi] ∈ P1

such that pix
i − qiy

n+1−i ∈ M . If piqi 6= 0 for some i, then setting u :=
pix

i − qiyn+1−i, we have M = (u) + n/n and I = (u, xy) where i is obviously
uniquely determined by I. If M contains no pix

i − qiyn+1−i with piqi 6= 0 for
any i, then I = (xj, yn+2−j, xy) for some j. �



Y. Ito and I. Nakamura 47

Theorem 12.3 Let a and b be the parameters of A2 on which the group G
acts by g(a, b) = (εa, ε−1b).

Let S = A2/G := SpecC[an+1, ab, bn+1] and S̃ → S its toric minimal
resolution, with affine charts Ui defined by

Ui := SpecC[si, ti] for 1 ≤ i ≤ n+ 1,

where si := ai/bn+1−i and ti := bn+2−i/ai−1. Then the isomorphism of S̃
with HilbG(A2) is given by (the morphism defined by the universal property of
Hilbn(A2) from) two dimensional flat families of subschemes defined by the
G-invariant ideals of OA2

Ii(si, ti) := (xi − siyn+1−i, xy − siti, yn+2−i − tixi−1)

for 1 ≤ i ≤ n+ 1.

Proof Note first that Ii(si, 0) = Ii(1 : si) and Ii(0, ti) = Ii−1(ti : 1) for
i ≥ 2.

If ab = siti 6= 0, we see Ii(si, ti) = (xn+1 − an+1, xy − ab, yn+1 − bn+1).
In fact, let p = (a, b) 6= (0, 0) ∈ A2 and Σ := {p · g; g ∈ G}. It is clear that
Ii(si, ti) ⊂ mp so that Ii(si, ti) ⊂ IΣ by the G-invariance of Ii(si, ti). Since
the colengths of Ii(si, ti) and IΣ in OA2 are equal to n + 1, Ii(si, ti) = IΣ =
(xn+1 − an+1, xy − ab, yn+1 − bn+1).

By the universality of Hilbn(A2) and by Lemma 12.2, we have a finite

birational morphism of S̃ onto a smooth surface HilbG(A2). It follows that

S̃ ' HilbG(A2). �

Theorem 12.4 (Duality for An) Assume that G is cyclic. Then for any
ρ ∈ IrrG there exists a unique pair V +

e(ρ)(ρ) and V −n+1−e(ρ)(ρ) of homogeneous

G-submodules of Se(ρ)(m/n)[ρ] and Sn+1−e(ρ)(m/n)[ρ] such that

1. V +
e(ρ)(ρ) ' V −n+1−e(ρ)(ρ) ' ρ, and

2. if ρ and ρ′ are adjacent with e(ρ) = e(ρ′) + 1, then

V +
e(ρ)(ρ) = {S1 · V +

e(ρ′)(ρ
′)}[ρ], V −n+1−e(ρ′)(ρ

′) = {S1 · V −n+1−e(ρ)(ρ)}[ρ′].

Proof First we prove uniqueness of V ±j (ρ). Since S1 = ρ1 ⊕ ρn, we have
unique choices V +

1 (ρ1) = S1[ρ1] = {x} and V −1 (ρn) = S1[ρn] = {y}. Then we
have

V +
i+1(ρi+1) = {S1 · V +

i (ρi)}[ρi+1] = {xi+1}
V −n+1−i(ρi) = {S1 · V −n−i(ρi+1)[ρi] = {yn+1−i}.

In fact, this follows from (2) by induction. This proves Theorem 12.4. �

Theorem 10.4 for G cyclic follows from setting E(ρi) = Ei. There is a way
of understanding Ii(pi, qi) similar to that of Theorem 10.7.
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13 The binary dihedral groups Dn

13.1 Binary dihedral group

Let G be the subgroup of SL(2,C) of order 4n− 8 generated by two elements
σ and τ :

σ =

(
ε, 0
0, ε−1

)
, τ =

(
0, 1
−1, 0

)
,

where ε is a primitive ` := (2n− 4)th root of unity. Then we have

σ2n−4 = 1, τ 4 = 1, σn−2 = τ 2, τστ−1 = σ−1.

The group G is called the binary dihedral group Dn−2. The Coxeter number
h of Dn is equal to 2n− 2. See Table 6 for the characters of Dn.

G acts on A2 from the right by (x, y) 7→ (x, y)g for g ∈ G. The ring of
all G-invariant polynomials is generated by x` + y`, xy(x`− y`) and x2y2. By
Theorem 9.3, XG := HilbG(A2) is a minimal resolution of SG := A2/G with
a simple singularity of type Dn.

Remark 13.2 We note that if we let H be the (normal) subgroup of G
generated by σ and N := G/H, N acts on HilbH(A2) so that we have a
minimal resolution HilbN(HilbH(A2))(' XG) of SG.

13.3 Symmetric tensors modulo n

Recall ` := 2n−4. Let Sm be the space of symmetric m-tensors of ρnat := ρ2,
that is, the space of homogeneous polynomials of degree m and Sm the images
of Sm in m/n. They decompose into irreducible G-modules as follows. Let
ρ1 := ρ′0 + ρ′1, ρn−1 := ρ′n−1 + ρ′n and ρk := ρj if k ≡ j mod 2n− 4. Then we
have

Sm =


ρ′0 + ρ3 + ρ5 + · · ·+ ρm−1 + ρm+1 for m ≡ 0 mod 4,

ρ′1 + ρ3 + ρ5 + · · ·+ ρm−1 + ρm+1 for m ≡ 2 mod 4,

ρ2 + ρ4 + ρ6 + · · ·+ ρm−1 + ρm+1 for m ≡ 1, 3 mod 4.

13.4

By Table 7 we see that m/n ' (C[G]	ρ0)⊕2. This isomorphism is realized by
giving G-submodules 2ρ′i for i = 1, n−1, n and 4ρi for 2 ≤ i ≤ n−2 explicitly
as follows. We define a G-submodule of m/n by V̄i(ρj) := Si(m/n)[ρj], and
define Vi(ρj) to be a G-submodule of Si such that Vi(ρj) ' V̄i(ρj) and Vi(ρj) ≡
V̄i(ρj) mod n. We use Vi(ρj) and V̄i(ρj) interchangeably whenever this is
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ρ 1 σ τ d (h
2
± d)

ρ′0 1 1 1 (n− 3) –

ρ′1 1 1 −1 n− 3 (2, `)

ρ2 2 ε+ ε−1 0 n− 4 (3, `− 1)

ρk 2 εk−1 + ε−(k−1) 0 n− 2− k (k + 1, `+ 1− k)

ρn−2 2 εn−3 + ε−(n−3) 0 0 (n− 1, n− 1)

ρ′n−1 1 −1 in 1 (n− 2, n)

ρ′n 1 −1 −in 1 (n− 2, n)

Table 6: Character table of Dn

m Sm m Sm

0 0 `+ 2 0

1 ρ2 `+ 1 ρ2

2 ρ′1 + ρ3 ` ρ′1 + ρ3

3 ρ2 + ρ4 `− 1 ρ2 + ρ4

. . . . . . . . . . . .

k ρk−1 + ρk+1 `− k + 2 ρk−1 + ρk+1

n− 2 ρn−3 + ρ′n−1 + ρ′n n ρn−3 + ρ′n−1 + ρ′n
n− 1 2ρn−2

Table 7: Irreducible decompositions of Sm(Dn)

V2(ρ′1) xy V`(ρ
′
1) x` − y`

. . . . . . . . . . . .

Vk−1(ρk) xk−1, yk−1 Vk+1(ρk) xky, xyk

V`−k+1(ρk) x`−k+1, y`−k+1 V`−k+3(ρk) x`−k+2y, xy`−k+2

. . . . . . . . . . . .

Vn−3(ρn−2) xn−3, yn−3 Vn+1(ρn−2) xny, xyn

Vn−1(ρn−2) xn−1, yn−1, xn−2y, xyn−2

V ′n−1(ρn−2) xn−1, yn−1 V ′′n−1(ρn−2) xn−2y, xyn−2

Vn−2(ρ′n−1) xn−2 − inyn−2 Vn(ρ′n−1) xy(xn−2 + inyn−2)

Vn−2(ρ′n) xn−2 + inyn−2 Vn(ρ′n) xy(xn−2 − inyn−2)

Table 8: Vm(ρ)(Dn)
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harmless. We see easily that Vi(ρj) ' ρj or 0 except for (i, j) = (n−1, n−2),
while Vn−1(ρn−2) ' ρ⊕2

n−2. We list the nonzero G-submodules of m/n.
It is easy to see that n is generated by x` + y`, (x` − y`)xy and x2y2.

We also note that x`+2, y`+2 ∈ n and that m/n is spanned by xi, yi, xiy and
xyi for 1 ≤ i ≤ ` with the single relation x` + y` ≡ 0 mod n. Hence we
see easily that m/n is the sum of the above Vi(ρj). It follows that m/n '∑

ρ∈IrrG 2 deg(ρ)ρ ' (C[G]	 ρ0)⊕2.

13.5 A sketch for D5

Before starting on the general case, we sketch the case of D5 without rigorous
proofs. First we recall

V2(ρ′1) = {xy}, V6(ρ′1) = {x6 − y6},
V3(ρ2) = {x2y, xy2}, V5(ρ2) = {x5, y5}.

We consider the case I(W ) ∈ E(ρ′1) \ P (ρ′1, ρ2). Let I(W ) := WOA2 + n
for any nonzero G-module W ∈ P(V2(ρ′1) + V6(ρ′1)) = P({xy, x6 − y6}) such
that W 6= V6(ρ′1), that is, W 6= {x6 − y6}. Then we see that

I(W )/n = W +
5∑

k=1

S1W + n/n = W +
5∑

k=1

SkV2(ρ′1) + n/n

' W + ρ2 + ρ3 + (ρ′4 + ρ′5) + ρ3 + ρ2 '
∑
ρ∈IrrG

deg(ρ)ρ.

Therefore I(W ) ∈ HilbG(A2). It is clear V (I(W )) := I(W )/mI(W ) + n '
W ' ρ′1. It follows that I(W ) ∈ E(ρ′1) \ P (ρ′1, ρ2). Hence we have

lim
W→V6(ρ′1)

I(W ) = V6(ρ′1) +
∑
k≥1

SkV2(ρ′1)

= I(V6(ρ′1)⊕ S1V2(ρ′1)) = I(V6(ρ′1)⊕ V3(ρ2)) ∈ P (ρ′1, ρ2),

where S1 ⊗ V2(ρ′1) ' S1V2(ρ′1) ' V3(ρ2) ' ρ2. The factor S1 ⊗ V2(ρ′1) '
ρ2 among generators of P (ρ′1, ρ2) explains the relation between tensoring by
S1 ' ρ2 and the intersection of E(ρ′1) with E(ρ2) in McKay’s observation.

Next we consider W ∈ P(V3(ρ2) ⊕ V5(ρ2)) with W 6= V3(ρ2), V5(ρ2). We
have

I(W )/n := W +
∑

k≥1
SkW + n/n

= W +
∑2

k≥1
SkV3(ρ2) + S6 + S7 + n/n

' W + ρ3 + (ρ′4 + ρ′5) + (ρ′1 + ρ3) + ρ2 '
∑

ρ∈IrrG
deg(ρ)ρ.
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Since S6 = V6(ρ′1) + S3V3(ρ2) 6= S3V3(ρ2), we have

lim
W→V3(ρ2)

I(W ) = V6(ρ′1) + V3(ρ2) +
∑
k≥1

SkV3(ρ2)

= I(V6(ρ′1)⊕ V3(ρ2)) ∈ P (ρ′1, ρ2)

= I({S1V5(ρ2)}[ρ′1]⊕ V3(ρ2)),

where V6(ρ′1) = {S1V5(ρ2)}[ρ′1] ' ρ′1, and {S1V5(ρ2)}[ρ′1] = V6(ρ′1) ' ρ′1 is by
definition the sum of all the ρ′1 factors of S1V5(ρ2) ' S1 ⊗ V5(ρ2). Hence

lim
W→V6(ρ′1)

W'ρ′1

I(W ) = lim
W→V3(ρ2)
W'ρ2

I(W ) ∈ P (ρ′1, ρ2).

The above argument explains the relation between tensoring by ρ2 =
ρnat and the intersection of two rational curves. The argument also shows
that E(ρ) is naturally identified with P(V4−d(ρ)(ρ) + V4+d(ρ)(ρ)), the set of
all nontrivial proper G-submodules of V4−d(ρ)(ρ) + V4+d(ρ)(ρ) ' ρ⊕2, which is
isomorphic to P1 by Schur’s lemma.

Now we consider the general case. We restate Theorem 10.7 as follows.

Theorem 13.6 Let E be the exceptional set of the morphism π : XG → SG,
and Sing(E) the singular points of E. Let E(ρ) be an irreducible component
of E for ρ ∈ IrrG and E0(ρ) := E(ρ) \ Sing(E). Then E0(ρ) and Sing(E)
are as follows:

E0(ρ′1) =

{
I(W );

W ⊂ V2(ρ′1)⊕ V`(ρ′1)

W 6= 0, V`(ρ
′
1)

}
,

E0(ρk) =

{
I(W );

W ⊂ Vk+1(ρk)⊕ V`−k+1(ρk)

W 6= 0, Vk+1(ρk), V`−k+1(ρk)

}
for 2 ≤ k ≤ n− 3,

E0(ρn−2) =

{
I(W );

W ⊂ Vn−1(ρn−2),W 6= 0, V ′′n−1(ρn−2)

W 6= S1 · Vn−2(ρ′j) for j = n− 1, n

}
,

E0(ρj) =

{
I(W );

W ⊂ Vn−2(ρ′j)⊕ Vn(ρ′j)

W 6= 0, Vn(ρ′j)

}
for j = n− 1, n;

and

Sing(E) =

{
P (ρ′1, ρ2), P (ρk, ρk+1) for 2 ≤ k ≤ n− 3

P (ρn−2, ρ
′
n−1), P (ρn−2, ρ

′
n)

}
,
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where

P (ρ′1, ρ2) = I(V`(ρ
′
1)⊕ V3(ρ2)),

P (ρk, ρk+1) = I(V`−k+1(ρk)⊕ Vk+2(ρk+1)) for 2 ≤ k ≤ n− 4,

P (ρn−3, ρn−2) = I(Vn(ρn−3)⊕ V ′′n−1(ρn−2)),

P (ρn−2, ρ
′
j) = I(S1Vn−2(ρ′j)⊕ Vn(ρ′j)).

13.7 Proof of Theorem 13.6 – Start

For 2 ≤ k ≤ n − 2, write C(ρk) for the set of all proper G-submodules
of Vk+1(ρk) ⊕ V`−k+1(ρk); similarly, let C(ρ′1) be the set of all proper G-
submodules of V2(ρ′1) ⊕ V`(ρ

′
1) and for i = n − 1, n, let C(ρ′i) be the set of

all proper G-submodules of Vn−2(ρ′i)⊕ Vn(ρ′i). It is clear that the C(ρk) and
C(ρ′i) are rational curves. As we will see in the sequel, they are embedded
naturally into Grass(m/n, 2`− 2).

Case I(W ) ∈ E(ρ′1) \ P (ρ′1, ρ2) Let I(W ) := WOA2 + n for any nonzero
G-module W ∈ C(ρ′1) with W 6= V`(ρ

′
1). First assume W = V2(ρ′1). Then

it is easy to see that I(W )/n contains Vk+1(ρk), V`−k+3(ρk), V
′′
n−1(ρn−2) and

Vn+1(ρn−2) for any 2 ≤ k ≤ n − 3. Similarly I(W )/n contains Vn(ρ′n−1) and
Vn(ρ′n) as well as W = V2(ρ′1). It follows that

I(W )/n = W +
`−1∑
k=1

SkV̄2(ρ′1) = W +
`−2∑
k=1

SkV̄2(ρ′1) + S`+1

In particular, I(W )/n '
∑

ρ∈IrrG deg(ρ)ρ. Hence I(W ) ∈ HilbG(A2). We
see that

V (I(W )) := I(W )/ {mI(W ) + n} ' W ' ρ′1.

It follows that I(W ) ∈ E(ρ′1).
Next we assume W 6= V2(ρ′1), V`(ρ

′
1). Then we first see that x3y ∈ I(W )

because x3y − (x3y − 2tx`+2) = 2tx`+2 ∈ n. It follows that I(W )/n contains
V`+1(ρ2), Vk+1(ρk), V`−k+3(ρk), V

′′
n−1(ρn−2), Vn+1(ρn−2), Vn(ρ′n−1) and Vn(ρ′n)

where 3 ≤ k ≤ n − 3. Since S1 ·W + V`+1(ρ2) = V3(ρ2) + V`+1(ρ2) ' ρ⊕2
2 ,

I(W )/n also contains 2ρ2. It follows that

I(W )/n = W +
`−2∑
m≥0

SmV̄2(ρ′1) = W +
`−3∑
m=0

SmV̄2(ρ′1) + S`+1.

Hence we have I(W )/n '
∑

ρ∈IrrG deg(ρ)ρ. Therefore I(W ) ∈ HilbG(A2).
By the above structure of I(W )/n, V (I(W )) ' W ' ρ′1. It follows that
I(W ) ∈ E(ρ′1) \ P (ρ′1, ρ2).
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Case I(W ) ∈ P (ρ′1, ρ2) Let W = W (ρ′1, ρ2) := V`(ρ
′
1) ⊕ V3(ρ2). Now

I(W )/n contains x2y and xy2, hence also Vi+1(ρi), V`−i+3(ρi) for 3 ≤ i ≤
n−3, V`+1(ρ2), Vn+1(ρn−2), Vn(ρ′n−1) and Vn(ρ′n). Similarly, I(W )/n contains
V ′′n−1(ρn−2). We note that {I(W )/n} [ρ′1] = W = V`(ρ

′
1) = {S1 · V`−1(ρ2)} [ρ′1]

and {I(W )/n} [ρ2] = V3(ρ2) ⊕ V`+1(ρ2) = S1 · V2(ρ′1) ⊕ V`+1(ρ2). It follows
that

I(W )/n = W +
`−2∑
m=0

SmV̄3(ρ2) = W +
`−3∑
m=0

SmV̄3(ρ2) + S`+1

Hence we have I(W )/n '
∑

ρ∈IrrG deg(ρ)ρ. Therefore I(W ) ∈ HilbG(A2).
We also see that I(W ) ∈ P (ρ′1, ρ2), because

V (I(W )) = V`(ρ
′
1)⊕ {S1 · V2(ρ′1)} [ρ2]

= {S1 · V`−1(ρ2)} [ρ′1]⊕ V3(ρ2) ' ρ′1 ⊕ ρ2.

Case I(W ) ∈ E(ρk) \ P (ρk±1, ρk) for 2 ≤ k ≤ n − 3 We consider now
W ∈ C(ρk) = P(ρk ⊂ Vk+1(ρk)⊕ V`−k+1(ρk)) with W 6= Vk+1(ρk), V`−k+1(ρk).
Let I(W ) = WOA2 + n.

Hence we may assume that xk+1y− ty`−k+1 ∈ W for a nonzero constant t.
Since xk+3y = x2(xk+1y − ty`−k+1) + tx2y`−k+1, and x2y2 ∈ n, I(W ) contains
xk+3y. Similarly, ty`−k+2 = −y(xk+1y − ty`−k+1) + xk+1y2 gives y`−k+2 ∈
I(W ). Hence we see that I(W )/n contains V`−i+1(ρi) for 2 ≤ i ≤ k − 1,
Vi+1(ρi) for k + 2 ≤ i ≤ n − 3, V`−i+3(ρi) for 2 ≤ i ≤ n − 3, V ′n−1(ρn−2),
V ′′n−1(ρn−2), V`(ρ

′
1), Vn(ρ′n−1) and Vn(ρ′n). Since xy`−k+1 ∈ V`−k+2(ρk+1), we

have V`−k+3(ρk) ⊂ I(W )/n and xk+2y = x(xk+1y − ty`−k+1) + txy`−k+1 ∈
I(W )/n. Hence Vk+2(ρk+1) ⊂ I(W )/n if k ≤ n− 4. It follows that

I(W )/n = W +
∑`−k

m=1
SmV̄k+1(ρk) +

∑k−1

m=0
SmV̄`−k+2(ρk−1)

= W +
∑`−2k

m=1
SmV̄k+1(ρk) +

∑`+1

m=`−k+2
Sm.

It follows from W ' ρk that I(W )/n '
∑

ρ∈IrrG deg(ρ)ρ. Therefore I(W ) ∈
HilbG(A2). It is easy to see that V (I(W )) ' W ' ρk so that I(W ) ∈ E(ρk).

Case I(W ) ∈ P (ρk, ρk+1) Let W = W (ρk, ρk+1) := V`−k+1(ρk)⊕Vk+2(ρk+1)
for 2 ≤ k ≤ n− 4. For k = n− 3, set

W = W (ρn−3, ρn−2) := Vn(ρn−3)⊕ V ′′n−1(ρn−2).

Now I(W )/n contains V`−i+1(ρi) for 2 ≤ i ≤ k, Vi+1(ρi) for k+1 ≤ i ≤ n−3,
V`−i+3(ρi) for 2 ≤ i ≤ n− 2, V ′′n−1(ρn−2) and Vn(ρ′i) for i = n− 1, n. Similarly
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V`(ρ
′
1) ⊂ I(W )/n. Hence I(W ) ∈ P (ρk, ρk+1) ⊂ HilbG(A2). We also see that

V (I(W )) =

{
V`−k+1(ρk)⊕ {S1 · Vk+1(ρk)} [ρk+1] for 2 ≤ k ≤ n− 4,

Vn(ρn−3)⊕ {S1 · Vn−2(ρn−3)} [ρn−2] for k = n− 3

=

{
{S1 · V`−k(ρk+1)} [ρk]⊕ Vk+1(ρk) ' ρk ⊕ ρk+1,{
S1 · V ′n−1(ρn−2)

}
[ρn−3]⊕ V ′′n−1(ρn−2) ' ρn−3 ⊕ ρn−2.

Case I(W ) ∈ E(ρn−2) \
(
P (ρn−2, ρn−3) ∪ P (ρn−2, ρ

′
n−1) ∪ P (ρn−2, ρ

′
n)
)

Let
W ∈ C(ρn−2) = P(Vn−1(ρn−2)), and define I(W ) := WOA2 + n. Set

W0 = S1 · Vn−2(ρ′n−1), W∞ = S1 · Vn−2(ρ′n) and W1 = V ′′n−1(ρn−2).

Let H = xn−2 − in/2yn−2 and G = xn−2 + in/2yn−2. Then W = {xH − txG,
yH + tyG} for some t. Assume t 6= 0, 1,∞, or equivalently, W 6= Wλ for
λ = 0, 1,∞. Then xn ∈ I(W )/n, so that V`(ρ

′
1), V`−i+1(ρi) for 2 ≤ i ≤ n− 3

and V`−i+3(ρi) for 2 ≤ i ≤ n− 2 are contained in I(W )/n. We also see that
xyH ∈ Vn(ρ′n−1) ⊂ I(W )/n and xyG ∈ Vn(ρ′n) ⊂ I(W )/n. It follows that

I(W )/n = W +
`+1∑
m=n

Sm.

Since W ' ρn−2, we have I(W )/n '
∑

ρ∈IrrG deg(ρ)ρ with V (I(W )) ' W .

It follows that I(W ) ∈ HilbG(A2).

Case I(W ) ∈ E(ρ′n−1)\P (ρn−2, ρ
′
n−1) Let W ∈ C(ρ′n−1) := P(Vn−2(ρ′n−1)⊕

Vn(ρ′n−1)). Assume W 6= Vn(ρ′n−1). Then I(W )/n contains xny and hence
xn. It follows that I(W )/n contains V`−i+1(ρi), V`−i+3(ρi) for 2 ≤ i ≤ n− 3,
and Vn+1(ρn−2). We also see that I(W )/n contains xn−1 − in/2xyn−2 so that
{I(W )/n} ∩ Vn−1(ρn−2) ' ρn−2. Similarly we see easily that V`(ρ

′
1), Vn(ρ′n) ⊂

I(W )/n. It follows that

I(W )/n = W +
2∑

m=1

SmV̄n−2(ρ′n−1) +
`+1∑

m=n+1

Sm.

Since W ' ρ′n−1, I(W )/n '
∑

ρ∈IrrG deg(ρ)ρ. Therefore I(W ) ∈ E(ρ′n−1) ⊂
HilbG(A2) with V (I(W )) ' W .

Case I(W ) ∈ P (ρn−2, ρ
′
n−1) We consider

W = W (ρn−2, ρ
′
n−1) := S1 · Vn−2(ρ′n−1)[ρn−2]⊕ Vn(ρ′n−1) = W0 ⊕ Vn(ρ′n−1).

Then I(W )/n contains xn, therefore I(W )/n contains V`(ρ
′
1), V`−i+1(ρi),

V`−i+3(ρi) for 2 ≤ i ≤ n − 3, Vn+1(ρn−2) and Vn(ρ′n). Since W ⊂ I(W )/n,
we see that I(W )/n '

∑
ρ∈IrrG deg(ρ)ρ. Hence I(W ) ∈ P (ρn−2, ρ

′
n−1) ⊂

HilbG(A2) with V (I(W )) ' W .
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Case I(W ) ∈ E(ρ′n) \ P (ρn−2, ρ
′
n) or I(W ) ∈ P (ρn−2, ρ

′
n) This is similar

to the above, and we omit the details. �

Lemma 13.8 For ρ′ adjacent to ρ, the limit of I(W ) as I(W ) ∈ E(ρ) ap-
proaches P (ρ, ρ′) is I(W (ρ, ρ′)).

Proof We first consider W ∈ C(ρ′1) with W 6= V`(ρ
′
1). Then by 13.7 we see

that I(W ) = W + V3(ρ2) +
∑

m≥1 SmV3(ρ2). Hence we have

lim
W→V`(ρ′1)

W∈C(ρ′1)

I(W ) = V`(ρ
′
1) + V3(ρ2) +

∑
m≥1

SmV3(ρ2)

= I(V`(ρ
′
1)⊕ V3(ρ2)) = I(W (ρ′1, ρ2)).

Next we consider W ∈ C(ρ2) with W 6= V3(ρ2), V`−1(ρ2). Then by 13.7
we have I(W ) = W + V`(ρ

′
1) +

∑
m≥0 SmV4(ρ3). Since V4(ρ3) ⊂ S1V3(ρ2), we

have

lim
W→V3(ρ2)
W∈C(ρ2)

I(W ) = V`(ρ
′
1) + V3(ρ2) +

∑
m≥1

SmV3(ρ2)

= I(W (ρ′1, ρ2)) = lim
W→V`(ρ′1)

W∈C(ρ′1)

I(W ).

Suppose that W ∈ C(ρk) = P(V`−k+1(ρk)⊕Vk+1(ρk)) with W 6= Vk+1(ρk),
V`−k+1(ρk). By 13.7 we see

I(W ) = W +
∑
m≥0

SmVk+2(ρk+1) +
∑
m≥0

SmV`−k+2(ρk−1).

Thus for 2 ≤ k ≤ n− 4 we see that

lim
W→V`−k+1(ρk)

I(W ) = I(W (ρk, ρk+1)) = lim
W→Vk+2(ρk+1)

I(W ).

Similarly for W ∈ C(ρn−2) with W 6= Wλ for λ = 0, 1,∞ we have

I(W ) = W +
∑
m≥0

SmVn(ρn−3) +
∑
m≥0

j=n−1,n

SmVn(ρ′j) = W +
∑
m≥n

Sm,

lim
W→W1

I(W ) =
∑
m≥0

SmVn(ρn−3) +
∑
m≥0

SmW1 = I(W1 ⊕ Vn(ρn−3)),

because Vn(ρn−3) ⊂ S1W0 + n. Consequently

lim
W ′→Vn(ρn−3)

I(W ′) = Vn(ρn−3) +
∑
m≥0

SmVn+1(ρn−4) +
∑
m≥0

SmV
′′
n−1(ρn−2)

=
∑
m≥0

SmVn(ρn−3) +
∑
m≥0

SmW1 = lim
W ′′→W1

I(W ′′),
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where W ′ ∈ C(ρn−3), W ′′ ∈ C(ρn−2). The limit when W approaches W0 or
W∞ is similar. �

To complete the proofs of Theorem 13.6, we also need to prove:

Lemma 13.9 E(ρ) and E(ρ′) intersects at P (ρ, ρ′) transversally if ρ and ρ′

are adjacent.

Proof By the proof of Theorem 9.3, XG = HilbG(A2) is smooth, with tan-
gent space T[I](XG) at [I] the G-invariant subspace HomOA2

(I,OA2/I)G of
T[I](Hilbn(A2)), which is isomorphic to HomOA2

(I,OA2/I), where n = |G|.
Assume that ρ and ρ′ are adjacent with d(ρ′) = d(ρ) + 1. Let W (ρ, ρ′) =
Vh

2
−d(ρ)(ρ) ⊕ Vh

2
−d(ρ′)(ρ

′). Then I(W (ρ, ρ′)) ∈ P (ρ, ρ′). We prove the follow-

ing formula

T[I](XG) ' HomOA2
(I,OA2/I)G '

HomG(Vh
2
−d(ρ)(ρ), Vh

2
+d(ρ)(ρ))⊕ HomG(Vh

2
+d(ρ′)(ρ

′), Vh
2
−d(ρ′)(ρ

′)),

where I = I(W (ρ, ρ′)). First assume ρ = ρ2 and ρ′ = ρ′1. Then

HomOA2
(I,OA2/I)G ⊂

HomG(V`(ρ
′
1), V2(ρ′1))⊕ HomG(V3(ρ2), V1(ρ2)⊕ V`−1(ρ2))

Let ϕ be any element of HomOA2
(I,OA2/I)G. A nontrivial G-isomorphism

ϕ0 of V3(ρ2) onto V1(ρ2) is given by ϕ0(x2y) = x, ϕ0(xy2) = −y. Therefore
we may assume ϕ = cϕ0 mod V`−1(ρ2) for some constant c. Since ϕ defines
an OA2-homomorphism, we have yϕ(x2y) = xϕ(xy2), so that 2cxy = 0 in
OA2/I. It follows that c = 0, and ϕ(V3(ρ2)) ⊂ V`−1(ρ2). Thus the formula for
I = I(W (ρ′1, ρ2)) is proved.

Now we consider the general case. By 13.7 we see that {m/I}[ρ] con-
tains Vh̄+d(ρ)(ρ) as a nontrivial factor, while {m/I}[ρ′] contains Vh̄−d(ρ′)(ρ

′)
similarly. Moreover by the proof in 13.7 we see that either of the linear
subspaces HomG(Vh

2
−d(ρ)(ρ), Vh

2
+d(ρ)(ρ)) and HomG(Vh

2
+d(ρ′)(ρ

′), Vh
2
−d(ρ′)(ρ

′))

yield nontrivial deformations of the ideal I inside the exceptional set E.
Since dimT[I](XG) = 2 by Theorem 9.3, these linear subspaces span T[I](XG).
Hence we have

T[I](XG) '
HomG(Vh

2
−d(ρ)(ρ), Vh

2
+d(ρ)(ρ))⊕ HomG(Vh

2
+d(ρ′)(ρ

′), Vh
2
−d(ρ′)(ρ

′)),

with

T[I](E(ρ)) ' HomG(Vh
2
−d(ρ)(ρ), Vh

2
+d(ρ)(ρ)),

T[I](E(ρ′)) ' HomG(Vh
2

+d(ρ′)(ρ
′), Vh

2
−d(ρ′)(ρ

′)).
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This completes the proof of Lemma 13.9 for ρ, ρ′ 6= ρn−2. The cases ρ = ρn−2

are proved similarly. �

Lemma 13.10 Let E∗(ρ) be the closure in E of the set{
I(W );W ∈ C(ρ),W 6= Vh

2
±d(ρ)

}
.

Then E∗(ρ) is a smooth rational curve.

Proof By Lemma 13.9, E∗(ρ) is smooth at I(W (ρ, ρ′)) for ρ′ adjacent to ρ.
It remains to prove the assertion elsewhere on E∗(ρ).

Let C0(ρ) := {W ∈ C(ρ);W 6= Vh
2
±d(ρ)} and I := I(W ) for W ∈ C0(ρ).

Since we have a flat family of ideals I(W ) for W ∈ C0(ρ), we have a
natural morphism ι : C0(ρ) → HilbG(A2), and a natural homomorphism
(dι)∗ : T[W ](C(ρ))→ T[I](HilbG(A2)). Equivalently there is a homomorphism

(dι)∗ : Hom(W,Vh
2
−d(ρ)(ρ) + Vh

2
+d(ρ)(ρ)/W )→ HomOA2

(I,OA2/I)G

Let ϕ ∈ T[W ](C(ρ)). Then (dι)∗(ϕ)(I) ⊂ m/I because C(ρ) ⊂ E. Recall
that {m/I}[ρ0] = 0 by Corollary 9.6. Hence (dι)∗(ϕ)(n) = 0. Since I/n is
generated by W by 13.7, (dι)∗(ϕ) is induced from ϕ by extending it to

⊕
SkW

as an OA2-homomorphism. Note that we have

Vh
2
−d(ρ)(ρ) + Vh

2
+d(ρ)(ρ)/W ⊂ m/I.

It follows that (dι)∗ is injective and that C0(ρ) is immersed at I(W ). The
same argument applies as well when W = Vh

2
+d(ρ) if there is no adjacent ρ′

with d(ρ′) > d(ρ). Hence E∗(ρ) is a smooth rational curve. �

We will see E(ρ) = E∗(ρ) soon in 13.11.

13.11 Proof of Theorem 13.6 – Conclusion

Let E be the exceptional set of π, and E∗ the union of all E∗(ρ) for ρ ∈ IrrG.
Since E∗(ρ) ⊂ E(ρ) by 13.7, E∗ is a subset of E. Since π is a birational
morphism, E is connected and it is set theoretically the total fiber π−1(0)
over the singular point 0 ∈ SG. Hence in particular P (ρ, ρ′) ⊂ E for any
ρ, ρ′. By Lemma 13.9, the dual graph of E∗ is the same as the Dynkin
diagram Γ(IrrG) of IrrG. Hence E∗ is connected because Γ(IrrG) is con-
nected. By Lemma 13.10 E∗ is smooth except at I(W (ρ, ρ′)), while E∗ has
two smooth irreducible components E∗(ρ) and E∗(ρ′) meeting transversally
at I(W (ρ, ρ′)) by Lemma 13.9. It follows that E∗ is a connected compo-
nent of E. Hence E∗ = E. It follows that E(ρ) = E∗(ρ) for all ρ ∈ IrrG,
P (ρ, ρ′) = {I(W (ρ, ρ′))} for ρ, ρ′ adjacent, and P (ρ, ρ′) = ∅ otherwise. Simi-
larly Q(ρ, ρ′, ρ′′) = ∅. Thus Theorem 13.6 is proved.
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13.12 Conclusion

The proof of Theorem 13.6 proves also Theorems 10.4 and 10.7 automati-
cally. Theorems 10.5–10.6 are clear from Tables 7–8. Since any subscheme in
HilbG(A2) with support outside the exceptional set E is a G-orbit of |G| dis-
tinct points in A2 \{0}, the defining ideal I of it is given by using G-invariant
functions as follows

I =
(
F (x, y)− F (a, b), G(x, y)−G(a, b), H(x, y)−H(a, b)

)
,

where F (x, y) = x` + y`, G(x, y) = xy(x` − y`), H(x, y) = x2y2 and (a, b) 6=
(0, 0). Thus we obtain a complete description of the ideals in HilbG(A2).

14 The binary tetrahedral group E6

14.1 Character table

The binary tetrahedral group G = T is defined as the subgroup of SL(2,C)
of order 24 generated by D2 = 〈σ, τ〉 and µ:

σ =

(
i, 0
0, −i

)
, τ =

(
0, 1
−1, 0

)
, µ =

1√
2

(
ε7, ε7

ε5, ε

)
,

where ε = e2πi/8 [Slodowy80], p. 74. G acts on A2 from the right by (x, y) 7→

ρ 1 2 3 4 5 6 7 d (h
2
± d)

1 −1 τ µ µ2 µ4 µ5

(]) 1 1 6 4 4 4 4

ρ0 1 1 1 1 1 1 1 (2) –

ρ2 2 −2 0 1 −1 −1 1 1 (5, 7)

ρ3 3 3 −1 0 0 0 0 0 (6, 6)

ρ′2 2 −2 0 ω2 −ω −ω2 ω 1 (5, 7)

ρ′1 1 1 1 ω2 ω ω2 ω 2 (4, 8)

ρ′′2 2 −2 0 ω −ω2 −ω ω2 1 (5, 7)

ρ′′1 1 1 1 ω ω2 ω ω2 2 (4, 8)

Table 9: Character table of E6

(x, y)g for g ∈ G. D2 is a normal subgroup of G and the following is exact:

1→ D2 → G→ Z/3Z→ 1.

See Table 9 for the character table of G [Schur07] and the other relevant
invariants. The Coxeter number h of E6 is equal to 12. Let ω = (−1+

√
3i)/2.
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14.2 Symmetric tensors modulo n

Let Sm be the space of homogeneous polynomials in x and y of degree m.
The G-modules Sm and Sm := Sm(m/n) by ρ2 decompose into irreducible
G-modules. We define a G-submodule of m/n by V̄i(ρj) := Si(m/n)[ρj] the
sum of all copies of ρ in Si(m/n), and define Vi(ρj) to be a G-submodule of Si
such that Vi(ρj) ' V̄i(ρj), Vi(ρj) ≡ V̄i(ρj) mod n. We use Vi(ρj) and V̄i(ρj)
interchangeably whenever this is harmless. For a G-module W we define W [ρ]
to be the sum of all the copies of ρ in W .

It is known by [Klein], p. 51 that there are G-invariant polynomials A6,
A8, A2

6 and A12 respectively of homogeneous degrees 6, 8, 12 and 12. In his
notation, we may assume that A6 = T , A8 = W and A12 = ϕ3. See 14.3.

The decomposition of Sm and Sm for small values of m are given in Ta-
ble 10. The factors of Sm in brackets are those in SMcKay. We see by Ta-
ble 10 that V6±d(ρ)(ρ) ' ρ⊕2 if d(ρ) = 0, or ρ if d(ρ) ≥ 1. We also see that
S6−k ' S6+k for any k. Thus Theorems 10.5–10.6 for E6 follows from Table 10
immediately.

14.3 Generators of Vj(ρ)

We prepare some notation for Table 11. Let

p1 = x2 − y2, p2 = x2 + y2, p3 = xy

q1 = x3 + (2ω + 1)xy2, q2 = y3 + (2ω + 1)x2y,

s1 = x3 + (2ω2 + 1)xy2, s2 = y3 + (2ω2 + 1)x2y

γ1 = x5 − 5xy4, γ2 = y5 − 5x4y, T = p1p2p3,

ϕ = p2
2 + 4ωp2

3, ψ = p2
2 + 4ω2p2

3, W = ϕψ.

We note that n is generated by T , W and ϕ3 (or ψ3) by [Klein], p. 51.
Computations give Table 11. We note the relations

ρ′2 = ρ′1 · ρ2 = ρ′′1 · ρ′′2, ρ′′2 = ρ′1 · ρ′2 = ρ′′1 · ρ2,

ρ2 = ρ′1 · ρ′′2 = ρ′′1 · ρ′2, ρ3 = ρ′1 · ρ3 = ρ′′1 · ρ3.

In view of Table 10, each irreducible G factor appears in Sm with multi-
plicity at most one except when m = 6, ρ = ρ3. Therefore the following
congruence of G-modules modulo n are clear from the fact that these G-
modules are nontrivial modulo n.

V3(ρ′′2)ϕ ≡ V3(ρ′2)ψ, V4(ρ3)ϕ ≡ V4(ρ3)ψ,

V1(ρ2)ϕ2 ≡ V5(ρ2)ψ, V5(ρ2)ϕ ≡ V1(ρ2)ψ2,

V2(ρ3)ϕ2 ≡ V2(ρ3)ψ2, V3(ρ′2)ϕ2 ≡ V3(ρ′′2)ψ2.
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m Sm Sm

0 ρ0 0

1 ρ2 ρ2

2 ρ3 ρ3

3 ρ′2 + ρ′′2 ρ′2 + ρ′′2

4 ρ′1 + ρ′′1 + ρ3 (ρ′1 + ρ′′1) + ρ3

5 ρ2 + ρ′2 + ρ′′2 (ρ2 + ρ′2 + ρ′′2)

6 ρ0 + 2ρ3 (2ρ3)

7 2ρ2 + ρ′2 + ρ′′2 (ρ2 + ρ′2 + ρ′′2)

8 ρ0 + ρ′1 + ρ′′1 + 2ρ3 (ρ′1 + ρ′′1) + ρ3

9 ρ2 + 2ρ′2 + 2ρ′′2 ρ′2 + ρ′′2

10 ρ′1 + ρ′′1 + 3ρ3 ρ3

11 2ρ2 + 2ρ′2 + 2ρ′′2 ρ2

12 2ρ0 + ρ′1 + ρ′′1 + 3ρ3 0

Table 10: Irreducible decompositions of Sm(E6)

m ρ Vm(ρ) m ρ Vm(ρ)

1 ρ2 x, y 7 ρ2 s1ϕ, s2ϕ

2 ρ3 x2, xy, y2 7 ρ′2 s1ψ, s2ψ

3 ρ′2 q1, q2 7 ρ′′2 q1ϕ, q2ϕ

3 ρ′′2 s1, s2 8 ρ′1 ψ2

4 ρ′1 ϕ 8 ρ′′1 ϕ2

4 ρ′′1 ψ 8 ρ3 p1p2ϕ, p2p3ϕ, p3p1ϕ

4 ρ3 p1p2, p2p3, p3p1 9 ρ′2 xψ2, yψ2

5 ρ2 γ1, γ2 9 ρ′′2 xϕ2, yϕ2

5 ρ′2 xϕ, yϕ 10 ρ3 x2ϕ2, xyϕ2, y2ϕ2

5 ρ′′2 xψ, yψ 11 ρ2 q1ϕ
2, q2ϕ

2

6 ρ3 V2(ρ3)ϕ⊕ V2(ρ3)ψ

Table 11: Vm(ρ)(E6)
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For instance, siϕ − qiψ ≡ 0 mod T , so that V3(ρ′′2)ϕ ≡ V3(ρ′2)ψ. Since
p1p2(ϕ − ψ) ≡ 0 mod T , p2p3(ϕ − ωψ) ≡ 0 mod T and p3p1(ϕ − ω2ψ) ≡ 0
mod T so that V4(ρ3)ϕ ≡ V4(ρ3)ψ.

Lemma 14.4 1.

SmV̄4(ρ′1) =


ρ′2 for m = 1,

ρ3 for m = 2,

ρ2 + ρ′′2 for m = 3, and

ρ′′1 + ρ3 for m = 4.

2. SmV̄4(ρ′1) = Sm+4 for m ≥ 5, and SmV̄5(ρ′2) = Sm+1V̄4(ρ′1) for m ≥ 1.

3. SmV̄5(ρ2) = ρ3 for m = 1, ρ′2 + ρ′′2 for m = 2, and Sk+5 for m ≥ 3.

4. S1V̄7(ρ′2) = ρ′1 + ρ3.

Proof (1) is clear for k = 1, 2. Next we consider S3V4(ρ′1). By Table 10
S3V4(ρ′1) ' S3 ⊗ V4(ρ′1) ' ρ′′2 + ρ2. We prove S1 · A6 6= {S3V4(ρ′1)}[ρ2] =
V3(ρ′′2)V4(ρ′1). For otherwise, A6 is divisible by ϕ ∈ V4(ρ′1), whence A6/ϕ ∈
V2(ρ′′1) = {0}, a contradiction. Hence we have S3V̄4(ρ′1) = ρ2 + ρ′′2. Similarly
S4V4(ρ′1) = ρ0 +ρ′′1 +ρ3 where {S4V4(ρ′1)}[ρ0] = S0 ·A8. The factors ρ′′1 and ρ3

in S4V4(ρ′1) are not divisible by A6. In fact, otherwise {S4V4(ρ′1)}[ρ3] = S2 ·A6

because S2 ' ρ3. It follows that A6 is divisible by ϕ, which is a contradiction.
Therefore S4V̄4(ρ′1) = ρ′′1 + ρ3. Finally we see S5V4(ρ′1) = ρ2 + ρ′2 + ρ′′2 where
{S5V4(ρ′1)}[ρ2] = S1 · A8. The factors ρ′2 and ρ′′2 in S5V4(ρ′1) are not divisible
by A6. For instance if {S5V4(ρ′1)}[ρ′2] = V3(ρ′2) ·A6, then since the generators
of V3(ρ′2) are coprime, A6 is divisible by ϕ, a contradiction. It follows that
S5V̄4(ρ′1) = ρ′2 + ρ′′2 = S9. The rest of (1) is clear. (2) is clear from (1).

Next, we prove that S1V̄5(ρ2) = ρ3. First, Table 11 gives dimS1V5(ρ2) = 4.
Thus S1V5(ρ2) ' ρ2⊗ρ2 ' ρ0 +ρ3. Hence {S1V5(ρ2)}[ρ0] = S0 ·A6. It follows
that S1V̄5(ρ2) = ρ3. Now consider S2V5(ρ2). Since dimS1 ⊗ V5(ρ2) = 4,
we have dimS2 ⊗ V5(ρ2) ≥ 5. We see that S2V5(ρ2) = S2 ⊗ V5(ρ2) = ρ2 +
ρ′2 + ρ′′2, and that ρ2 ' S1 · A6 ⊂ S2V5(ρ2), V3(ρ′′2)V4(ρ′′1) = V7(ρ′2) ' ρ′2 and
V3(ρ′2)V4(ρ′1) = V7(ρ′′2) ' ρ′′2. Hence S2V̄5(ρ2) = ρ′2 + ρ′′2.

On the other hand, S1V3(ρ′′2) = S1 ⊗ V3(ρ′′2) = ρ′′1 + ρ3, so that S1V7(ρ′2) =
S1V3(ρ′′2)V4(ρ′′1) = ρ′1 + ρ3. We prove that S1V̄7(ρ′2) = ρ′1 + ρ3. For otherwise,
by Table 10, we have {S1V̄7(ρ′2)}[ρ3] = 0 so that {S1V7(ρ′2)}[ρ3] = S2A6.
V7(ρ′2) is divisible by ψ, so that A6 is divisible by ψ. Hence A6/ψ ∈ V2(ρ′1),
which contradicts S2 = ρ3. Therefore {S1V7(ρ′2)}[ρ3] = ρ3 and S1V̄7(ρ′2) =
ρ′1 + ρ3. Similarly S1V̄7(ρ′′2) = ρ′′1 + ρ3. This proves (4). Moreover S3V̄5(ρ2) =
S1S2V̄5(ρ2) = S1(V̄7(ρ′2) + V̄7(ρ′′2)) so that S3V̄5(ρ2) ⊃ ρ′1 + ρ′′1 + ρ3 = S8. This
proves (3). �
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Lemma 14.5 Let Wk = S1 · V̄5(ρ
(k)
2 ) (' ρ3) for any k = 0, 1, 2, where ρ

(k)
2 =

ρ2, ρ
′
2, ρ
′′
2. Let W ∈ P(V6(ρ3)). Then S1W = ρ2 + ρ′2 + ρ′′2 if and only if

W 6= Wk for k = 1, 2, 3.

Proof We see S1 ·W1 = S2 · V̄5(ρ′2) = S3 · V̄4(ρ′1) = ρ2 + ρ′′2 by Lemma 14.4.
Similarly S1 ·W2 = S3 · V̄4(ρ′′1) = ρ2 + ρ′2. Also by Lemma 14.4, (3) we have
S1 ·W0 = ρ′2 + ρ′′2.

Conversely assume W 6= Wk for any k. Choose and fix a G-module
isomorphism h : W1 → W2. For instance, h(pkϕ) = ω−kpkψ. Then h induces
a natural isomorphism {S1 ⊗ h}[ρ2] : {S1 ⊗W1}[ρ2] → {S1 ⊗W2}[ρ2], which
induces an isomorphism {S1 · h}[ρ2] : {S1 · W1}[ρ2] → {S1 · W2}[ρ2]. Since
S7 contains a single ρ2, we have {S1 · W1}[ρ2] ' {S1 · W2}[ρ2] (' ρ2) by
{S1 · h}[ρ2]. It follows that {S1 · h}[ρ2] is a nonzero constant multiple of the
identity. Since V6(ρ3) = W1⊕W2, this proves uniqueness of the G-submodule
W ' ρ3 of V6(ρ3) such that {S1 ·W}[ρ2] = 0. Since {S1 ·W0}[ρ2] = 0, we
have {S1 ·W}[ρ2] 6= 0 by the assumption W 6= W0. Similarly there exists
a unique proper G-submodule W ∈ V6(ρ3) such that {S1 · W}[ρ′2] = 0 or
{S1 ·W}[ρ′′2] = 0. As we saw above, {S1 ·W1}[ρ′2] = 0 and {S1 ·W2}[ρ′′2] = 0.
Therefore S1 ·W = ρ2 + ρ′2 + ρ′′2 if W 6= Wk for k = 0, 1, 2. �

14.6 Proof of Theorem 10.7 in the E6 case

Consider I ∈ XG in the exceptional set E, or equivalently, I ∈ XG with
I ⊂ m. For a finite submodule W of m we define I(W ) = WOA2 + n and
V (I(W )) := I(W )/mI(W ) + n. We write ≡ for congruence modulo n.

Case I(W ) ∈ E0(ρ′1) Let W ∈ P(V4(ρ′1)⊕V8(ρ′1)), so that W ' ρ′1. Suppose
that W 6= V8(ρ′1) and set I(W ) = WOA2 + n. Since S12 = 0, by Lemma 14.4
we have Sk ·W ≡ Sk · V̄4(ρ′1) for k ≥ 4. Also by Lemma 14.4 Sk · V̄4(ρ′1) = Sk+4

for k ≥ 5. Hence Sk ⊂ I(W )/n for k ≥ 9. Since Sk ·W = Sk · V̄4(ρ′1) mod S9

for k ≥ 1, we deduce that

I(W )/n = W +
∑
k≥1

Sk · V̄4(ρ′1) = W +
4∑

k=1

Sk · V̄4(ρ′1) +
11∑
k=9

Sk.

We see by Lemma 14.4

W + S4V̄4(ρ′1) = ρ′1 + ρ′′1 + ρ3 =
1

2
(S4 + S8),

S1V̄4(ρ′1) + S3V̄4(ρ′1) = ρ2 + ρ′2 + ρ′′2 =
1

2
(S5 + S7),

S2V̄4(ρ′1) = ρ3 =
1

2
S6.
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By duality I(W )/n =
∑

ρ∈IrrG deg(ρ)ρ. Thus I(W ) ∈ XG and V (I(W )) '
W .

Case I(W ) ∈ E0(ρ′2) Let W ∈ P(V5(ρ′2) ⊕ V7(ρ′2)) with W ' ρ′2. Suppose
W 6= V5(ρ′2), V7(ρ′2). Since S12 = 0, we have Sk ·W ≡ Sk · V̄5(ρ′2) = Sk+5 for
k ≥ 5 by the condition W 6= V7((ρ′2). We also see that S4 ·W = S4 · V̄5(ρ′2)
mod S11 = S9. Therefore S9 ⊂ I(W )/n. Hence Sk ·W = Sk · V̄5(ρ′2) mod S9

for k ≥ 2. Since S1 · V̄5(ρ′2) = ρ3 and S1 · V̄7(ρ′2) = ρ′1 + ρ3, we have S1 ·W ≡
ρ′1 + ρ3 and {S1 ·W}[ρ′1] ≡ V̄8(ρ′1) ⊂ I(W )/n by the assumption W 6= V5(ρ′2).
Since S3V̄5(ρ′2) = ρ′′1 + ρ3, we have S8 = V̄8(ρ′1) ⊕ S3V̄5(ρ′2) ⊂ I(W )/n. It
follows that

I(W )/n = W +
∑
k≥1

Sk · V̄5(ρ′2) = W +
2∑

k=1

Sk · V̄5(ρ′2) +
11∑
k=8

Sk and

W + S1V̄5(ρ′2) + S2V̄5(ρ′2) = ρ2 + ρ′2 + ρ′′2 + ρ3 =
1

2
(S5 + S6 + S7).

Hence I(W )/n =
∑

ρ∈IrrG deg(ρ)ρ. Thus I(W ) ∈ XG with V (I(W )) ' W .

Case I(W ) ∈ E0(ρ′′1) or I(W ) ∈ E0(ρ′′2) These cases are similar.

Case I(W ) ∈ E0(ρ2) Let W ∈ P(V5(ρ2)⊕V7(ρ2)), so that W ' ρ2. Suppose
that W 6= V7(ρ2). As above, we see that Sk ⊂ I(W )/n for k ≥ 10. It follows
that S3 ·W = S3 · V̄5(ρ2) mod S10 = S8. Therefore Sk ⊂ I(W )/n for k ≥ 8.
Similarly S2 ·W ≡ S2 · V̄5(ρ2) = ρ′2 +ρ′′2 mod S8 and S1 ·W ≡ S1 · V̄5(ρ2) = ρ3

mod S8. It follows that

I(W )/n = W +
∑
k≥1

Sk · V̄5(ρ2) = W +
2∑

k=1

Sk · V̄5(ρ2) +
11∑
k=8

Sk, and

W + S1V̄5(ρ2) + S2V̄5(ρ2) = ρ2 + ρ′2 + ρ′′2 + ρ3 =
1

2
(S5 + S6 + S7).

Hence I(W )/n =
∑

ρ∈IrrG deg(ρ)ρ. Thus I(W ) ∈ XG with V (I(W )) ' W .

Case I(W ) ∈ E0(ρ3) Let W ∈ P(V6(ρ3)). Let Wk = S1 · V5(ρ
(k)
2 ) for any

k = 0, 1, 2 where ρ
(k)
2 = ρ2, ρ

′
2, ρ
′′
2. Now we suppose that W 6= Wk. Then

S1 · W ≡ S7 by Lemma 14.5 so that I(W ) contains Sk for any k ≥ 7. It
follows that

I(W )/n = W +
∑
k≥1

SkW = W +
11∑
k=7

Sk.

Hence I(W )/n =
∑

ρ∈IrrG deg(ρ)ρ, and so I(W ) ∈ XG with V (I(W )) ' W .
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Case I(W ) ∈ P (ρ′1, ρ
′
2) Let W = W (ρ′1, ρ

′
2) := V8(ρ′1) ⊕ V5(ρ′2). Recall

that W = {S1 · V7(ρ′2)}[ρ′1] ⊕ V5(ρ′2) = V8(ρ′1) ⊕ S1 · V4(ρ′1). By Lemma 14.4,
we see that S1 · V̄5(ρ′2) = ρ3, S2 · V̄5(ρ′2) = ρ2 + ρ′′2, S3 · V̄5(ρ′2) = ρ′′1 + ρ3

and Sk ⊂ I(W )/n for k ≥ 8. It follows that I(W )/n =
∑

ρ∈IrrG deg(ρ)ρ by
Table 10. Therefore I(W ) ∈ XG with V (I(W )) ' W .

Case I(W ) ∈ P (ρ′2, ρ3) Let W = W (ρ′2, ρ3) := V7(ρ′2)⊕S1V5(ρ′2) = V7(ρ′2)⊕
W1. We recall that S1 · W1 = ρ2 + ρ′′2, so that Sk ⊂ I(W )/n for k ≥ 7.
Since W1 = ρ3 we have I(W )/n =

∑
ρ∈IrrG deg(ρ)ρ by Table 10. Therefore

I(W ) ∈ XG with V (I(W )) ' W .

Cases I(W ) ∈ P (ρ2, ρ3) or I(W ) ∈ P (ρ′′2, ρ3) Similar.
The following Lemma is proved in the same manner as before. It allows us

to complete the proof of Theorem 10.7 by the same argument as in Section 13.

Lemma 14.7 Each E(ρ) is a smooth rational curve. Moreover, if ρ and ρ′

are adjacent then

1. as I(W ) ∈ E(ρ) approaches the point P (ρ, ρ′), the limit of I(W ) is
I(W (ρ, ρ′));

2. E(ρ) and E(ρ′) intersect transversally at P (ρ, ρ′).

14.8 Conclusion

Theorem 10.4 also follows from the lemma. Theorem 10.7, (3) follows from
Tables 10–11 and Lemma 14.5.

Let I ∈ XG. If Supp(OA2/I) is not the origin, then

I = (T (x, y)− T (a, b), ϕ3(x, y)− ϕ3(a, b),W (x, y)−W (a, b))

where (a, b) 6= (0, 0).
By the same argument as in Section 13 we thus obtain a complete descrip-

tion of the G-invariant ideals in XG.

15 The binary octahedral group E7

15.1 Character table

The binary octahedral group O is defined as the subgroup of SL(2,C) of order
48 generated by T = 〈σ, τ, µ〉 and κ:

σ =

(
i, 0
0, −i

)
, τ =

(
0, 1
−1, 0

)
, µ =

1√
2

(
ε7, ε7

ε5, ε

)
, κ =

(
ε, 0
0, ε7

)
,
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where ε = e2πi/8 [Slodowy80], p. 73. G acts on A2 from the right by (x, y) 7→
(x, y)g for g ∈ G. D2 and T are normal subgroups of G and the following
sequences are exact:

1→ T→ G→ Z/2Z→ 1

and
1→ D2 → G→ S3 → 1,

where S3 is the symmetric group on 3 letters.
See Table 12 for the character table of G and other relevant invariants.

E7 has Coxeter number h = 18.

15.2 Symmetric tensors modulo n

The G-modules Sm and Sm := Sm(m/n) by ρnat := ρ2 for small values of
m split into irreducible G-modules as in Table 13. The factors of Sm in
brackets are those in SMcKay. We use the same notation V̄m(ρ) and Vm(ρ) for
ρ ∈ IrrG as before. Let ϕ = p2

2 +4ωp2
3, ψ = p2

2 +4ω2p2
3, T (x, y) = (x4−y4)xy.

In Table 14 we denote by W
(i)
j ' ρ4 the G-submodules of V9(ρ4) ' ρ⊕2

4 ;
W ′′

2 := S1 · V8(ρ′′2), W3 := S1 · V8(ρ3), W ′
3 := S1 · V8(ρ′3),

Lemma 15.3 The G-module SmV̄k(ρ) splits into irreducible G-submodules as
in Table 15. We read the table as S2V̄6(ρ′1) = ρ′3, S2V̄8(ρ′′2) = ρ3 + ρ′3 and so
on.

Proof The assertions for (m, k) = (1, 6), (2, 6), (3, 6) are clear. There are
three generators A8, A12 and A18 of respective degrees 8, 12 and 18 for the ring
of G-invariant polynomials. We know that A8 = ϕψ, A12 = T 2 by [Klein],
p. 54.

Note first that Sm = Sm−8 · A8 ⊕ Sm for m = 10, 11 and

S4V6(ρ′1) = (ρ′′2 + ρ′3)⊗ ρ′1 = ρ′′2 + ρ3, S5V6(ρ′1) = (ρ′2 + ρ4)⊗ ρ′1 = ρ2 + ρ4.

If {S4V̄6(ρ′1)}[ρ3] = 0 in S10, then {S4V6(ρ′1)}[ρ3] = S2 · A8. A8 would be
divisible by T , a generator of V6(ρ′1). However, this is impossible. Hence
{S4V̄6(ρ′1)}[ρ3] = ρ3 so that S4V̄6(ρ′1) = ρ′′2 + ρ3. S5V̄6(ρ′1) = ρ2 + ρ4 is proved
similarly.

Since S6V6(ρ′1) = (ρ′1)2 + ρ3 + ρ′3 = ρ0 + ρ3 + ρ′3, S6V̄6(ρ′1) = ρ3 + ρ′3 or
ρ3. If S6V̄6(ρ′1) = ρ3, then S6[ρ3] · V6(ρ′1) is divisible by T 2, so that S6[ρ3] is
divisible by T . Since deg T = 6, this is impossible. Hence S6V̄6(ρ′1) = ρ3 + ρ′3.

Next we have S7V6(ρ′1) = ρ′2 + ρ2 + ρ4 and {S7V6(ρ′1)}[ρ2] = ρ2 · A12. If
{S7V̄6(ρ′1)}[ρ4] = 0, then {S7V6(ρ′1)}[ρ4] = V7[ρ4]V6(ρ′1) = ρ4 ·A12 or ρ4 ·A8. In
the first case, V7[ρ4] is divisible by T , which is impossible because deg T = 6
and dimS1 = 2 < deg ρ4 = 4. In the second case, V7[ρ4] is divisible by A8,
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ρ 1 2 3 4 5 6 7 8 d (h
2
± d)

1 −1 µ µ2 τ κ τκ κ3

] 1 1 8 8 6 6 12 6

ρ0 1 1 1 1 1 1 1 1 (3) –

ρ2 2 −2 1 −1 0
√

2 0 −
√

2 2 (7, 11)

ρ3 3 3 0 0 −1 1 −1 1 1 (8, 10)

ρ4 4 −4 −1 1 0 0 0 0 0 (9, 9)

ρ′3 3 3 0 0 −1 −1 1 −1 1 (8, 10)

ρ′2 2 −2 1 −1 0 −
√

2 0
√

2 2 (7, 11)

ρ′1 1 1 1 1 1 −1 −1 −1 3 (6, 12)

ρ′′2 2 2 −1 −1 2 0 0 0 1 (8, 10)

Table 12: Character table of E7

m Sm Sm

1 ρ2 ρ2

2 ρ3 ρ3

3 ρ4 ρ4

4 ρ′′2 + ρ′3 ρ′′2 + ρ′3
5 ρ′2 + ρ4 ρ′2 + ρ4

6 ρ′1 + ρ3 + ρ′3 (ρ′1) + ρ3 + ρ′3
7 ρ2 + ρ′2 + ρ4 (ρ2 + ρ′2) + ρ4

8 ρ0 + ρ′′2 + ρ3 + ρ′3 (ρ′′2 + ρ3 + ρ′3)

9 ρ2 + 2ρ4 (2ρ4)

10 ρ′′2 + 2ρ3 + ρ′3 (ρ′′2 + ρ3 + ρ′3)

11 ρ2 + ρ′2 + 2ρ4 (ρ2 + ρ′2) + ρ4

12 ρ0 + ρ′1 + ρ′′2 + ρ3 + 2ρ′3 (ρ′1) + ρ3 + ρ′3
13 ρ2 + 2ρ′2 + 2ρ4 ρ′2 + ρ4

14 ρ′1 + ρ′′2 + 2ρ3 + 2ρ′3 ρ′′2 + ρ′3
15 ρ2 + ρ′2 + 3ρ4 ρ4

16 ρ0 + 2ρ′′2 + 2ρ3 + 2ρ′3 ρ3

17 2ρ2 + ρ′2 + 3ρ4 ρ2

18 ρ0 + ρ′1 + ρ′′2 + 3ρ3 + 2ρ′3 0

Table 13: Irreducible decompositions of Sm(E7) and Sm(E7)
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m ρ Vm(ρ)

7 ρ2 7x4y3 + y7,−x7 − 7x3y4

11 ρ2 x10y − 6x6y5 + 5x2y9,−xy10 + 6x5y6 − 5x9y2

8 ρ3 −2xy7 − 14x5y3, x8 − y8, 2x7y + 14x3y5

10 ρ3 4x10 + 60x6y4, 5x9y + 54x5y5 + 5xy9

60x4y6 + 4y10

9 ρ4 W ′′
2 +W3 = W3 +W ′

3 = W ′
3 +W ′′

2 ' ρ⊕2
4

9 W ′′
2 12x6y3 + 12x2y7, x9 − 10x5y4 + xy8

−x8y + 10x4y5 − y9, 12x7y2 + 12x3y6

9 W3 21x6y3 + 3x2y7,−x9 + 7x5y4 + 2xy8

−2x8y − 7x4y5 + y9,−3x7y2 − 21x3y6

9 W ′
3 x3T, x2yT, xy2T, y3T

8 ρ′3 x2T, xyT, y2T

10 ρ′3 −3x8y2 − 14x4y6 + y10, 8x7y3 + 8x3y7

x10 − 14x6y4 − 3x2y8

7 ρ′2 xT, yT

11 ρ′2 −11x8y3 − 22x4y7 + y11, 11x3y8 + 22x7y4 − x11

6 ρ′1 T

12 ρ′1 x12 − 33x8y4 − 33x4y8 + y12

8 ρ′′2 ψ2,−ϕ2

10 ρ′′2 x5yψ − xy5ϕ,−x5yϕ+ xy5ψ

Table 14: Vm(ρ)(E7)

which is impossible. It follows that {S7V̄6(ρ′1)}[ρ4] = ρ4. If {S7V̄6(ρ′1)}[ρ′2] =
0, then V7[ρ2]V6(ρ′1) = ρ′2 ·A12 or ρ′2 ·A8. In the first case V7[ρ2] is divisible by
T , which contradicts Table 14. In the second case V7[ρ2] is divisible by A8,
absurd. Hence {S7V̄6(ρ′1)}[ρ′2] = ρ′2. It follows that S7V̄6(ρ′1) = ρ′2 + ρ4 = S13.

We note next dimS1V11(ρ′2) ≥ 3. If dimS1V11(ρ′2) = 3, then there exists a
f ∈ S10 such that V11(ρ′2) = S1 · f . Hence f ∈ S10[ρ′1] = {0}, a contradiction.
Hence dimS1V11(ρ′2) = 4. so that S1V11(ρ′2) = ρ′1 +ρ′3. If {S1V̄11(ρ′2)}[ρ′3] = 0,
we have {S1V11(ρ′2)}[ρ′3] = V4[ρ′3] ·A8 by Table 13. Since dimS1 < deg ρ′3 = 3,
there exists a nontrivial element of {S1V11(ρ′2)}[ρ′3] divisible by both x and A8.
Hence V11(ρ′2) contains a nontrivial element divisible by A8. This implies that
V11(ρ′2) is divisible by A8. Then V3(ρ′2) = V11(ρ′2)A−1

8 = ρ′2, which contradicts
S3 = ρ4. Hence S1V̄11(ρ′2) = ρ′1 + ρ′3.

It is clear from ρ2 ⊗ ρ′′2 = ρ4 and Table 13 that S1V̄8(ρ′′2) = ρ4.
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m k ρ SmV̄k(ρ) m k ρ SmV̄k(ρ)

1 6 ρ′1 ρ′2 2 8 ρ′′2 ρ3 + ρ′3

2 6 ρ′3 3 8 ρ2 + ρ′2 + ρ4

3 6 ρ4 1 7 ρ2 ρ3

4 6 ρ′′2 + ρ3 2 7 ρ4

5 6 ρ2 + ρ4 3 7 ρ′′2 + ρ′3

6 6 ρ3 + ρ′3 4 7 ρ′2 + ρ4

7 6 ρ′2 + ρ4 5 7 ρ′1 + ρ3 + ρ′3

1 11 ρ′2 ρ′1 + ρ′3 1 10 ρ3 ρ2 + ρ4

1 8 ρ′′2 ρ4 1 10 ρ′3 ρ′2 + ρ4

Table 15: Decomposition of SmV̄k(ρ)

Next S2 ⊗ V8(ρ′′2) = ρ3 + ρ′3 by Table 12. Since dimS2V8(ρ′′2) ≥ 4, we have
S2V8(ρ′′2) = ρ3+ρ′3. If {S2V̄8(ρ′′2)}[ρ3] = 0, then {S2V8(ρ′′2)}[ρ3] = S2 ·A8. Since
deg ρ′′2 < deg ρ3 and V8(ρ′′2) is generated by ϕ2 and ψ2, there exists a nontrivial
element of {S2V8(ρ′′2)}[ρ3] divisible by both ϕ2 and A8. Since ϕ and ψ are
coprime, S10 contains a nontrivial element divisible by ϕ2ψ, a contradiction.
If {S2V̄8(ρ′′2)}[ρ′3] = 0, then {S2V8(ρ′′2)}[ρ′3] = S2 · A8 = ρ3, a contradiction.
Hence S2V̄8(ρ′′2) = ρ3 + ρ′3.

Next we consider S3V̄8(ρ′′2). Since dimS2V8(ρ′′2) = 6 by the above proof,
we have dimS3V8(ρ′′2) ≥ 7. By Table 12 S3 ⊗ V8(ρ′′2) = ρ2 + ρ′2 + ρ4 so that
S3V8(ρ′′2) = ρ2+ρ′2+ρ4. Assume S3V̄8(ρ′′2) 6= ρ2+ρ′2+ρ4. Then by Table 13 the
only possibility is that {S3V̄8(ρ′′2)}[ρ4] = 0. Assume {S3V8(ρ′′2)}[ρ4] = S3 · A8

so that there exists an element of {S3V8(ρ′′2)}[ρ4] divisible by both ϕ2 and A8.
Therefore there exists a nontrivial element of S3 divisible by ψ, which is a
contradiction. Hence S3V̄8(ρ′′2) = ρ2 + ρ′2 + ρ4.

Clearly S1V7(ρ2) = ρ0 + ρ3, S2V7(ρ2) = ρ2 + ρ4. Hence S1V̄7(ρ2) = ρ3 and
S2V̄7(ρ2) = ρ4.

Next S3⊗V7(ρ2) = ρ4⊗ρ2 = ρ′′2+ρ3+ρ′3 by Table 12. Since dimS2V7(ρ2) =
6, we have dimS3V7(ρ2) ≥ 7 so that S3⊗V7(ρ2) = ρ′′2 +ρ3 +ρ′3. It is clear that
{S1V7(ρ2)}[ρ0] = S0 · A8, {S2V7(ρ2)}[ρ2] = S1 · A8. Hence {S3V7(ρ2)}[ρ3] =
S2 ·A8. It is clear that {S3V7(ρ2)}[ρ′3] 6= S2 ·A8 and {S3V7(ρ2)}[ρ′′2] 6= S2 ·A8.
Hence S3V̄7(ρ2) = ρ′′2 + ρ′3.

Next we see dimS4V7(ρ2) = 10, S4V7(ρ2) ' S4⊗V7(ρ2) = ρ′2 + 2ρ4. Hence
S4V̄7(ρ2) = ρ′2+ρ4 by Table 13. It is easy to see that dimS5V7(ρ2) = 12. Hence
S5V7(ρ2) = S5⊗V7(ρ2) = ρ′1+ρ′′2+ρ3+2ρ′3 so that S5V̄7(ρ2) = ρ′1+ρ3+ρ′3 = S12

by Table 13.

Similarly we see easily that dimS1V10(ρ3) = dimS1V10(ρ′3) = 6. Hence
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S1V10(ρ3) = ρ2 + ρ4, S1V10(ρ′3) = ρ′2 + ρ4. If {S1V̄10(ρ3)}[ρ4] = 0, then
{S1V10(ρ3)}[ρ4] = S3 · A8. Therefore there exists a nontrivial element of
V10(ρ3) divisible by A8 so that V10(ρ3) is divisible by A8. This implies that
V̄10(ρ3) = 0. But by the choice of it, V10(ρ3) ' V̄10(ρ3), a contradiction. This
completes the proof. �

Corollary 15.4 1. S1V̄6(ρ′1) = V̄7(ρ′2), S2V̄6(ρ′1) = V̄8(ρ′3), S1V̄7(ρ2) =
V̄8(ρ3).

2. S3V̄8(ρ′′2) = S11, S5V̄7(ρ2) = S12, S7V̄6(ρ′1) = S13.

3. S2V̄8(ρ′3) = ρ′′2 + ρ3, S2V̄8(ρ′′2) = ρ3 + ρ′3, S2V̄8(ρ3) = ρ′′2 + ρ′3.

Proof Clear. �

We omit the proof of Theorem 10.7 because we need only to follow the
proof in the E6 case verbatim.

15.5 Conclusion

We also can give a complete description of G-invariant ideals in XG. Let

χ = x12 − 33x8y4 − 33x4y8 + y12, F (x, y) = χT, W (x, y) = ϕψ.

Let I ∈ XG. If Supp(OA2/I) is not the origin, then we know that

I =
(
W (x, y)−W (a, b), T 2(x, y)− T 2(a, b), F (x, y)− F (a, b)

)
.

where (a, b) 6= (0, 0).

16 The binary icosahedral group E8

16.1 Character table

The binary icosahedral group I is defined as the subgroup of SL(2,C) of order
120 generated by σ and τ :

σ = −
(
ε3, 0
0, ε2

)
, τ =

1√
5

(
−(ε− ε4), ε2 − ε3

ε2 − ε3, ε− ε4

)
where ε = e2πi/5. We note σ5 = τ 2 = −1. G acts on A2 from the right by
(x, y) 7→ (x, y)g for g ∈ G. G is isomorphic to SL(2,F5). An isomorphism of
G with SL(2,F5) is given by σ 7→ ( 3 3

3 0 ) , τ 7→ ( 2 0
0 3 ). Let η = ε2 = e4πi/5. In
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ρ 1 2 3 4 5 6 7 8 9 d (h
2
± d)

1 −1 σ σ2 σ3 σ4 τ σ2τ σ7τ

] 1 1 12 12 12 12 30 20 20

ρ0 1 1 1 1 1 1 1 1 1 (5) −
ρ2 2 −2 µ+ −µ− µ− −µ+ 0 −1 1 4 (11, 19)

ρ3 3 3 µ+ µ− µ− µ+ −1 0 0 3 (12, 18)

ρ4 4 −4 1 −1 1 −1 0 1 −1 2 (13, 17)

ρ5 5 5 0 0 0 0 1 −1 −1 1 (14, 16)

ρ6 6 −6 −1 1 −1 1 0 0 0 0 (15, 15)

ρ′4 4 4 −1 −1 −1 −1 0 1 1 1 (14, 16)

ρ′2 2 −2 µ− −µ+ µ+ −µ− 0 −1 1 2 (13, 17)

ρ′′3 3 3 µ− µ+ µ+ µ− −1 0 0 1 (14, 16)

Table 16: Character table of E8

m Sm m Sm

0 0 30 0

1 ρ2 29 ρ2

2 ρ3 28 ρ3

3 ρ4 27 ρ4

4 ρ5 26 ρ5

5 ρ6 25 ρ6

6 ρ′′3 + ρ′4 24 ρ′′3 + ρ′4

7 ρ′2 + ρ6 23 ρ′2 + ρ6

8 ρ′4 + ρ5 22 ρ′4 + ρ5

9 ρ4 + ρ6 21 ρ4 + ρ6

10 ρ3 + ρ′′3 + ρ5 20 ρ3 + ρ′′3 + ρ5

11 (ρ2) + ρ4 + ρ6 19 (ρ2) + ρ4 + ρ6

12 (ρ3) + ρ′4 + ρ5 18 (ρ3) + ρ′4 + ρ5

13 (ρ′2 + ρ4) + ρ6 17 (ρ′2 + ρ4) + ρ6

14 (ρ′′3 + ρ′4 + ρ5) 16 (ρ′′3 + ρ′4 + ρ5)

15 (2ρ6)

Table 17: Irreducible decompositions of Sm(E8)
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Slodowy’s notation [Slodowy80], p. 74

τ =
1

η2 − η3

(
η + η4, 1
−1, −η − η4

)
.

See Table 16 for the character table of G [Schur07] and the other relevant

invariants. The Coxeter number h of E8 is equal to 30. Let µ± = 1±
√

5
2

.

m k ρ SmV̄k(ρ) m k ρ SmV̄k(ρ)

1 11 ρ2 ρ3 1 16 ρ5 ρ4 + ρ6

2 11 ρ4 1 13 ρ′2 ρ′4

3 11 ρ5 2 13 ρ6

4 11 ρ6 3 13 ρ′′3 + ρ5

5 11 ρ′′3 + ρ′4 4 13 ρ4 + ρ6

6 11 ρ′2 + ρ6 5 13 ρ3 + ρ′4 + ρ5

7 11 ρ′4 + ρ5 1 16 ρ′4 ρ′2 + ρ6

8 11 ρ4 + ρ6 1 14 ρ′′3 ρ6

9 11 ρ3 + ρ′′3 + ρ5 2 14 ρ′4 + ρ5

1 18 ρ3 ρ2 + ρ4 3 14 ρ′2 + ρ4 + ρ6

1 17 ρ4 ρ3 + ρ5

Table 18: Irreducible decompositions of SmV̄k(ρ)

16.2 Symmetric tensors modulo n

The G-modules Sm := Sm(m/n) by ρnat := ρ2 for small values of m split into
irreducible G-modules as in Table 17. The factors of Sm in brackets are those
in SMcKay. We use the same notation V̄m(ρ) and Vm(ρ) for ρ ∈ IrrG as before.

We define irreducible G-submodules of V15(ρ6) (' ρ⊕2
6 ) and σi, τj by

W ′′
3 := S1V14(ρ′′3), W ′

4 := S1V14(ρ′4), W5 := S1V14(ρ5),

σ1 := x10 + 66x5y5 − 11y10, σ2 := −11x10 − 66x5y5 + y10

τ1 := x10 − 39x5y5 − 26y10, τ2 := −26x10 + 39x5y5 + y10

Lemma 16.3 The G-modules SmV̄k(ρ) split into irreducible G-submodules as
in Table 18.
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Proof We give a brief proof of the lemma. Recall that the ring of G-
invariant polynomials is generated by three elements A12, A20 and A30 of
degree 12, 20, 30 respectively. See [Klein], p. 55 or Table 4. Note that
S1 ⊗ V11(ρ2) = ρ2 ⊗ ρ2 = ρ0 + ρ3. Hence S1 ⊗ V11(ρ2) = ρ0A12 + ρ3. In fact
A12 = xy(x10 + 11x5y5 − y10) by [Klein], p. 56. It follows that S1V̄11(ρ2) =
ρ3. Similarly Sk ⊗ V11(ρ2) ⊃ Sk−1A12. Therefore S2 ⊗ V11(ρ2) = ρ2 + ρ4,
S2V̄11(ρ2) = ρ4, S3⊗V11(ρ2) = ρ3 +ρ5, S3V̄11(ρ2) = ρ5, S4⊗V11(ρ2) = ρ4 +ρ6,
S4V̄11(ρ2) = ρ6, S5 ⊗ V11(ρ2) = ρ′′3 + ρ′4 + ρ5, S5V̄11(ρ2) = ρ′′3 + ρ′4. All of
these are proved as in Lemma 15.3. In fact, for instance dimS5V11(ρ2) = 7
by Table 19, and ρ6 ⊗ ρ2 = ρ′′3 + ρ′4 + ρ5 so that S5V̄11(ρ2) = ρ′′3 + ρ′4.

We see S6V̄11(ρ2) = ρ′2 +ρ6 because S17 = ρ′2 +ρ4 +ρ6 and ρ2⊗S5V̄11(ρ2) =
ρ2⊗(ρ′′3 +ρ′4) = ρ′2+2ρ6 contains no ρ4. S18 = ρ3+ρ′4+ρ5 and ρ2⊗S6V̄11(ρ2) =
ρ2⊗(ρ′2+ρ6) contains no ρ3, whence S7V̄11(ρ2) = ρ′4+ρ5. Similarly S8V̄11(ρ2) =
ρ4 + ρ6 because S19 = ρ2 + ρ4 + ρ6, ρ2 ⊗ S7V̄11(ρ2) = ρ′2 + ρ4 + 2ρ6. By
Table 17 S20 = ρ3 + ρ′′3 + ρ5. ρ2 ⊗ S8V̄11(ρ2) = ρ3 + 2ρ5 + ρ′′3 + ρ′4. Hence
S9V̄11(ρ2) = ρ3 + ρ′′3 + ρ5 = S20.

S1V̄18(ρ3) = ρ2 + ρ4 follows from comparison of S1 ⊗ V̄18(ρ3) and S19 and
the fact that any polynomial in V18(ρ3) is not divisible by A12.

Similarly S1V̄17(ρ4) = ρ3 + ρ5, S1V̄16(ρ5) = ρ4 + ρ6 and S1V̄13(ρ′2) = ρ′4.
Since ρ3 ⊗ ρ′2 = ρ6, we see S2V̄13(ρ′2) = ρ6. One checks dimS3V13(ρ′2) =
dimS1W

′
4 = 8 by using Table 19. It follows from this that S3V̄13(ρ′2) =

ρ′′3 + ρ5. Similarly it is clear that S4V13(ρ′2) = S4 ⊗ V13(ρ′2) = ρ4 + ρ6 and
S5V̄13(ρ′2) = S5⊗ V̄13(ρ′2) = S18. Note dimSkV14(ρ′′3) = 3(k+ 1) for k = 1, 2, 3
so that SkV14(ρ′′3) = Sk ⊗ V14(ρ′′3). It follows from it that SkV̄14(ρ′′3) = Sk ⊗ ρ′′3
for k = 1, 2, 3. In particular, S2V̄14(ρ′′3) = ρ3 ⊗ ρ′3 = ρ′4 + ρ5, S3V̄14(ρ′′3) =
ρ′2 + ρ4 + ρ6 = S17. �

Corollary 16.4 1. SkV̄11(ρ2) = V̄11+k(ρk+2) for 1 ≤ k ≤ 3; S1V̄13(ρ′2) =
V̄14(ρ′4).

2. S9V̄11(ρ2) = S20, S5V̄13(ρ′2) = S18, S3V̄14(ρ′′3) = S17.

3. S2V̄14(ρ5) = ρ′′3 + ρ′4, S2V̄14(ρ′4) = ρ′′3 + ρ5, S2V̄14(ρ′′3) = ρ′4 + ρ5.

Proof By Table 19, dimS1W
′′
3 = 9, dimS1W

′
4 = 8, dimS1W5 = 7. Hence

S2V14(ρ′′3) = S1W
′′
3 = ρ4 + ρ5, S2V̄14(ρ′4) = S2V14(ρ′4) = S1W

′
4 = ρ′′3 + ρ5,

S5V̄11(ρ2) = S2V̄14(ρ5) = S1W5 = ρ′′3 + ρ′4. �

In order to prove Theorem 10.7 in the E8 case we have only to follow the
proof of Theorem 10.7 in the Dn or E6 case verbatim. We omit the details.
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m ρ Vm(ρ)

11 ρ2 xσ1,−yσ2

19 ρ2 −57x15y4 + 247x10y9 + 171x5y14 + y19

−x19 + 171x14y5 − 247x9y10 − 57x4y15

12 ρ3 x2σ1,−5x11y − 5xy11, y2σ2

18 ρ3 −12x15y3 + 117x10y8 + 126x5y13 + y18

45x14y4 − 130x9y9 − 45x4y14

x18 − 126x13y5 + 117x8y10 + 12x3y15

13 ρ4 x3σ1,−3x12y + 22x7y6 − 7x2y11

−7x11y2 − 22x6y7 − 3xy12, y3σ2

17 ρ4 −2x15y2 + 52x10y7 + 91x5y12 + y17

10x14y3 − 65x9y8 − 35x4y13

−35x13y4 + 65x8y9 + 10x3y14

−x17 + 91x12y5 − 52x7y10 − 2x2y15

14 ρ5 x4σ1,−2x13y + 33x8y6 − 8x3y11

−5x12y2 − 5x2y12

−8x11y3 − 33x6y8 − 2xy13,−y4σ2

16 ρ5 64x15y + 728x10y6 + y16

66x14y2 + 676x9y7 − 91x4y12

56x13y3 + 741x8y8 − 56x3y13

91x12y4 + 676x7y9 − 66x2y14

x16 + 728x6y10 − 64xy15

13 ρ′2 y3τ2,−x3τ1

17 ρ′2 x17 + 119x12y5 + 187x7y10 + 17x2y15

−17x15y2 + 187x10y7 − 119x5y12 + y17

14 ρ′′3 x14 − 14x9y5 + 49x4y10

7x12y2 − 48x7y7 − 7x2y12

49x10y4 + 14x5y9 + y14

16 ρ′′3 3x15y − 143x10y6 − 39x5y11 + y16

−25x13y3 − 25x3y13

x16 + 39x11y5 − 143x6y10 − 3xy15

Table 19: Vm(ρ)(E8)
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m ρ Vm(ρ)

14 ρ′4 xy3τ2,−x4τ1, y
4τ2,−x3yτ1

16 ρ′4 −2x15y + 77x10y6 − 84x5y11 + y16

3x12y4 + 110x7y9 + 15x2y14

15x14y2 − 110x9y7 + 35x4y12

−x16 − 84x11y5 − 77x6y10 − 2xy15

15 ρ6 W ′′
3 +W ′

4 = W ′
4 +W5 = W5 +W ′′

3 ' ρ⊕2
6

15 W ′′
3 := S1V14(ρ′′3) (' ρ6)

x15 + 84x10y5 + 77x5y10 + 2y15

−x14y + 14x9y6 − 49x4y11

−7x13y2 + 48x8y7 + 7x3y12

7x12y3 − 48x7y8 − 7x2y13

−49x11y4 − 14x6y9 − xy14

−2x15 + 77x10y5 − 84x5y10 + y15

15 W ′
4 := S1V14(ρ′4) (' ρ6)

x15 + 39x10y5 − 143x5y10 − 3y15

−2x14y + 78x9y6 + 52x4y11

x13y2 − 39x8y7 − 26x3y12

−26x12y3 + 39x7y8 + x2y13

52x11y4 − 78x6y9 − 2xy14

3x15 − 143x10y5 − 39x5y10 + y15

15 W5 := S1V14(ρ5) (' ρ6)

5x15 + 330x10y5 − 55x5y10

−7x14y + 198x9y6 − 43x4y11

−19x13y2 + 66x8y7 − 31x3y12

−31x12y3 − 66x7y8 − 19x2y13

−43x11y4 − 198x6y9 − 7xy14

−55x10y5 − 330x5y10 + 5y15

Table 19: Vm(ρ)(E8), continued
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17 Fine

We would like to mention some related problems that are unsolved or the
subject of current research.

Conjecture 17.1 Let G be any finite subgroup of SL(3,C). Then HilbG(A3)
is a crepant smooth resolution of A3/G.

The conjecture is solved affirmatively in the Abelian case [Nakamura98],
where for any finite Abelian subgroup G of GL(n,C) the Hilbert scheme
HilbG(An) is described as a (possibly nonnormal) toric variety. There is
a McKay correspondence [Reid97], [INkjm98] similar to [GSV83]. See also
[Nakamura98]. In general the normalization of HilbG(An) is a torus embed-
ding associated with a certain fan Fan(G) given explicitly by using some
combinatorial data arising from the given group G. However in general it
is not known whether HilbG(An) is normal. There are various examples of
HilbG(An). Reid gave some examples of singular HilbG for finite Abelian
subgroups G in GL(3,C) in private correspondence.

If G is the cyclic subgroup of SL(4,C) of order two generated by minus the
identity then HilbG(A4) is nonsingular; however, it is not a crepant resolution
of A3/G. There are also some examples of Abelian subgroups of SL(4,C) for
which HilbG(A4) is singular, although a crepant resolution does exist. The
simplest example is the Abelian subgroup of order eight consisting of diago-
nal 4 × 4 matrices with diagonal coefficients ±1. [Kidoh98] gave a concrete
description of HilbG(A2) for a finite Abelian subgroup G of GL(2,C) by using
two kinds of continued fractions.

We will treat the non-Abelian cases of Conjecture 17.1 elsewhere [GNS98];
in almost all the non-Abelian case, a certain beautiful duality in m/n is ob-
served [GNS98]. See also Section 7.

The following question would be important for future applications:

Problem 17.2 Let G be a finite subgroup of SL(n,C), N a normal subgroup
of G. When is HilbG(An) ' HilbG/N(HilbN(An))?

Unfortunately the answer is negative in general in dimension three. This will
appear in [GNS98].
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