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Wave turbulence and intermittency
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Abstract

In the early 1960s, it was established that the stochastic initial value problem for weakly coupled wave systems has a natural
asymptotic closure induced by the dispersive properties of the waves and the large separation of linear and nonlinear time scales.
One is thereby led to kinetic equations for the redistribution of spectral densities via three- and four-wave resonances together
with a nonlinear renormalization of the frequency. The kinetic equations have equilibrium solutions which are much richer than
the familiar thermodynamic, Fermi–Dirac or Bose–Einstein spectra and admit in addition finite flux (Kolmogorov–Zakharov)
solutions which describe the transfer of conserved densities (e.g. energy) between sources and sinks. There is much one can
learn from the kinetic equations about the behavior of particular systems of interest including insights in connection with the
phenomenon of intermittency. What we would like to convince you is that what we call weak or wave turbulence is every bit as
rich as the macho turbulence of 3D hydrodynamics at high Reynolds numbers and, moreover, is analytically more tractable. It is
an excellent paradigm for the study of many-body Hamiltonian systems which are driven far from equilibrium by the presence
of external forcing and damping. In almost all cases, it contains within its solutions behavior which invalidates the premises
on which the theory is based in some spectral range. We give some new results concerning the dynamic breakdown of the
weak turbulence description and discuss the fully nonlinear and intermittent behavior which follows. These results may also
be important for proving or disproving the global existence of solutions for the underlying partial differential equations. Wave
turbulence is a subject to which many have made important contributions. But no contributions have been more fundamental
than those of Volodja Zakharov whose 60th birthday we celebrate at this meeting. He was the first to appreciate that the
kinetic equations admit a far richer class of solutions than the fluxless thermodynamic solutions of equilibrium systems and
to realize the central roles that finite flux solutions play in non-equilibrium systems. It is appropriate, therefore, that we call
these Kolmogorov–Zakharov (KZ) spectra. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction and motivation

Turbulence is about understanding the long-time statistical properties of solutions of nonlinear field equations
with sources and sinks, and in particular with calculating transport. Sometimes the transport is in physical space
such as the flux of heat carried across a layer of fluid by turbulent convection, or the flux of momentum from a
fast moving turbulent stream to a fixed plate or the flux of angular momentum across an annulus from an inner
rotating cylinder to slower moving outer one. However, the transport can also be in Fourier space, such as the flux
of energy from large energy containing scales to small scales where dissipation occurs, and it is the description of
this transport that is the main topic of this lecture.
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The picture we have in mind is this. We have a source of energy at large scales, throughput at middle scales
(windows of transparency, inertial ranges) over which the system is essentially conservative and Hamiltonian, and
dissipative output at small scales. Among other things, we would like to find solutions of the moment equations for
the unforced, undamped system which describe a finite flux of some conserved density, such as energy, across these
windows of transparency. This picture derives from the Richardson scenario for the complex vorticity and irregular
flow fields encountered in 3D, high Reynolds number hydrodynamics, the granddaddy of turbulent systems. The
main role of the energy conserving nonlinear terms (advection and pressure) in the Euler equations is to transfer
energy from the large eddies at the integral scale where the system is forced to smaller and smaller eddies and
eventually to the viscous sink. If the average kinetic energy E = 〈u2〉 is written as

∫∞
0 E(k) dk, the dissipation rate

P = 〈νω2〉 as 2ν
∫∞

0 k2E(k) dk, then the von Karman–Howarth equation is

∂E(k, t)

∂t
= f (k) + T (k) − 2νk2E(k), (1.1)

where f (k), T (k) and 2νk2E(k) represent forcing, nonlinear transfer and damping, respectively. E(k) is the angle
averaged Fourier transform of the two point velocity correlation function. T (k) is the Fourier transform of third-order
moments.

Since the nonlinear transfer T (k) conserves energy, we may write it as the k derivative of a flux, −∂P/∂k. Then,
in the window of transparency,

∂

∂t

∫ b

a

E dk = Pa − Pb,

which can be zero either because Pa = Pb = 0 or because Pa = Pb = P , a constant. The first possibility describes
an isolated system and leads to an equidistribution of energy in the interval (a, b). The second possibility allows
for an energy flux between source and sink, and leads to what is known as the Kolmogorov or finite flux spectrum
(see Fig. 1).

However, there is a fundamental difficulty with the moment (cumulant) hierarchy of which (1.1) is the first
member. The hierarchy is unclosed and infinite, and no cumulant discard approximations work. Three-dimensional,
high Reynolds number hydrodynamics affords the theoretician no useful approximations, no separation of scales,
and no footholds for analytical traction. It is too difficult. Simple fluids are easier to drink than they are to understand.

Nevertheless, some progress in understanding turbulent behavior has come as a result of the formidable insights
of Kolmogorov. Arguing that the symmetries of translation and isotropy are restored in the statistical sense and that,
in the infinite Reynolds number limit, all small-scale statistical properties depend only on the local scale and the
energy dissipation rate P , one can deduce that

lim
r→0

lim
ν→0

lim
t→∞〈(u‖(
x + 
r, t) − u‖(
x, t))n〉 = Cn(Pr)n/3, (1.2)

Fig. 1. Forcing, inertial range and damping regions of k space.
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where u‖ = 
u · r̂ and Cn are universal constants. The limits correspond to long time and the necessity of staying
away from the sink and source scales, respectively. But, for almost all n, (1.2) is conjecture. From the Navier–Stokes
equations, it can only be proved rigorously for n = 3 [37]. Moreover, recent experimental evidence seems to indicate
that the nth-order structure function, n ≥ 4,

Sn(r) = 〈(u(
x + 
r) − u(
x))n〉
has index less than 1

3 n. If that is the case, the ratio Sn/(S2)n/2, which in the Kolmogorov theory is a pure constant,
diverges as r → 0. The divergence of this ratio indicates that large fluctuations are more probable than Kolmogorov
theory would suggest. The present consensus is that fluctuations in the local dissipation rate are responsible for
elevating the tails of the probability density function for velocity differences and for what is generally called
intermittent behavior.

In contrast, the turbulence of a sea of weakly coupled, dispersive wavetrains has a natural asymptotic closure.
One can:

1. find a closed kinetic equation for the spectral energy density;
2. understand the mechanisms (resonance) by which energy and other conserved densities are redistributed through-

out the spectrum;
3. obtain stationary solutions of the kinetic equation analogous to both the thermodynamic and Kolmogorov spectra;
4. test the validity of the weak turbulence approximation;

Moreover, the results are not simply a useful paradigm but are of direct interest in their own right in a variety of
contexts from optics to oceans, from sound to semiconductor lasers to the solar wind.

The natural closure occurs because of two factors, the weak coupling, ε, 0 < ε � 1 and the dispersive nature
of the waves. The combination means that there is an effective separation of time scales. On the linear time scale
tL = ω−1

0 , ω0 a typical frequency in the initial spectrum, the higher-order cumulants decay towards a state of
joint Gaussianity. On the much longer nonlinear time scale tNL = ε−(2r−4)ω−1

0 , nonlinear resonant interactions of
order r, r = 3, 4, 5, bring about coherence and a departure from joint Gaussian behavior. The regeneration of the
higher-order cumulants by nonlinearity occurs in a special way. For example, in the regeneration of the third-order
cumulant (moment), the product of second-order cumulants is more important than the fourth-order cumulant. This
pattern continues. The regeneration of cumulants of order N is dominated by products of lower-order ones. This
feature leads to the natural closure.

The new message of this paper is to suggest that wave turbulence is an even richer paradigm for non-equilibrium
systems than previously believed. The reason is simple and dramatic. As the system relaxes to its asymptotic
stationary state, the closure equations almost always become non-uniform at some scale we call kNL. If kNL lies
near the ultraviolet (infrared) end of the spectrum, then for all k, k > kNL(k < kNL), the dynamics become
increasingly dominated by large fluctuation local events which are intermittent and fully nonlinear. Some are
shock-like; others are spawned by condensate formation. We give explicit formulae for kNL in terms of properties
of the linear dispersion relation, the nonlinear coupling coefficients and the KZ fluxes.

2. Wave turbulence: asymptotic closure

The derivation of the closed equations for the long-time behavior of the statistical moments (cumulants) and a
discussion of their properties is carried out in a series of seven steps.

1. The set up: the equation for the Fourier amplitudes.
2. Moments, cumulants.
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3. The cumulant (BBGKY) hierarchy.
4. The strategy for solution and the dynamics.
5. Resonant manifolds and asymptotic expansions.
6. The closure equations.
7. Properties: conservation laws, reversibility, finite flux solutions and their temporal formation.

2.1. The set up: equation for Fourier amplitudes

Consider a system which in the linear limit admits wavetrain solutions us = exp(i
k · 
x + iωs(
k)t), where ωs(
k)

is the dispersion relation and s labels the degree of degeneracy which corresponds to the order of the system or
the number of frequencies corresponding to a given wavevector 
k. Often, s = +, − corresponding to second-order
systems where waves travel in one of two directions. By an appropriate choice of canonical variables (sometimes
suggested by the Hamiltonian structure), we write

us(
x, t) =
∫

As(
k, t) ei
k·
x d
k, As(
k, t) = As
k, As(
k, t) = 1

(2π)d

∫
us(
x, t) e−i
k·
x d
x, (2.1)

and find (for ωs = sω(
k), s = +, −, ω(
k) = ωk),

dAs
k

dt
− isωkAs

k = ε
∑
s1s2

∫
L

ss1s2
kk1k2

A
s1
k1

A
s2
k2

δ(
k1 + 
k2 − 
k) d
k12

+ε2
∑

s1s2s3

∫
L

ss1s2s3
kk1k2k3

A
s1
k1

A
s2
k2

A
s3
k3

δ(
k1 + 
k2 + 
k3 − 
k) d
k123 + · · · . (2.2)

Remark.

1. Since the class of functions we are dealing with are bounded and non-decaying as |
x| → ∞, As
k is not an

ordinary function but a generalized one. However, as we shall see, for spatially homogeneous systems, ensemble
averages of products of the Fourier amplitudes have good properties.

2. Notation: δ12,0 = δ(
k1 + 
k2 − 
k), d
k12 = d
k1 d
k2, etc.
3. ε, 0 < ε � 1, is a measure of nonlinearity.

The system Hamiltonian takes the form

H = 1

2

∑
s

∫
ωkAs

kA−s
−k d
k + · · · . (2.3)

Examples.
Example (a).

1. Optical waves of diffraction in nonlinear media [32,40,45].
2. Superfluids [32,53].

These examples are described by the nonlinear Schrödinger equation for a complex field u(
x, t), 
x ∈ Rd, t ∈ R.

∂u

∂t
+ i∇2u + iau2u∗ = 0 a constant,

∂u

∂t
= i

δH

δu∗ , H =
∫ (

∇u · ∇u∗ − a

2
u2u∗2

)
d
x,

u(
x, t) = u+ =
∫

A+
k ei
k·
x d
k, u∗(
x, t) = u− =

∫
A−

k ei
k·
x d
k, A−
k = A+∗

−k. (2.4)
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For fluctuations about the zero state, us = 0,

∂As
k

∂t
− isk2As

k = −ias
∫

A−s
k1

As
k2

As
k3

δ123,0 d
k123.

Thus, εL
ss1s2
kk1k2

= 0, ε2L
ss1s2s3
kk1k2k3

= − 1
3 iasP123δs1,−sδs2,sδs3,s , ωk = k2.

In Fourier coordinates (Ak = A+
k , A∗

k = A−
−k)

H =
∫

k2A∗
kAk d
k − a

2

∫
A∗

kA∗
k1

Ak2Ak3δ01,23 d
k0123.

For fluctuations about the condensate state

u = ρ
1/2
0 e−iaρ0t ,

we rewrite (2.4) in polar coordinates

u = ρ1/2 e−iϕ,

and obtain

∂ρ

∂t
+ 2∇ · (ρ∇ϕ) = 0,

∂ϕ

∂t
+ |∇ϕ|2 + (−a)ρ − 1√

ρ
∇2(

√
ρ) = 0, (2.5)

which are the Euler equations for a compressible fluid with velocity field 2∇ϕ and pressure p = −aρ2 plus the
addition of the extra term (1/

√
p)∇2(

√
ρ) sometimes called the quantum pressure. Clearly, ∂p/∂ρ > 0 only when

a < 0. Take a = −1. The Hamiltonian is

H =
∫ (

(∇ρ1/2)2 + ρ(∇ϕ)2 + 1

2
ρ2
)

d
x,

and (2.5) is ∂ρ/∂t = δH/δϕ, δϕ/∂t = −δH/δρ. Setting ρ = ρ0 + δρ, ϕ = −ρ0t + δϕ, one finds to quadratic
order that

∂

∂t
δρ + k2

0∇2δϕ = −2∇(δρ∇δϕ),
∂

∂t
δϕ +

(
1 − 1

k2
0

∇2

)
δρ = − 1

k4
0

δρ∇2δρ − 1

2k4
0

∇2(δρ)2 − (∇(δϕ))2,

where k2
0 = 2ρ0.

Let

δρ =
∫

ρk ei
k·
x d
k, δϕ =
∫

ϕk ei
k·
x d
k, ρk =
(

k2
0k2

2ωk

)1/2∑
s

As
k,

ϕk = i

2

(
2ωk

k2
0k2

)1/2∑
s

sAs
k, ω2

k = k2
0k2 + k4,

and find

dAs
k

dt
− isωkAs

k = ε
∑
s1s2

∫
L

ss1s2
kk1k2

A
s1
k1

A
s2
k2

δ12,0 d
k12 + cubic terms, (2.6)
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where

εL
ss1s2
kk1k2

= i
√

2

4k0


s1
k · 
k1

(
ωω1k2

2

ω2k2k2
1

)1/2

+ s2
k · 
k2

(
ωω2k2

1

ω1k2k2
2

)1/2

+ss1s2
k1 · 
k2

(
ω1ω2k2

ωk2
1k2

2

)1/2

+
(

k2k2
1k2

2

ωω1ω2

)1/2

s(
k1 · 
k2 − k2)


 .

Note: εL+++
kk1,k2

= i
√

2Vkk1k2 in Ref. [32]. For k0 � k, L ∼ L because leading terms cancel. For k0 � k, L ∼ k3/2.

In general, for the class of zero mean conservative systems (2.2) for which As
k and A−s

−k are conjugate variables
and As

kt = isδH/δA−s
−k , the following properties hold:

1. L
ss1···sr

kk1···kr
= −L

∗ss1···sr

kk1···kr
= −L

−s−s1···−sr

−k−k1···−kr
.

2. L
ss1···sr

kk1···kr
is symmetric in (1, 2, . . . , r).

3. L
ss1···sr

0k1···kr
= 0, 
k1 + · · · + 
kr = 0 (except for NLS).

4. L
s1s−s2···−sr

k1k−k2···−kr
= (s1/s)L

ss1s2···sr

kk1k2···kr
when 
k1 + · · · + 
kr = 
k.

Example (b). Water waves [1,2,4–8,11,12,19,23,34,36,44,48]. For details, see [11] (see Fig. 2).

Fig. 2. An ocean of depth h, surface deformation η(x, y, t) and velocity potential ψ(x, y, z, t).

η(x, y, t) = η(
x, t) =
∑

s

∫ ∞

−∞

√
ωk

2

1

νk

As
k ei
k·
x d
k, ψ(
x, t) =

∑
s

∫ ∞

−∞
iνks√
2ωk

As
k

cosh k(z + h)

cosh kh
ei
k·
x d
k,

ωk =
√

(gk + σk3) tanh kh, ν2
k = g + σk2, g = gravity, σ = S/ρ = surface tension

density
,

〈Energy〉 =
∑

s

∫
ωkQs−s(k) d
k, 〈As

kAs′
k′ 〉 = δ(k + k′)Qss′(k′).

Also

εL
ss1s2
kk1k2

= i

2

√
ω1ω2

2ω

ν

ν1ν2

{
1

2

12
P

ν2
2

s2ω2
(k2

2 + 
k1 · 
k2) − sω

2ν2

(
ω2

1 + ω2
2 + s1ω1s2ω2 − 
k1 · 
k2

ν2
1ν2

2

s1ω1s2ω2

)}
,

ε2L
ss1s2s3
kk1k2k3

= i

2

√
ω1ω2ω3

ω

ν

ν1ν2ν3

123
P

{
1

6

23
Ps3ω3

(
1

2
k2

3 + 
k2 · 
k3

)

− sω

3ν2

[
ν2

3k2
3 + ν2

2k2
2

4
+ 1

2

23
P

ν2
2ω2

3(k2
2 − 
k2 · 
k3)

s2ω2s3ω3

]
−
√

ω2ω3

2ω

ν

ν2ν3

sω

6ν2
|k2 + k3| tanh |k2

+k3|h
(

ω2
2 + ω2

3 + s2ω2s3ω3 −

k2 · 
k3ν2

2ν2
3

s2ω2s3ω3

)
− sω

3ν2
σ

(
(
k1 × 
k2)(
k1 × 
k3) − 3

2
k2

1

k2 · 
k3

)}
,
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where P23 is permutation over (2, 3), P123 over (1, 2, 3). For g � σk2, L
ss1s2s3
kk1k2k3

is homogeneous of order 3, i.e.

Lεk = ε3Lk . For g � σk2, L
ss1s2
kk1k2

is homogeneous of order 9
4 .

Example (c). Sound waves [13,14,22,38].

p = p0

(
ρ

ρ0

)µ

, c2 = µp0

ρ0
, ρ = ρ0

(
1 +

∑
s

∫
As

k ei
k·
x d
k
)

,

vj =
∑

s

∫
−c2kj

sωk

As
k ei
k·
x d
k, ωk = ck,

where p, ρ and vj are pressure, density and the j th component of velocity, respectively.

εL
ss1s2
kk1k2

= ic2

4

(
k · 
k1

s1ω1
+


k · 
k2

s2ω2
+ sω

s1ω1s2ω2


k1 · 
k2

)
+ i

4
(µ − 2)sω, ε2L

ss1s2s3
kk1k2k3

= iωk

12
(µ − 2)(µ − 3).

Each is homogeneous in k of degree 1.
For examples of weak turbulence in semiconductor lasers, magnetohydrodynamics, coupled oscillators, plasmas

and atmospheric waves, quantum systems see [3,9,10,15–18,20,21,24,28,30,31,39,40,45,46,49].

2.2. Moments, cumulants

But Eq. (2.2) for the Fourier amplitude is only a means to an end. We really want to describe the behavior of
moments

Mss′···s(N−1)

N (
x; 
r, 
r ′
r ′′, . . . , 
r(N−2); t) = 〈us(
x)us′
(
x + 
r) · · · us(N−1)

(
x + 
r(N−2))〉 (2.7)

as time t becomes large.
At this stage 〈 〉 denotes an ensemble average connected with a joint probability density function (jpdf)

P (us
0, us′

1 , . . . , us(N−1)

(N−1)). Namely, P (us
0, . . .) dus

0 · · · is the probability that the field us at x lies between us
0 and

us
0 + dus

0, the field us′
at x + r lies between us′

1 and us′
1 + dus′

1 , and so on. However, we now make the assumption
of spatial homogeneity. MN only depends on the relative geometry of the configuration and does not depend on the
base coordinate 
x. In this situation, it is convenient to think of 〈 〉 as an average over the base coordinate.

But one should be cautious with the assumption of spatial homogeneity. It is a property of the equations that if MN

is independent of the base point 
x initially, it will remain so. But suppose MN depends weakly on 
x initially. Then,
the nonlinear dynamics can lead to a steepening of derivatives (cf. Burgers equation) and a possible breakdown of
spatial homogeneity into patches separated by shocks. In this essay, we ignore this possibility.

Moments are inconvenient for several reasons. In particular MN does not tend to zero as the separations 
r, 
r ′, . . .

tend independently to infinity. This means that it does not possess an ordinary Fourier transform which is the
coordinate most relevant when dealing with a field of wavetrains. Therefore, we use cumulants which are related in
a 1:1 fashion with the moments.

Ms
1(t) = 〈us(
x)〉 = R(1)s(t) = {us(
x)},

Mss′
2 (
r, t) = 〈us(
x)us′

(
x + 
r)〉 = {us(
x)us′
(
x + 
r)} + {us(
x)}{us′

(
x + 
r)} = R(2)ss′(
r) + R(1)sR(1)s′
,

Mss′s′′
3 (
r, 
r ′, t) = 〈us(
x)us′

(
x + 
r)us′′
(
x + 
r ′′)〉 = R(3)ss′s′′

(
r, 
r ′) + one of all possible partitions,

M
(N)ss′···
N = R(N)ss′··· + one of all possible partitions.
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Curly brackets denote cumulants, and angle brackets are moments. We will also study systems where M1 = 〈u〉 ≡ 0.
Then,

Mss′
2 (
r) = R(2)ss′(
r) = 〈us(
x)us′

(
x + 
r)〉,
Mss′s′′

3 (
r, 
r ′) = R(3)ss′s′′
(
r, 
r ′) = 〈us(
x)us′

(
x + 
r)us′′
(
x + r ′)〉,

Mss′s′′s′′′
4 (
r, 
r ′, 
r ′′) = R(4)ss′s′′s′′′

(
r, 
r ′, 
r ′′) + R(2)ss′(
r)R(2)s′′s′′′
(
r ′′ − 
r ′) + R(2)ss′′(
r ′)R(2)s′s′′

(
r ′′ − 
r)

+R(2)ss′′′(
r ′′′)R(2)s′s′′
(
r ′ − 
r), · · · .

R(N)ss′···s(N−1)
(
r, 
r ′, . . . , r(N−2)) have the property that R(N) → 0 as |r|, |r ′|, . . . tend to infinity independently and

in any directions because it is reasonable to assume, at least at one particular time when the fields are first stirred,
that the statistics of widely separated points are uncorrelated.

This means that its Fourier transforms Q(N),

R(N)ss′···s(N−1)

(
r, 
r ′, . . . , 
r(N−2)) =
∫

Q(N)ss′···s(N−1)

(
k′, 
k′′, . . . , 
k(N−1)) ei
k′·
r+i
k′′·
r ′+···+i
k(N−1)·
r(N−2)

d
k′

× d
k′′ · · · d
k(N−1),

Q(N)ss′···s(N−1)

(
k′, 
k′′, . . . , 
k(N−1)) = 1

(2π)(N−1)d

∫
R(N)ss′···s(N−1)

(
r, 
r ′, . . . , 
r(N−2)) e−i
k′·
r···−i
k(N−1)·
r(N−2)

× d
r d
r ′ · · · d
r(N−2) (2.8)

are smooth functions, at least at one time.

Remark.

1. The dynamics will produce non-smooth components due to nonlinearities. Indeed, understanding these non-
smooth behaviors is the key to understanding the long-time behavior of wave turbulent fields.

2. The notation of pairing 
k′ with 
r, 
k′′ with r ′, . . . and 
k(N−1) with 
r(N−2) is a matter of future convenience.

2.3. The cumulant hierarchy

We now introduce the dynamics by writing down the equations for the Fourier space cumulants Q(2)ss′(k′),
Q(3)ss′s′′

(k′, k′′), . . . , Q(N)ss′···s(N−1)
(k′, k′′, . . . , k(N−1)). To do this, we first seek a relationship between averages

of products of the Fourier amplitudes As
k and the Fourier cumulants Q(N).

We know already that

As
k = 1

(2π)d

∫
us(
x) e−i
k·
x d
x

is not an ordinary function because us(
x) does not tend to zero as |
x| → ∞. It is simply bounded there.
If us(
x) were a finite sum of wavetrains, us(x) = ∑

j As
j ei
kj ·
x , then As

k = ∑
j As

j δ(
k − 
kj ), namely the sum of
complex numbers times Dirac delta functions. Interacting wavetrains transfer energy via three-wave interactions on
a time scale of ω0t = O(1/ε). To see this, write As

k in the above form, solve (2.2) iteratively and find that the zero
denominators first enter when one calculates the first iterate at order ε.

If us(
x) were to belong to a set of smooth fields which decayed sufficiently rapidly as |
x| → ∞, then As(
k, t)

would be smooth and the asymptotic expansion As(
k, t) = as
0(
k) eisωkt + εAs

1(
k, t) + · · · would remain uniformly
valid in time. This is because the small denominators appear in integrals in the combination −iW−1

12,0(exp(iW12,0t)−
1), W12,0 = s1ω1+s2ω2−sω. Even though W12,0 can be zero, from Section 2.5 we will see that As

1(
k, t) is bounded
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in time (we exclude the case of multiple zeros). Thus, if the fields are sufficiently small and decay sufficiently fast
as |
x| → ∞, for all intents and purposes, (2.2) behaves as a linear system. The physical reason is that resonant
wavetrains are not long enough to have enough time to interact to produce order 1 exchanges of energy.

The fields of interest to us here are bounded at infinity and consist of collections of infinitely long wavetrains (or
wavepackets). Because they are infinite in extent, they have enough time to exchange energy and produce long-time
cumulative effects. However, because they are not collections of discrete wavetrains, there is additional phase mixing
and, due to these statistical cancellations, the non-uniformities (coherences) produced by nonlinear interactions take
longer to appear and energy is exchanged on the time scale ε−2ω−1

0 .
To summarize, L2 functions have wavetrains which do not interact long enough to produce order 1 cumulative

changes. Discrete wavetrains interact very strongly and, via r wave resonances, exchange order 1 amounts of energy
on the time scale ω0t = O(ε−r+2). Continuous spectra of infinite wavetrains, corresponding to bounded, spatially
random fields, have additional mixing which slows the rate of order 1 energy exchange via r wave resonances to
the time ω0t = O(ε−2(r−2)).

Let us(
x) be a spatially homogeneous random field of zero mean. Then, because As
k is a functional of us(
x),

〈As
k〉 = 0,

〈As
kAs′

k′ 〉 = 1

(2π)2d

∫
〈us(
x)us′

(
x + 
r)〉 e−i
k·
x−i
k′(
x+
r) d
x d(
x + 
r)

= 1

(2π)2d

∫
R(2)ss′(
r) e−i
k′·
r d
r

∫
e−i(
k+
k′)·
x d
x = δ(
k + 
k′)Q(2)ss′(
k′) = δ(
k + 
k′)Q(2)ss′(−
k).

Note R(2)ss′(
r) = R(2)s′s(−
r) because

〈us(
x)us′
(
x + 
r)〉 = 〈us(
x′ − 
r)us′

(
x′)〉 = Rs′s(−
r).

Likewise

〈As
kAs′

k′As′′
k′′ 〉 = δ(
k + 
k′ + 
k′′)

(2π)2d

∫
R(3)ss′s′′

(
r, 
r ′) e−i
k′·
r−i
k′′·
r ′
d
r · d
r ′ = δ(
k + 
k′ + 
k′′)Q(3)ss′s′′

(
k′, 
k′′),

〈As
kAs′

k′As′′
k′′As′′′

k′′′ 〉 = δ(
k + 
k′ + 
k′′ + 
k′′′)Q(4)ss′s′′s′′′
(
k′, 
k′′, 
k′′′)

+δ(
k + 
k′)δ(
k′′ + 
k′′′)Q(2)ss′(
k′)Q(2)s′′s′′′
(
k′′′)

+δ(
k + 
k′′)δ(
k′ + 
k′′′)Q(2)ss′′(
k′′)Q(2)s′s′′′
(
k′′′)

+δ(
k + 
k′′′)δ(
k′ + 
k′′)Q(2)ss′′′(
k′′′)Q(2)s′s′′
(
k′′)

For convenience, we often write

Q(2)ss′(
k′) as Q(2)ss′(
k, 
k′), remembering 
k + 
k′ = 0 and

Q(3)ss′s′′
(
k′, 
k′′) as Q(3)ss′s′′

(
k, 
k′, 
k′′), remembering 
k + 
k′ + 
k′′ = 0.

This allows one to keep better track of symmetries.

Remark. Note As
k is now not a Dirac delta function as it was when us(x) was a sum of discrete wavetrains. Its

products involve, after averaging, a Dirac delta function times a smooth (at least at some initial time) cumulant.
The fact that the cumulants containing products of δ functions in 〈As

kAs′
k′As′′

k′′As′′′
k′′′ 〉 (namely the products of Q(2)’s)

have more potency than the fourth-order cumulant makes for a natural asymptotic closure. The regeneration of
higher-order cumulants by the dynamics depends only weakly on even higher ones and strongly on products of
lower ones.
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We build the cumulant hierarchy by multiplying (2.2) by As′
k′ , and (2.2), with s, k replaced by s′, k′, by As

k and
adding to find, after averaging

dQ(2)ss′(
k′)
dt

− i(sω + s′ω′)Q(2)ss′(
k′)

= 00′
P ε
∑
s1s2

∫
L

ss1s2
kk1k2

Q(3)s′s1s2(
k1, 
k2)δ12,0 d
k12 + 00′
P ε2

∑
s1s2s3

∫
L

ss1s2s3
kk1k2k3

Q(4)s1s2s3s′
(
k1, 
k2, 
k3, 
k′)δ0,123 d
k123

+3
00′
P ε2

∑
s1s2s3

Q(2)s3s′
(
k′)

∫
L

ss1s2s3
kk1−k1k

Q(2)s1s2(−
k1) d
k1, 
k + 
k′ = 0. (2.9)

In (2.9), we have factored out δ(k + k′) and used the symbol P00′
to denote rewriting the following term with s, k

replaced by s′, k′ and adding the two contributions together. Multiplying (2.2) by As′
k′As′′

k′′ and applying P00′0′′
, we

find to order ε

dQ(3)ss′s′′
(
k′, 
k′′)

dt
− i(sω + s′ω′ + s′′ω′′)Q(3)ss′s′′

(
k′, 
k′′)

= 00′0′′
P ε

∑
s1s2

∫
L

ss1s2
kk1k2

Q(4)s′ss′′s1s2(
k′′, 
k1, 
k2)δ0,12 d
k12

+2ε
00′0′′
P
∑
s3s4

L
ss3s4
k−k′−k′′Q

(2)s3s′
(
k′)Q(2)s4s′′

(
k′′) + o(ε2), (2.10)

where 
k + 
k′ + 
k′′ = 0.
Note: It is convenient to relabel s1, s2 as s3, s4 in the second term of the right-hand side of (2.10). In addition, we

have used the properties that L = 0 when k = 0 and is symmetric over the indices 1, 2.
We continue to build the hierarchy in this way. The reader should write down the equation for Q(4)ss′s′′s′′′

(
k′, 
k′′, 
k′′′).
Note that the consistency of 〈As

k〉 = 0 requires that L
ss1s2
0k1−k1

= 0.

Proof.

d〈As
k〉

dt
− isωk〈As

k〉 = ε
∑
s1s2

∫
L

ss1s2
kk1k2

〈As1
k1

A
s2
k2

〉δ0,12 d
k12 = ε
∑
s1s2

δ(k)

∫
L

ss1s2
0k1k2

Q(2)s2s1(k1) d
k1,

d〈As
k〉

dt
= 0 when L

ss1s2
0k1−k1

= 0. �

2.4. The strategy for solutions and the dynamics

We solve the cumulant hierarchy of which (2.9) and (2.10) are the first two members as an asymptotic expansion
in powers of ε, namely we assume

Q(N)ss′···s(N−1)

(
k′, . . . , 
k(N−1)) = q
(N)ss′···s(N−1)

0 (
k′, 
k′′, . . . , 
k(N−1), t) exp(i(sω + s′ω′

+ · · · + s(N−1)ω(N−1))t) + εQ
(N)
1 + ε2Q

(N)
2 + · · · + εrQ(N)

r + o(εr ).

(2.11)

This means that the difference between Q(N) and any finite sum, say up to εr , divided by εr , tends to zero as ε → 0.
We will insist that (2.11) is a valid asymptotic expansion for all time t . To achieve this, we will have to allow q

(N)
0

to vary slowly in time.
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Remark.

1. Because of non-smoothness which will appear in Q
(3)
1 , Q

(4)
2 in the long-time limit, it is better to interpret the

statement of asymptotic expansions in physical space. Namely, we order Q(N) where it makes sense and, where
it does not, we order the corresponding R(N).

2. We are seeking asymptotic and not convergent series representations of the solutions to (2.9) and (2.10)!

We recognize that, because of small denominators which will occur on resonant manifolds M defined by


k1 + 
k2 = 
k, s1ω(
k1) + s2ω(
k2) = sω(
k), (2.12)

non-uniformities in the asymptotic expansions will arise. For example, we will find

lim
t→∞

ε2t fixed

Q
(2)ss′
2 (
k′) = tQ̃

(2)ss′
2 (
k′) + Q̂

(2)ss′
2 (
k′)

will contain terms which grow with t and terms which are bounded. As a result, for times ε2t = O(1), the asymptotic
expansion is not well ordered. We restore the well-ordered asymptotic expansion by recognizing that, because of
these secular terms, there will be an order 1 transfer in spectral energy (i.e. in Q(2)ss′(
k′), s′ = −s) over long times.

This transfer is captured by seeking an asymptotic expansion for the time derivative of q
(N)ss′···s(N−1)

0 (
k′, . . . ,

k(N−1)) as

dq
(N)ss′···s(N−1)

0 (
k′, . . . , 
k(N−1))

dt
= εF

(N)ss′···s(N−1)

1 (
k′, . . . , 
k(N−1))

+ε2F
(N)ss′···s(N−1)

2 (k′, . . . , k(N−1)) + · · · , (2.13)

and choosing F
(N)
1 , F

(N)
2 , . . . so as to remove secular terms in (2.11) and render it a well-ordered asymptotic

expansion uniform in time t . Eq. (2.13) is the equation of asymptotic closure. This is closed because

• N = 2, s′ = −s, F
(2)
1 = 0, F

(2)
2 depends only on q−ss

0 (k) = nk(t). This is the kinetic equation and we write it
as

dnk

dt
= T2[nk] + T4[nk] + · · · . (2.14)

• N = 2, s′ = s and N > 2, F
(N)
1 = 0, F

(N)
2 = iq(N)ss′···s(N−1)

0 (
k′, . . . , 
k(N−1))(Ωs
k + · · · + Ωs(N−1)

k(N−1) ) which is
solved by frequency renormalization

sωk → sωk + ε2Ωs
k + · · · . (2.15)

We, therefore, achieve a natural asymptotic closure for the cumulant hierarchy.
It is natural because it does not assume anything about the initial statistical distributions of the fields. They need

not be joint Gaussian. What happens is that the linear behavior of the system brings the system close to a state of
joint Gaussianity. Non-joint Gaussianity is regenerated by nonlinear interactions, e.g. dQ(3)/dt depends on Q(4)

and products of Q(2). However, it is the products of the lower-order cumulants that give a cumulative long-time
effect and therefore only they play a role in the long-time dynamics. Hence, one achieves closure.

It is asymptotic because the closure equations (2.13)–(2.15) are long-time “average” equations. They are solved
iteratively. To find the behavior for times ω0t = o(ε−2) one solves the truncated equation (2.14) with T4, T6 ignored.
To find the behavior for ω0t = o(ε−4) one solves (2.14) with T6, T8, . . . ignored, and so on.
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It is important to make several points.

1. Although T2N [nk], N ≥ 1, is formally of order ε2N in (2.14) and ε2N Ωs
2Nk, N ≥ 1, is formally of order ε2N in

(2.15), the terms in the series are still functions of k. It turns out that the ratios T2N+2/T2N , ε2Ωs
2N+2k/Ωs

2Nk,
formally of order ε2, do not in general remain uniformly bounded as k → 0 or k → ∞ when calculated on
solutions of the truncated equations. This fact is the origin of the breakdown of wave turbulence at small and
large scales. We return to this in Section 4.

2. The term T2 is the kinetic equation (2.14) contains triad (three-wave) resonances. The term T4 has been calculated
[12] and contains four-wave resonances and gradients (with respect to 
k) of three-wave resonances and principal
part integrals. It is not clear how many of these terms can be reabsorbed into T2 by renormalizing the frequency
in the exponent of the Dirac delta function. Often the successive terms in the series are schematically represented
in diagram notation.

3. The imaginary part of the renormalized series (2.15) for sωk has positive imaginary part at o(ε2) if there are
three-wave resonances, at o(ε4) if there are four-wave resonances, and so on. This means that, over long times,
and due to resonant interactions, the zeroth-order Fourier space cumulants (which essentially correspond to initial
data), N = 2, s′ = s, N ≥ 3, decay exponentially. Their physical space counterparts decay for two reasons.
They decay algebraically in t because of the Riemann–Lebesgue lemma and the presence of fast oscillations
multiplying the zeroth-order Fourier space cumulants.

These remarks must be revisited in those regions of 
k space where the weak turbulence closure (2.14) and (2.15)
is non-uniform in k = |
k|.

2.5. Resonant manifolds and asymptotic expansions

Solve (2.9) and (2.10), . . . iteratively.

ε0 :




Q
(2)ss′
0 (
k′, t) = q

(2)ss′
0 (
k′, t) ei(sω+s′ω′)t , 
k + 
k′ = 0,

Q
(3)ss′s′′
0 (
k′, 
k′′, t) = q

(3)ss′s′′
0 (
k′, 
k′′, t) ei(sω+s′ω′+s′′ω′′)t , 
k + 
k′ + 
k′′ = 0,

...

Q
(N)ss′···s(N−1)

0 (
k′, 
k′′, . . . , 
k(N−1)) = q
(N)ss′···s(N−1)

0 (
k′ · · · 
k(N−1), t) ei(sω+···+s(N−1)ω(N−1))t ,


k + · · · + 
k(N−1) = 0.

Note:

• For N = 2, s′ = −s, the oscillatory dependence disappears because ω(−
k) = ω′ = ω. q
(2)s−s
0 (
k′, t) is

proportional to the spectral energy density.
• In anticipation of non-uniformities in (2.11), we allow the coefficients q

(N)
0 vary slowly in time via (2.13).

ε : Q
(2)ss′
1 (k′, t) = 00′

P
∑
s1s2

∫
L

ss1s2
kk1,k2

q
(3)s′s1s2
0 (
k1, 
k2)∆(W12,0) ei(sω+s′ω′)t δ0,12 d
k12,

where ∆(x) = (eixt − 1)/ix, W12,0 = s1ω1 + s2ω2 − sω. We need to consider long-time behavior of integrals of
the form∫

F (
k1)
eih(
k1;k)t − 1

ih(
k1; 
k)
d
k1,
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where h(
k1; 
k) = s1ω(
k1) + s2ω(
k − 
k1) − sω(
k). The integrals are dominated by values of 
k1 near a zero of
h(
k1; 
k), the resonant manifold M defined by (2.12),


k1 + 
k2 = 
k, s1ω(
k1) + s2ω(
k2) = sω(
k) for some s1, s2, s.

In the neighborhood of

M : h(
k1; 
k) = 0,

we coordinatize 
k1 (say k1x, k1y if 
k1 is 2D in a basis locally parallel and perpendicular to M . Let 
k(0)
1 ∈ M . Then

h(
k1; 
k) = h(
k(0)
1 ; 
k) + (
k1 − 
k(0)

1 ) · ∇
k1
h(
k(0)

1 ; 
k) + · · · .

In what follows, we will assume that on M ,

∇
k1
h(
k(0)

1 ; 
k) �= 0 for 
k(0)
1 ∈ M,

and illustrate by example what happens when ∇
k1
h = 0. Calling the local perpendicular coordinate by x, the above

integral can be written as∫
dy

∫
f (y, x)

eixt − 1

ix
dx.

Therefore, we study

lim
t→∞

∫
f (x)

eixt − 1

ix
dx.

In Q
(2)
1 , the function f (x) (proportional to q

(3)s′s1s2
0 (
k1, 
k2)) is slowly varying in time so the limit is taken in the

sense that t → ∞, εr t fixed for some r = 1, 2, . . .. The smoothness of q
(3)s′s1s2
0 (
k1, 
k2) is also important. At the

initial time, we have assumed this. If we are to recalculate beginning at some later time t1 = O(1/ε2), an O(ε)

non-smoothness will have developed in the new “initial” state. We will discuss this and show that for limt−t1→+∞
it does not contribute whereas for limt−t1→−∞ it does. This is important in resolving an apparent irreversibility

paradox. A little calculation (which can be done many ways, e.g. let f (x) = f (x)−f (0) e−x2 +f (0) e−x2
) reveals

lim
|t |→∞

∫
f (x)

eixt − 1

ix
dx = π sgnt f (0) + iP

∫
f (x)

x
dx,

where

sgnt =
{+1, t > 0,

−1, t < 0,

and P denotes the Cauchy principal value. Schematically

lim
|t |→∞

∆(x) = π sgnt δ(x) + iP

(
1

x

)
.

Returning to Q
(2)ss′
1 (
k′, t), we see that it is bounded as t → ∞. This is important. A non-zero q

(3)s′s1s2
0 (
k1, 
k2) at

the initial time (here taken to be t = 0) does not affect the uniformity of (2.11). We can begin with initial conditions
far from joint Gaussian. This was first pointed out by Benney and Saffman [4].
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Next, we calculate

Q
(3)ss′s′′
1 (
k′, 
k′′) = 00′0′′

P
∑
s1s2

∫
L

ss1s2
kk1k2

q
(4)s′s′′s1s2
0 (
k′′, 
k1, 
k2)∆(W12,0) ei(sω+s′ω′+s′′ω′′)t δ0,12 d
k12

+2
∑
s3s4

L
ss3s4
k−k′−k′′q

(2)s3s′
0 (
k′)q(2)s4s′′

0 (
k′′)∆(s3ω′ + s4ω′′ − sω) ei(sω+s′ω′+s′′ω′′)t

+2
∑
s3s4

L
s′s3s4
k′−k′′−k

q
(2)s3s′′
0 (
k′′)q(2)s4s

0 (
k)∆(s3ω′′ + s4ω − s′ω′) ei(sω+s′ω′+s′′ω′′)t

+2
∑
s3s4

L
s′′s3s4
k′′−k−k′q

(2)s3s
0 (
k)q

(2)s4s′
0 (
k′)∆(s3ω + s4ω′ − s′′ω′′) ei(sω+s′ω′+s′′ω′′)t . (2.16)

Note: Because there are no integrals left on some of these terms, and because they contain oscillating factors,
their long-time limit cannot be directly taken. We, therefore, return to physical space and examine instead the
asymptotic well orderedness of the corresponding physical space cumulant R(3). Schematically, however, we can
write limt→∞∆(x) = π sgnt δ(x)+iP (1/x). The integral in physical space will generally be the product of bounded
and oscillatory factors which tend to zero because of the Riemann–Lebesgue lemma. However, for s3 = −s′, s4 =
−s′′ in the first, s3 = −s′′, s4 = −s in the second, and s3 = −s, s4 = −s′ in the third, the exponents coalesce
∆(−sω − s′ω′ − s′′ω′′) ei(sω+s′ω′+s′′ω′′)t = ∆(sω + s′ω′ + s′′ω′′) and these terms survive the t → ∞ limit.

In Section 4, we will calculate these surviving terms for each R(N) and examine their asymptotic expansions
for well orderedness. We will find that, consistent with Remark 1 in Section 2.4, they are not always well ordered.
Non-uniformities in the corresponding asymptotic expansions for the structure functions can appear at both small
and large separations. This can lead to intermittent behavior dominated by fully nonlinear solutions of the field
equations. We will discuss this further in Section 4.

As t → ±∞,

Q
(3)ss′s′′
1 (
k′, 
k′′) → Q̃

(3)ss′s′′
1 (
k′, 
k′′) = 2

(
π sgnt δ(sω + s′ω′ + s′′ω′′) + iP

(
1

sω + s′ω′ + s′′ω′′

))

·(00′0′′
P Ls−s′−s′′

k−k′−k′′q
(2)−s′s′
0 (
k′)q(2)−s′′s′′

0 (
k′′)). (2.17)

In our calculation of Q
(2)ss′
2 (
k′), however, we will find that it is Q

(3)s′s1s2
1 (
k1, 
k2) e−i(sω+s′ω′)t which appears in the

integrand and it is its long-time limit that we will need.

Remark. We now, at O(ε), have seen the appearance of irreversibility in a reversible system. The limit process
effectively ignores all the fluctuating terms so that information on phase is effectively lost in taking the limit.
Solutions of the resulting kinetic equations can be attractors.

Before we complete the calculations by identifying the secular terms which appear at O(ε2) and thereby calculate
the kinetic equation and renormalization factors (i.e. F

(N)
2 for N ≥ 2), let us return to the study of (2.15) and

illustrate in Example 2 what happens if ∇h · n̂ = 0 (n̂ unit normal to M).

Example 1 (ω = k2). Take 
k = (k1, 0); 
k1 = (k1x, k1y),

M : h = k2
1 + (
k − 
k1)2 − k2 = 2((k1x − 1

2 k)2 + k2
1y − 1

4 k2).

The resonant manifold for 
k is M(
k) and it is the set of 
k1 for which h = 0. It is a circle of radius 1
2 k centered at the

middle of the vector 
k. We can coordinatize M as follows: k1x = k cos2(θ/2), k1y = k sin(θ/2) cos(θ/2), ∇h =
2(k1x − 1

2 k), 2k1y = k(cos θ, sin θ) is never identically zero (∇h · t̂ = 0, ∇h · n̂ �= 0).
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Example 2 (Acoustic waves: ω = |
k|). Here h = s1|
k1|+ s2|
k − 
k1|− s|
k| is zero when 
k1 is collinear with 
k. Now
∇h = 0 for all 
k1 ∈ M . The integral (2.15) now depends critically on dimension. In 2D,

∫
f (x)((eiht −1)/ih) d
k1 ∼∫

f (x)((eix2t − 1)/ix2) dx ∼ t1/2. In 3D,
∫

f (x, y)(ei(x2+y2)t /i(x2 + y2)) dx dy ∼ ln t (see [13,14,38]).

Remark. The web created by the manifolds M(
k), M(
k1), M(
k2), . . . , where 
k1 ∈ M(
k), 
k2 ∈ M(
k1), . . . ,, has
an interesting geometry [42].

2.6. The closure equations

We now come to the final step in the closure calculation, namely the identification of the first terms in (2.11)
which are non-uniform, the choices for F

(N)
1 , F

(N)
2 and the resulting equations for asymptotic closure.

The equation for Q
(2)ss′
2 (
k′) is

d

dt
(Q

(2)ss′
2 (
k′) e−i(sω+s′ω′)t ) + F

(2)ss′
2 (
k′)=00′

P
∑
s1s2

∫
L

ss1s2
kk1k2

(Q
(3)s′s1s2
1 (
k1, 
k2) e−i(sω+s′ω′)t )δ0,12 d
k12. (2.18)

From (2.16) (the appearance of the indices 1, 2 here necessitated the use of the dummy indices 3, 4 in (2.16)),

Q
(3)s′s1s2
1 (
k′, 
k1, 
k2) e−i(sω+s′ω′)t

= 120′
P
∑
s3s4

∫
L

s′s3s4
k′k3k4

q
(4)s1s2s3s4
0 (
k2, 
k3, 
k4)∆(W34,0′) ei(s′ω′+s1ω1+s2ω2)t δ0′,34 d
k34 · e−i(sω+s′ω′)t

+2
∑
s3s4

L
s′s3s4
k′−k1−k2

q
(2)s3s1
0 (
k1)q

(2)s4s2
0 (
k2)∆(s3ω1 + s4ω2 − s′ω′) ei(s′ω′+s1ω1+s2ω2)t e−i(sω+s′ω′)t

+2
∑
s3s4

L
s1s3s4
k1−k2−k′q

(2)s3s2
0 (
k2)q

(2)s4s′
0 (
k′)∆(s3ω2 + s4ω′ − s1ω1) ei(s′ω′+s1ω1+s2ω2)t e−i(sω+s′ω′)t

+2
∑
s3s4

L
s2s3s4
k2−k′−k1

q
(2)s3s′
0 (
k′)q(2)s4s1

0 (
k1)∆(s3ω′ + s4ω1 − s2ω2) ei(s′ω′+s1ω1+s2ω2)t e−i(sω+s′ω′)t .

Note: δ(
k′ − 
k3 − 
k4) combined with δ(
k1 + 
k2 + 
k′) implies δ(
k1 + 
k2 + 
k3 + 
k4), the Dirac delta function associated
with q

(4)s1s2s3s4
0 (
k1, 
k2, 
k3, 
k4) in the first term of the above equation. For the second term, strong response occurs

only when s3 = −s1, s4 = −s2 and s′ = −s. The dominant term is

(∗) 2δs′−sL
s′−s1−s2
k′−k1−k2

q
(2)−s1s1
0 (
k1)q

(2)−s2s2
0 (
k2)

(
π sgnt δ(s1ω1 + s2ω2 − sω) + iP

1

s1ω1 + s2ω2 − sω

)
.

Recall also k′ + k = 0. For the third term, strong response occurs when s3 = −s2, s4 = s (any s, s′); the dominant
term is

(∗) 2L
s1−s2s
k1−k2kq

(2)−s2s2
0 (
k2)q

(2)ss′
0 (
k′)

(
π sgnt δ(s1ω1 + s2ω2 − sω) + iP

1

s1ω1 + s2ω3 − sω

)
.

For the fourth term, strong response occurs when s3 = s, s4 = −s1 (any s, s′); the dominant term is

(∗) 2L
s2−s−s1
k2k−k1

q
(2)ss′
0 (k′)q(2)−ss1

0 (k1)

(
π sgnt δ(s1ω1 + s2ω2 − sω) + iP

1

s1ω1 + s2ω2 − sω

)
.

The only terms in Q
(2)
2 e−i(sω+s′ω′)t which contribute to t growth arise from F

(2)ss′
2 (k′) and the three (∗) terms above.

The terms containing q
(4)s1s2s3s4
0 do not contribute to secular growth. Thus, we do not require any assumption on

the initial statistics other than the smoothness of the initial Fourier space cumulants or, equivalently, the decay of
the physical space cumulants at large separations. We choose F

(2)
2 to kill the secular growth.
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For s′ = −s, we find

dqs−s
0 (−
k)

dt
= dq−ss

0 (
k)

dt
= 4πε2 sgnt

∑
s1s2

∫
L

ss1s2
kk1k2

q
(2)−ss
0 (
k)q

(2)−s1s1
0 (
k1)q

(2)−s2s2
0 (k2)

×
{

L
−s−s1−s2
−k−k1−k2

q
(2)−ss
0 (
k)

+ L
s1s−s2
k1k−k2

q
(2)−s1s1
0 (
k1)

+ L
s2s−s1
k2k−k1

q
(2)−s2s2
0 (
k2)

}
δ(s1ω1+s2ω2−sω)δ(
k1 + 
k2 − 
k) d
k1 d
k2.

(2.19)

Remark. The principal value terms cancel on the application of P00′ = P0−0. The Dirac delta terms add.

Eq. (2.19) is the kinetic equation for the redistribution of the spectral density q
(2)−ss
0 (
k) via resonant exchange

between the three waves 
k1, 
k2, 
k lying on the manifold M ,

s1ω(
k1) + s2ω(
k2) = sω(
k), 
k1 + 
k2 = 
k : M (2.20)

for some choices of s1, s2, s.
For s′ �= −s (thus, s′ = s since s2 = s′2 = 1), we obtain

dq
(2)ss′
0 (
k′)

dt
= iε2q

(2)ss′
0 (
k′)(Ωs

k + Ωs′
k′ ), (2.21)

where

Ωs
k = 4

∑
s1s2

∫
L

ss1s2
kk1k2

L
s1s−s2
k1k−k2

q
(2)−s2s2
0 (
k2)δ0,12 d
k12

×
(

P
1

s1ω1 + s2ω2 − sω
− iπ sgnt δ(s1ω1 + s2ω2 − sω)

)
. (2.22)

If we had included L
ss1s2s3
kk1k2k3

, then would be no change in (2.19) but

Ωs
k =

∑
s2

∫
d
k2q

(2)−s2s2
0 (
k2)G

ss2−s2s
kk2−k2k

G
ss2−s2s
kk2−k2k

= −3iLss2−s2s
kk2−k2k

+ 4
∑
s1

∫
L

ss2s1
kk2k1

L
s1−s2s
k1−k2k

(
P

1

W12,0
− iπ sgnt δ(W12,0)

)
δ0,12 d
k1. (2.23)

One can also show

dq
(N)ss′···s(N−1)

0 (
k′ · · · 
k(N−1))

dt
= iε2q

(N)ss′···s(N−1)

0 (
k′ · · · 
k(N−1))(Ωs
k + Ωs′

k′ + · · · + Ωs(N−1)

k(N−1) ). (2.24)

The set of equations (2.21) and (2.24) can be jointly solved for all N by the frequency renormalization

sωk → sωk + ε2Ωs
2k + ε4Ωs

4k + · · · . (2.25)

It turns out that Im Ωs
2k > 0 which means that the zeroth-order Fourier cumulants slowly decay due to resonances.

In summary, the asymptotic closure of the equations for wave (weak) turbulence occurs because (a) the linear
dynamics causes phase mixing and a relaxation towards the state of joint Gaussianity on the time scale 1/ε2ω0 �
t � 1/ω0, and (b) the nonlinear regeneration of cumulants of order N , on the time scale 1/ε2ω0, which involves
cumulants of order higher than N and products of cumulants of order less than or equal to N , is dominated by the
latter.
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2.7. Properties of the kinetic equation

We rewrite the kinetic equation (2.19) with q−ss
0 (
k) replaced by ns

k:

dns
k

dt
= ε2 sgnt T [n] = 4πε2 sgnt

∑
s1s2

∫
L

ss1s2
kk1k2

ns
kn

s1
k1

n
s2
k2

δ(
k1 + 
k2 − 
k)δ(s1ω1 + s2ω2 − sω) d
k1 d
k2

×
{

L
−s−s1−s2
−k−k1−k2

ns
k

+ L
s1s−s2
k1k−k2

n
s1
k1

+ L
s2s−s1
k2k−k1

n
s2
k2

}
. (2.26)

We list its properties:

1. The mechanism for energy transfer is one of resonance.
2. The property L

s1s−s2
k1k−k2

= (s1/s)L
ss1s2
kk1k2

= −(s1/s)L
−s−s1−s2
−k−k1−k2

shows that ns
k = T /ωk , the thermodynamic equilib-

rium or Rayleigh–Jeans spectrum of energy equipartition (recall that
∑

sωkns
k is the spectral energy density), is

an exact solution of (2.26). This stationary solution has a zero flux of energy. As a result, it is not particularly
relevant for non-equilibrium situations. Indeed, since in most applications there is a dissipative sink at ωk = ∞,
the effective temperature T of the random wavefield is zero.

3. Conservation of energy E = (1/2)
∑

s

∫
ωkns

k d
k follows from multiplying (2.26) by 1
2 ωk , summing over s and

integrating over 
k and then interchanging the order of integration. Formally, in the second (third) term in (2.26),
interchange 
k1(
k2) and 
k, s1(s2) and s, and change the sign of both s2 and k2 (s1 and 
k1). Using the properties
(1)–(4) of Section 2.1, we find the integrand of (2.26) becomes L

ss1s2
kk1k2

L
−s−s1−s2
−k−k1−k2

ns
kn

s1
k1

n
s2
k2

δ12,0δ(W12,0){ωk −
(s1/s)ω1 − (s2/s)ω2} which vanishes on the resonant manifold.

But this result is only formal and the exchange of integration order relies on Fubini’s theorem which demands
that the double integral (one can integrate out 
k2) converges before any exchange of order is done. We must
check that ns

k has the right behavior in 
k to allow this. It may turn out that convergence fails after a certain time
t∗ < ∞ because the solution ns

k(t) reaches a stationary state in finite time which renders the 
k integration of the
collision integral (the right-hand side of (2.26)) divergent. It also turns out that the stationary state is no longer
energy conserving. What happens is that energy can be lost to k = ∞.

4. Reversibility [11,12]. We have shown that if the Fourier space cumulants are initially smooth, say at some time
t = t0, then ns

k evolves according to (2.26) with sgnt replaced by sgn(t − t0). The graph versus time of ns
k

is shown in Fig. 3. We note that while the detailed slope of q−ss(k, t) will be continuous, the slope of ns
k(t)

at t = t0 (found after averaging q−ss(k, t) over all oscillations) is discontinuous. There is nothing unusual
or surprising in this; the system will flow towards some attracting equilibrium state no matter whether it goes
forward or backwards in time. The loss of exact reversibility is the result of a loss of phase information introduced
in the mathematical formulation through the limit ω0(t − t0) → ∞, ε2ω0(t − t0) finite. However, this result
opens the door to an apparent contradiction. Suppose one were to redo the calculation beginning at a later time

Fig. 3. The solution η(
k, t) is retraceable.
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t1, ω0(t1 − t0) = O(ε−2). Then (2.26) would suggest that the slope of ns
k at t1 would mirror that at t0 where

there is a discontinuity in slope. Namely, in (2.26), sgn(t − t0) (which is +1 for t > t0) would be replaced by
sgn(t − t1). It would be impossible to retrace the solution ns

k from t1 towards t0. But this conclusion is false. The
reason is that, over long times, long-distance correlations are built up and the Fourier transform of R(N) picks up
a non-smooth component at order ε(N−2). In particular, Q(3)ss′s′′

(
k′, 
k′′) picks up an order ε non-smooth behavior
given by (2.17). Taking account of the fact that at t1, Q(3) has this order ε behavior leads to additional terms in
the kinetic equation when one calculates beginning at t1. They are exactly equal to (2.26) with the sgn(t − t0)

(which because t1 > t0 is +1) replaced by (1 − sgn(t − t1)). The effect of the non-smoothness in Q(3) does
not change (2.26) at all for t > t1. For t < t1, on the other hand, it changes the evolution along BC (see Fig. 3)
(because of sgn(t − t1)) to one along BA and BD (because sgn(t − t1) + 1 − sgn(t − t1) = 1 = sgn(t − t0)).
The solution ns

k(T = ε2(t − t0)) can be retraced on the ε−2ω−1
0 time scale. There is no inconsistency or

paradox.
5. Finite flux spectrum. The realization that the kinetic equation (2.26) has attracting, stationary solutions which

describe a constant flux of conserved densities is one of the many important contributions of Zakharov. Before
we give his derivation, we shall first deduce the main result from dimensional considerations. We have seen that
there is, at least locally in time, energy conservation. We can then write Ek = (1/2)

∑
sωkns

k as the 
k divergence
of an energy flux 
Pk . Assuming isotropy and angle averaging, we find (take t > 0)

∂

∂t
Ekk(d−1) = ε2

∑
s

ωkk(d−1)T [n] = −ε2 ∂P

∂k
. (2.27)

Assuming nk = cP1/2k−x , we have that the k dependence of ωkk(d−1)T [n] is kα ·k(d−1)·k2β ·c2Pk−2xk−αkd(ωk ∼
kα, L2 ∼ k2β, n2 ∼ c2Pk−2x, δ(ω) ∼ k−α, d
k ∼ kd and this should equal Pk−1. Solving, we find x = β + d.

The spectrum

ns
k = cP1/2k−(β+d) (2.28)

has two very interesting properties.
First, if we calculate the total energy E = (1/2)

∑
s

∫
ωknk d
k, we find this behaves as cP1/2

∫∞
k(α−β)(dk/k).

Now imagine that this spectrum is responsible for carrying a finite flux of energy, inserted at a steady rate at
some low value of k, say kL. Clearly, the spectrum around kL will not be universal but for k � kL, let us
imagine it is and approaches (2.28). For β > α, the energy integral converges. In this case, the spectrum
(2.28), if it is indeed the attractor, can only absorb a finite amount of energy from the source. We say it has
finite capacity. This has several consequences. If energy is delivered to the system at a finite rate and the
universal finite flux (Kolmogorov) spectrum can only absorb a finite amount, then there must be a sink at
k = ∞ to absorb that energy. Moreover, the front (imagine the initial spectrum of ns

k is on finite support, e.g.
ns

k(t = 0) = 0, k > k0) that sets up the spectrum (2.28) must reach k = ∞ in a finite time t∗ equal to the
time it takes the source energy to fill the finite capacity spectrum (2.28). This means that in the absence of
a sink at k = ∞, the “inviscid” system must develop highly irregular behavior at large k. This observation
has not yet been exploited in the investigation of possible singularity development in the long-time behavior
of nonlinear PDEs of conservative type. For β ≤ α, the spectrum (2.28) has infinite capacity and can absorb
whatever energy is fed into it. In this case, the front that sets up (2.28) from spectrum initially on finite sup-
port, reaches k = ∞ in infinite time. We will examine these fronts in Section 5. There are anomalies and
surprises!

Second, let us examine the ratio of the linear (tL) and nonlinear (tNL) time scales on the spectrum (2.28) as a
function of k.
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Estimating t−1
L by ωk and t−1

NL as (1/nk)∂nk/∂t , we find (we take n+
k = n−

k ),

tL

tNL
= 1

ωknk

∂nk

∂t
= ε2

ωknkk(d−1)

∂P

∂k
. (2.29)

The last term behaves as k−α · P −1/2k(β+d) · k(1−d) · ε2Pk−1 = ε2P 1/2k(β−2α). For β > 2α(β < 2α), the
ratio of linear to nonlinear time scales, which for the applicability of the weak turbulence approximation, must
be small (because of the need to separate scales), is no longer uniformly bounded by ε2. It diverges for large
(small) k suggesting that when either β ≷ 2α, the small (large) scale behavior of the system becomes more
and more fully nonlinear. This finding will be corroborated by a separate calculation on the validity of the weak
turbulence approximation carried out in Section 4. There we will find that the ratio of the structure function SN (r) =
〈(vs(
x + 
r) − v(
x))N 〉 to (S2)(N/2) is a finite series in powers of ε2P 1/2r(2α−β) which is not uniformly bounded at
small scales when β > 2α. Moreover, the coefficients grow with N . Similarly, for large r , the ratios of cumulants
R(N) to (R(2))N/2 diverge when β < 2α.

Note: When we evaluate the structure functions on the finite energy flux spectrum, we choose vs(x) to be the
physical field whose pair correlation has the spectral energy ωknk as its Fourier transform. The formal Fourier
transform of vs(
x) is therefore

√
ωkAs


k .

For surface tension waves, β = 9
4 , α = 3

2 , d = 2, so that nk = cP1/2k−17/4. Since 2α > β > α, we find that
the spectrum has finite capacity and also preserves the uniformity of the wave turbulence approximation at high k.

We now turn to the Zakharov derivation of (2.28). Using property 3 of Section 2.1 repeatedly and assuming
ns

k = nk, s = +, −, we rewrite (2.26) as

dnk

dt
= 4πε2

∫
|L+++

kk1k2
|2δ(k1 + k2 − k) d
k1 d
k2 nknk1nk2F (ω, ω1, ω2),

where

F (ω, ω1, ω2) =
(

1

n
− 1

n1
− 1

n2

)
δ(ω − ω1 − ω2) +

(
1

n
− 1

n1
+ 1

n2

)
δ(ω1 − ω − ω2)

+
(

1

n
+ 1

n1
− 1

n2

)
δ(ω2 − ω − ω1),

where nk = n, nk1 = n1, nk2 = n2. Assuming isotropy, writing n, n1, n2 as functions of ω, ω1 and ω2, respectively,
and introducing Nω by

∫∞
0 Nω dω = ∫

nk d
k, we find upon averaging over angles in 
k1, 
k2 space (denoted by 〈 〉),
dNω

dt
= S[n] =

∫
∆

Sωω1ω2 nn1n2F (ω, ω1, ω2) dω1 dω2, (2.30)

where ∆ is the quarter plane ω1, ω2 > 0 and

Sωω1ω2 = 4πε2〈|L+++
kk1k2

|2δ(
k1 + 
k2 − 
k)〉(kk1k2)(d−1) dk

dω

dk1

dω1

dk2

dω2
.

If k = ω1/α and L is homogeneous of degree β, then S is homogeneous of degree τ = 2((β + d)/α) − 3. (Note:
A correction δ must be added to τ when the waves are almost non-dispersive; see [32].)

We want to find stationary solutions to (2.30) other than the thermodynamic equilibrium ωknk = T which makes
F identically zero. The class of solutions which Zakharov discovered in the late 1960s makes use of the scaling
symmetries (homogeneity) in both the dispersion relation and the coefficients L+++

kk1k2
and Sωω1ω2 . The idea is to find
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a transformation (now called the Zakharov transformation) which maps the lines ω1 + ω2 = ω, ω1 = ω + ω2 and
ω2 = ω + ω1 on which F is supported into each other. This is achieved by the maps

ω1 → ω2

ω1
, ω2 → ωω2

ω1
, (2.31)

which sends ω1 = ω + ω2 into ω = ω1 + ω2 and

ω1 → ωω1

ω2
, ω2 → ω2

ω2
, (2.32)

which sends ω2 = ω+ω1 into ω = ω1 +ω2. Next, let n = cω−x for values of x for which the collision integral S[n]
exists. This should be checked a posteriori. There is a danger otherwise that divergences in S[n] could be cancelled
by application of the Zakharov transformation.

S[n = cω−x] = c2
∫

∆

Sωω1ω2(ωω1ω2)−xF̂ (ω, ω1, ω2) dω1 dω2,

where F̂ = (ωx − ωx
1 − ωx

2 )δ(ω − ω1 − ω2) + (ωx − ωx
1 + ωx

2 )δ(ω1 − ω − ω2) + (ωx + ωx
1 − ωx

2 )δ(ω2 − ω − ω1).
Apply (2.31) to the second term and (2.32) to the third and use the facts that Sω(ω2/ω1)(ωω2/ω1) = (ω/ω1)τ Sω1ωω2 =
(ω/ω1)τ Sωω1ω2 and the Jacobian of (2.31) is (ω/ω1)3 to rewrite S[n] as

S[n] = c2
∫

Sωω1ω2(ωω1ω2)−x(ωx − ωx
1 − ωx

2 )
(

1 −
(ω1

ω

)y −
(ω2

ω

)y)
δ(ω − ω1 − ω2) dω1 dω2,

where y = 2x − τ − 2 = 2x − 2((β + d)/α) + 1. Using homogeneity we may also write S[n] as

S[n] = c2ω(τ−2x+1)I (x, y) = c2ω(−y−1)I (x, y), (2.33)

where ω1 = ξω, ω2 = ηω and

I (x, y) = c2
∫

S1ξη(ξη)−x(1 − ξx − ηx)(1 − ξy − ηy)δ(1 − ξ − η) dξ dη

is the line integral along ξ + η = 1 between (ξ = 0, η = 1) and (ξ = 1, η = 0). Observe that S[n] = 0 both for

x = 1 Rayleigh–Jeans, (2.34)

y = 1 or x = β + d

α
pure Kolmogorov. (2.35)

The constant c may be determined using first part of (2.31) and defining P such that

∂ωNω

∂t
= ωS[n] = −∂P

∂ω
, (2.36)

and integrating to find

−P = c2 ω(−y+1)

−y + 1
I (x, y).

Taking the limit of y → 1, we find

P = c2 ∂I

∂y

∣∣∣∣
y=1

,
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or

c = P 1/2
(

∂I

∂y

)−1/2

. (2.37)

The ranges of convergence of S[n] (before making the Zakharov transformation) and I (x, y), and ∂I/∂y must be
checked to establish consistency. The stability of these solutions to both isotropic and non-isotropic perturbations
should also be examined. The reader should refer to Refs. [25–27,29,41,43].

3. Four-wave resonances

Suppose the manifold M3 for three-wave resonances is null, either because the dispersion relation is such that one
cannot find triads 
k, 
k1, 
k2 satisfying (2.12) (e.g. gravity water waves ω = √

gk) or because the coefficients L
ss1s2
kk1k2

are identically zero on M3. In either case, there is no redistribution of energy on the ε−2ω−1
0 time scale. There is,

however, still the frequency renormalization (at order ε2) with the delta function missing. Continuing the expansions
to higher order in ε (it is convenient to transform As

k to Bs
k + εF1[Bs

k ] + · · · so as to eliminate the quadratic terms
in (2.2); in Hamiltonian systems, this choice can be made canonical), we find that a non-trivial closure for spectral
particle density ns

k occurs at O(ε4) and is given by

dns
k

dt
= 12πε4

∑
s1s2s3

∫
G

ss1s2s3
kk1k2k3

ns
kn

s1
k1

n
s2
k2

n
s3
k3

δ(
k1 + 
k2 + 
k3 − 
k)

×
{

G
−s−s1−s2−s3
−k−k1−k2−k3

ns
k

+ 123
P

G
s1s−s2−s3
k1k−k2−k3

n
s1
k1

}
δ(s1ω1 + s2ω2 + s3ω3 − sω) d
k1 d
k2 d
k3. (3.1)

The manifold M4 is


k1 + 
k2 + 
k3 = 
k, s1ω1 + s2ω2 + s3ω3 = sω. (3.2)

The coupling coefficient G
ss1s2s3
kk1k2k3

is given by

G
ss1s2s3
kk1k2k3

= L
ss1s2s3
kk1k2k3

− 2i

3

123
P
∑
s4

L
s−s4s1
kk2+k3+k1

L
−s4s2s3
k2+k3k2k3

s2ω2 + s3ω3 + s4ω(
k2 + 
k3)
.

The frequency renormalization is

sωk → sωk + ε2Ωs
k + ε4Γ s

k + · · · , (3.3)

where Ωs
k is as given in (2.23) without the δ(s1ω1 + s2ω2 − sω) terms. Γ s

k contains a positive imaginary component
proportional to δ(s1ω1 + s2ω2 + s3ω3 − sω) indicating that even the leading-order contributions to the Fourier space
cumulants of order N > 2 decay over long times. Remember, however, that their physical space counterparts decay
much more quickly due to the time oscillating factors in the integrand of the Fourier transform.

In this lecture, we will concentrate on systems given by the Hamiltonian

H =
∫

ωkA∗
kAk d
k + 1

2

∫
Tkk1,k2k3A∗

kA∗
k1

Ak2Ak3δ01,23 d
k0123 (3.4)

for which we identify Ak with A+
k , A∗

k with A−
k and set n+

k = n−
k and take

L
ss1s2s3
kk1k2k3

= 1
3 is

123
P δs1−sδs2sδs3sTk−k1,k2k3 , (3.5)



A.C. Newell et al. / Physica D 152–153 (2001) 520–550 541

where δs1s2 is the Kronecker delta. In the product L
ss1s2s3
kk1k2k3

L
−s−s1−s2−s3
−k−k1−k2−k3

only three out of the possible nine terms
survive so that the factor 12 in (3.1) becomes 4.

dnk

dt
= T [n] = 4πε4

∫
|Tkk1,k2k3 |2nn1n2n3

×
(

1

n
+ 1

n1
− 1

n2
− 1

n3

)
δ(ω + ω1 − ω2 − ω3)δ(
k + 
k1 − 
k2 − 
k3) d
k123. (3.6)

We can also rewrite (3.6) as

dnk

dt
= 4πε4

∫
|Tkk1,k2k3 |2H(n, n1, n2, n3)δ(ω + ω1 − ω2 − ω3)δ(
k + 
k1 − 
k2 − 
k3) d
k123, (3.7)

where

H(n, n1, n2, n3) = n2n3(n + n1) − nn1(n2 + n3). (3.8)

If Ak had been an operator obeying Bose statistics rather than a complex generalized function, corresponding to a
classical wave field, then we would find the same equation for the particle density of bosons with

H(n, n1, n2, n3) = n2n3(1 + n)(1 + n1) − nn1(1 + n2)(1 + n3). (3.9)

If Ak had been an operator obeying Fermi statistics, then

H(n, n1, n2, n3) = n2n3(1 − n)(1 − n1) − nn1(1 − n2)(1 − n3). (3.10)

The particle equation for fermions can be understood as a Boltzmann equation for two particle collisions with
momenta and energies equal to 
k, 
k1, ω, ω1 before and 
k2, 
k3, ω2, ω3 after. The particle densities n, n1, n2, n3

represent the probabilities of finding a particle in states (
k, sω), (kj , sj ωj )3
j=1 and their complements 1 − n, 1 −

n1, 1−n2, 1−n3 represent the probabilities that the states are vacant. Recall that the Pauli exclusion principle only
allows transfer to vacant states.

Eqs. (3.1) and (3.6) have two conserved quantities

N =
∫

nk d
k =
∫ ∞

0
Nω dω, (3.11)

E =
∫

ωknk d
k =
∫ ∞

0
ωNω dω (3.12)

for all three systems (3.8)–(3.10). In general, the original equation (2.1) may not formally conserve total particle
number. However, when three-wave interactions are absent and (3.1) obtains, we find that particle number is
conserved as long as the coupling coefficient G vanishes whenever the set (−s, s1, s2, s3) does not consist of two
pluses and two minuses. It may or may not be conserved at higher orders. The formal proof for conservation of N

and E relies on the exchange of orders of integration, the validity of which has already been discussed in Section
2.7. Similar qualifications apply here. Each conservation law may only obtain for a finite time. Connected with
these conserved quantities are the thermodynamic equilibria. For classical waves,

1

nk

= 1

T
(ωk − µ), (3.13)

represents a combination of equipartition of energy (µ = 0) and particles (T → ∞, µ/T finite), the Rayleigh–Jeans
spectrum. For bosons, the corresponding spectrum is the Bose–Einstein distribution,
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1

nk

= exp
1

T
(ωk − µ) − 1, (3.14)

which tends to (3.10) in the high temperature (T ) limit. For fermions, there is the Fermi–Dirac distribution

1

nk

= exp
1

T
(ωk − µ) + 1. (3.15)

The parameter T is usually called temperature and µ the chemical potential.
For all of these solutions, the fluxes of particles and energy across the spectrum are zero. Therefore, in order to

find solutions of (3.6) for non-equilibrium situations which carry finite fluxes of particles and energy, we must seek
a richer class of stationary solutions. Zakharov was the first to find these and to point out that they were far more
relevant in applications than the thermodynamic equilibria. We will not give details of the derivation here. For these,
we point the reader to Refs. [32] or [33]. We will, however, discuss the results in some detail because the presence
of an extra conserved density (particles) has important consequences.

Assuming isotropy and defining Nω = Ω0k(d−1)(dk/dω)nk(ω), Ω0 is the solid angle in d dimensions, we find
after angle averaging that

dNω

dt
=
∫

∆

Sωω1ω2ω3 nn1n2n3

(
1

n
+ 1

n1
− 1

n2
− 1

n3

)
δ(ω + ω1 − ω2 − ω3) dω1 dω2 dω3, (3.16)

where ∆ is the region ω2 > 0, ω2 + ω3 > ω, ω3 > 0 in the ω2, ω3-plane. If Tkk1,k2k3 is homogeneous of degree
γ, Sωω1ω2ω3 is homogeneous of degree σ = ((2γ + 3d)/α) − 4. Because Nω and Eω = ωNω are conserved
densities, we may write

dNω

dt
= ∂Q

∂ω
,

dωNω

dt
= −∂P

∂ω
(3.17)

with P (Q) positive when energy flows to higher (lower) frequencies ω. As before in Section 2.7, we can find the
pure Kolmogorov spectra,

nk = c1Q1/3k((−2γ +3d)/3)+α/3, (3.18)

nk = c2P 1/3k−(2γ +3d)/3 (3.19)

for which c1 and c2 are calculable constants. Equilibrium (3.18) and (3.19) carries a finite particle (energy) flux and
zero energy (particle) flux. For deep ocean water waves, γ = 3, d = 2, α = 1

2 so that for large k, nk = c2P 1/3k−4

or ωknk = c2P 1/3k−7/2.
Only in certain cases, however, will the pure finite flux solutions be relevant. To see this, imagine a situation

depicted in Fig. 4 in which particles and energy are added to the system at frequency ω0 at the rates Q0 and
P0 = ω0Q0, respectively.

Fig. 4. Left and right fluxes of particles and energy from a source at ω0 to sinks at ωL and ωR.
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Suppose there are no leakages of particles or energy at ω = 0, ∞. Then the rate of particle and energy input Q0

and P0 = ω0Q0 must be balanced by dissipation Qd and Pd in order that a steady state is achieved. Conservation
implies that the average frequency of pumping ω0 = P0/Q0 and damping ωd = Pd/Qd must be equal. Therefore,
if ωd �= ω0, namely if one of the sinks is near ω = ∞, there must be two sinks. We will put them at ωL and ωR.
Equating flux rates PR − PL = P0 = ω0Q0 and QL − QR = Q0, and assuming that all particles and energies
traveling through the left and right windows of transparency are absorbed at ωL and ωR, respectively, we have that
PL = −ωLQL and PR = −ωRQR. Therefore, we can calculate

QL = Q0
ωR − ω0

ωR − ωL
, QR = −Q0

ω0 − ωL

ωR − ωL
,

PR = ω0Q0
ωR

ω0

ω0 − ωL

ωR − ωL
, PL = −ω0Q0

ωL

ω0

ωR − ω0

ωR − ωL
. (3.20)

The relative positioning of ωL, ω0 and ωR is important. In the limit ωL → 0, ωR → ∞, QL → Q0, QR →
0, PR → ω0Q0, PL → 0. In such a case, we expect a pure Kolmogorov spectrum in the right window of
transparency because neither of the thermodynamic parameters T or µ will be important there. Indeed, because
Eω → 0 as ω → ∞, we expect T = 0. On the other hand, for ωL ≤ ω0 � ωR, i.e. when ωR → ∞, QL/Q0 →
1, QR/Q0 → 0, PR/P0 → 1 − ωL/ω0 and PL/P0 = −ωL/ω0. Observe that, whereas in this limit all particles
travel to small ω, the amount of energy traveling to low frequencies depends on the relative positions of source
at ω0 and sink at ωL. If ωL/ω0 → 0, then all energy goes to high frequencies. But there are circumstances,
e.g. semiconductor lasers [40,45], where ω0 and ωL may be close and then a significant amount of energy may
be absorbed by the low frequency sink. In this case, we would expect a mixed spectrum in the left window of
transparency which depends on all four constants, P, Q, T and µ. In general, then, we expect that the stationary
attractor of (3.6) will be the four-parameter family

nk = nk(T , µ, P, Q) (3.21)

with the parameters T , µ, P and Q determined by the total energy E, total particle number N and the rates of
pumping Q0 and P0 by the source. Even if PL = 0, the spectrum in the left window may very well depend on Q

and the thermodynamic parameters T and µ.
This richer solution family can be readily seen by the so called “differential” or Fokker–Planck (FP) approximation

of the collision integral [21]. Suppose that the integrand in (3.16) has its principal support near ω1 = ω2 = ω3 = ω,
then we can write (3.16) as [32]

∂Nω

∂t
= ∂2K

∂ω2
, (3.22)

where K[n] = S0ω(σ+6)n4(∂2/∂ω2)(1/n) and S0 is a calculable constant. From (3.22), we see that the stationary
solutions of (3.22) are given by solving

K[n] = S0ω(σ+6)n4 ∂2

∂ω2

1

n
= Qω + P, (3.23)

whose general solution will depend on four parameters, Q, P , and the two constants of integration, which we call
T and µ, associated with (∂2/∂ω2)(1/n). As an exercise, show that all special solutions (3.13) (take Q = P = 0),
(3.18) (take P = 0; seek solution nk = c1Q1/3ω−x), and (3.19) (take Q = 0; seek solution nkc2P 1/3ω−x)
satisfy (3.23). Similar reductions [33,40], Kboson = S0ω(σ+6)(n4(∂2/∂ω2)(1/n) − n2(∂2/∂ω2) ln n), Kfermion =
S0ω(σ+6)(−n4(∂2/∂ω2)(1/n) − n2(∂2/∂ω2) ln n), obtain for bosons or fermions. Note that there are no power law
solutions near ω = ∞ for either bosons or fermions (contrary to what is claimed [33]). We emphasize, however,
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that the finite flux solutions for boson and fermion fields in non-equilibrium situations will be very important. As an
example, in a recent paper [40,45], we have shown how finite flux carrier distributions in semiconductor lasers may
enhance efficiency. There seems to be very little recognition in the literature of the fact that the quantum Boltzmann
equation has a much richer class of stationary solutions than the Fermi–Dirac spectrum.

The capacity of the pure Kolmogorov solutions (3.18) and (3.19) may be found by examining the convergence
of (3.18) near k = 0, and (3.19) near k = ∞. For (3.18),∫

0
nk d
k = c1Q1/3

∫
0
k−(2γ /3)+α/3 dk

k
,

which converges for α > 2γ (finite capacity) and diverges for α ≤ 2γ (infinite capacity). For example, for water
waves where γ = 3, α = 1

2 , the origin k = 0 has an infinite capacity to absorb “particles” (i.e. longer and longer
waves), whereas for optical waves of diffraction and superfluids (nonlinear Schrödinger; α = 2, γ = 0), the origin
k = 0 has finite capacity. We will see in Section 4 that, in the latter case, fully nonlinear condensates and filaments
then become important. The capacity of (3.19) is determined by examining the convergence or divergence of∫ ∞

ωknk d
k = c2P 1/3
∫ ∞

k−(2γ /3)+α dk

k

near k = ∞. For 3α ≥ 2γ , there is infinite capacity; for 3α < 2γ , there is finite capacity. In the latter case (as
in the case for gravity water waves), one needs some sink at large k to absorb the energy and particle throughput.
For moderate flux ratio P , this is achieved for gravity waves by the onset of surface tension dominated three-wave
resonances at wavelengths of about 1 cm and from there the energy is carried to a viscous sink at much smaller
wavelengths. For stronger flux rates, white caps can form [48].

The validity of the weak turbulence approximation of separation of scales can also be evaluated on the pure finite
flux spectra (3.18) and (3.19). For (3.18),

tL

tNL
= 1

ωknk

∂nk

∂t
= cε4Q2/3k(2γ −4α)/3,

and for (3.19)

tL

tNL
= cε4P 2/3k(2γ /3)−2α.

We see tL/tNL diverges at k = ∞(0) for (2.28) when β > 2α(β < 2α), at k = 0(∞) for (3.18) when γ <

2α(γ > 2α), and at k = ∞(0) when γ > 3α(γ < 3α) for (3.19). In each case, we can define the scale at
which the wave turbulence approximation fails. For the three-wave energy flux spectrum (2.28), it fails when
k > kNL = exp((1/2(β − 2α))(ln(1/P ))) and β > 2α (in what follows we absorb the amplitude parameter ε

into the fluxes P and Q) or when k < kNL = exp(−(1/2(2α − β))(ln(1/P ))) and β < 2α. For the four-wave
energy flux spectrum (3.19), it fails when k > kNL = exp((1/(γ − 3α)) ln(1/P )) and γ > 3α or when k <

kNL = exp((−1/(3α − γ ))(ln(1/P ))) and γ < 3α. For the four-wave particle flux spectrum (3.18), it fails when
k < kNL = exp((−1/(2α − γ )) ln(1/Q)) and γ < 2α and when k > kNL = exp((1/(γ − 2α))(ln(1/Q))) and
γ > 2α. Since in all cases P and Q are small, the failure for the energy flux spectral (2.28) and (3.19) occurs at large
k when β > 2α and γ > 3α. In this case, kNL should be compared with the dissipation wavenumber kd or another
large wavenumber where new behavior occurs such as is the case, e.g. at the transition between gravity-dominated
and surface tension-dominated water waves. When β < 2α and γ < 3α, the failure occurs at small k and then
kNL should be compared against the forcing wavenumber kf at which energy is injected. In the limits kf → 0 and
kd → ∞, there is always a range of wavenumber where wave turbulence fails unless β = 2α or γ = 3α. The critical
scale kNL for the particle flux spectrum should also be compared with the forcing wavenumber kf (now considered
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large) and a possible sink kd near k = 0 as would be the case, e.g. when lasing occurs in semiconductors. In the
next section, we shall argue that the breakdown at small k is connected with the building of condensates and the
breakdown at large k is connected with the formations of shocks in some derivative of the field variable. We give
two examples, but cannot say rigorously if they are typical of some universal behavior or simply special cases.

In the limit of small negative γ −3α, Gurarie [50] has calculated a renormalized KZ exponent for four-wave pro-
cesses. He obtains the value 2

3 γ +d − 2
9 (γ −3α) for the corrected exponent. We have not been able to find a physical

understanding of this result by introducing a small condensate at k = 0 (which is the most likely physical manifes-
tation of the breakdown) and then recasting the problem in transformed variables. We, therefore, do not yet know
what the Gurarie result might mean. It would appear that the flux connected with such a solution is not constant in k.

4. Breakdown of the weak turbulence approximation and the onset of intermittency

We have already seen the warning signs. The fact that, on the pure Kolmogorov spectra (2.28), (3.18) and (3.19),
the ratios of the local linear to nonlinear time scales (ε2P 1/2k(β−2α), ε4Q2/3k2/3(γ −2α), ε4P 2/3k2/3(γ −3α)) can
diverge at both k = ∞ (for β > 2α, γ > 2α, γ > 3α, respectively) and at k = 0 (for β < 2α, γ < 2α, γ < 3α,
respectively) suggests that fully nonlinear processes, ignored in the weak turbulence approximation, may be rele-
vant. This is on top of the fact that, again on the pure Kolmogorov spectra (2.28), (3.18) and (3.9), these attracting
solutions may only be able to absorb a finite amount of energy or particles. This finite capacity suggests that, after
a finite time t∗ when these spectra have absorbed all they can, the Holder exponents of field differences may be less
than 1 and the fields themselves have a fractal nature, and it is not only the pure Kolmogorov solutions which bring
about the breakdown. Although more complicated to work out, it is clear that the general finite flux solutions of
(2.26) (function of T and P ) and (3.6) (function of T , µ, P, Q) can also bring energy and/or particles to regions of
k space where the ratios of nonlinear terms to linear terms in the original PDE are no longer small. For example, in
systems of nonlinear Schrödinger type (and this includes a wide range of systems from superfluids to optical waves
of diffraction to the carrier distributions in semiconductor lasers) with Hamiltonian (3.4), it is clear that if T ∼ kγ

and ωk ∼ kα the ratios of nonlinear to linear terms become unbounded for small k if α exceeds some function
(depending on how the amplitude Ak scales) of γ .

We note here that (2.2) has the scaling symmetry

As(
k, t) = λbBs( 
K = λ
k, T = λ−αt), (4.1)

if b = β + d − α = γ + d − β. It will turn out that this scaling symmetry is only preserved by the long-time
statistics of weak turbulence for small scales when β = 2α and γ = 3α, or for large scales when γ = 2α. It is
noteworthy that, in general, weak turbulence does not evolve to solutions which preserve the scaling symmetries
of the original system. In the Kolmogorov’ 41 theory of hydrodynamic turbulence, scaling symmetry is preserved
whereas, as we have already pointed out, the true behavior of statistical hydrodynamics leads to solutions which
break that symmetry and for which the ratios of the structure functions Sn/(S2)n/2 diverge at small scales.

It is, therefore, relevant to examine the long-time behavior of the structure functions

SN (
r) = 〈(vs(
x + 
r) − vs(
x))N 〉 (4.2)

for weak turbulence for small r = |
r|. While we will give a fuller report elsewhere, here we will give some of the
main results. In particular, we will evaluate SN (
r) on the finite energy flux spectra using the field vs(
x) whose pair
correlation function Rss′

v (
r) = 〈vs(
x)vs′
(
x + 
r)〉 has the spectral energy density as its Fourier transform. We will be

interested mainly in those cases where the structure functions are universal, namely are dominated at small scales
r by the universal spectra (2.28) and (3.19) in the window of transparency and not by the non-universal part of nk
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outside of this window. The uniformity of the ratio SN to (S2)N/2 as r → 0 will give a measure of how close to
joint Gaussianity the system remains.

On the particle flux spectra dominated by low k (large r) behavior, the structure functions are no longer the
relevant objects. In that case, we calculate the cumulants R(N) directly and, as a measure of joint Gaussianity, see
how the ratio of R(N) to (R(2))N/2 behaves in the large r limit. In this case, the relevant physical field is us(
x),
defined earlier, as its pair correlation function has the particle density nk as its Fourier transform.

We begin by examining SN (
r) on (2.28). For convenience, we omit the sign parameter s.

S2(r) = 〈(v(x + r) − v(x))2〉 = 2(R(2)
v (0) − R(2)

v (r)) = 2
∫

ωkn
k(1 − ei
k·
r ) d
k.

If nk is isotropic, then the bracket in the integrand can be replaced by (1− cos 
k · 
r) which is of order (kr)2 for small
kr. This simply reflects the fact that, for the ensemble of initial fields, velocity differences should be smooth (i.e.
differentiable) and the structure function SN (r) proportional to rN . In general, this property will fail to hold for long
times because of the algebraic dependence (2.28) of the spectral densities on k. From (2.28), ωknk ∼ k(α−β−d) in
some window KI < k < KU where KI and KU are the infrared and ultraviolet cutoffs, respectively. For β − α > 0,
the finite capacity case, we can take the ultraviolet cutoff KU to be ∞. For k < KI, the infrared cutoff, the spectrum
is non-universal. However, when we evaluate limKI→0

∫
ωkn
k(1 − cos 
k · 
r) d
k on the spectrum (2.28), we find that

we can take the limit when β − α < 2 and then S2(r) ∼ P 1/2r(β−α). The non-universal contribution will behave as
r2 which, since β − α < 2, is less than r(β−α) for small r . Observe that this suggests that in the long-time limit, the
members of the ensemble of field differences v(x + r)−v(x) are not differentiable but only Holder continuous with
“average” Holder exponent 1

2 (β − α). Frisch [37] discusses relations between the exponent ξN of the N th-order
structure function and the Hausdorff dimension of singularity sets. In the present work, therefore, we are principally
interested in parameter values α, β where 0 < β − α < 2. For 2α > β > α, we expect that the shape of the signal
v(x) is monofractal. For β > 2α, the signal will also contain intermittent behavior.

Next, we evaluate S3(r) = 3(R
(3)
v (0, r) − R

(3)
v (0, −r)) is the small r limit. The leading-order behavior vanishes

for two reasons. First, Q
(3)
0 contains a fast oscillation which means its Fourier transform R

(3)
0 will decay as ω0t →

∞. Moreover, Q
(3)
0 itself decays on the long-time scale ε2ω0t → ∞. The principal surviving contribution to

S3(r) comes from ω3/2Q̃
(3)
1 , where Q̃

(3)
1 is given by (2.17). Remember, we are defining the structure functions in

terms of the field v(
x) whose Fourier transform is ω1/2A
k . Taking nk to be given by (2.28), ω3/2Q̃
(3)
1 behaves as

k3α/2 · kβPk−2(β+d) · k−α . The term ei
k·
r − e−i
k·
r behaves as (kr)3 as the kr contribution vanishes on integration.
The integration over d
k · d
k′ behaves as k(2d−1) dk du (write k′ = ku). Thus, convergence as KI → 0 is guaranteed
because if 0 < β −α < 2, then β − 1

2 α < 3 as long as α ≤ 2. We thus require 0 < α ≤ 2. Then S3(r) ∼ εPrβ−α/2.
Similar reasoning leads to S4(r) = 3S2

2 (r) + 2Rv(0, 0, 0) − 4Rv(0, 0, r) + 6Rv(0, r, r) − 4Rv(0, 0, −r) behaving
as 3Pr(2β−2α)(1 + ε2P 1/2r(2α−β)). Likewise, the ratio of SN (r) to (S2)N/2, for N even, can be written as a constant
times a finite series 1 + ∑(N/2)−1

s=1 CNs(P
1/2r(2α−β))s , where we have now absorbed the ε factor into P . The

coefficients CNs diverge with N . The series becomes non-uniform as r → 0 and, therefore, the statistics deviates
significantly from joint Gaussian when β > 2α. We find, therefore, that SN (
r) is dominated by the universal part
of the nk spectrum in the parallelogram 0 < α ≤ 2, 0 < β − α < 2 for which the diagonal is β = 2α. On one side
β > 2α, joint Gaussianity fails at small scales; on the other, β < 2α, it fails at large scales.

For four-wave processes, a similar situation obtains. There, convergence of S2(r) as r → 0 required 0 < 2
3 γ −α <

2. If this holds, and 0 < α ≤ 2, all later SN converge as KI → 0 and are therefore dominated (as r → 0) by
the universal part of the nk spectrum. We find that for even N , the ratio of SN (r) to (S2)N/2 is proportional to
1 +∑(N/2)−1

s=1 CNs(P
1/3rα−γ /3)s . Again, the coefficients CNs diverge with N . On the particle flux spectrum (3.19),

we find that for large r , the ratio R(N) to (R(2))N/2 diverges as CN (Q1/3r(2α−γ )/3)(N/2)−1.
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For all cases, the precise dependence of CNs on N has yet to be determined. From a knowledge of its behavior,
we could infer the behavior of the PDF for the field differences in the limit as r → 0.

Note that the original scaling property of (2.2), As(
k, t) = λbBs( 
K = λ
k, T = λ−αt), b = β+d−α = γ +d−β

is only preserved by the long-time statistics on the energy flux spectrum when β = 2α, γ = 3α, (b = α + d) and
on the particle flux spectrum when γ = 2a(b = 1

2 α + d).
What we have demonstrated that for almost all values of the parameters α, β, γ , the long-time solutions to the

kinetic equations for wave turbulence lead to the invalidation of the premises ((i) tL/tNL uniformly small, and (ii)
close to joint Gaussian behavior) on which the theory is founded. But this is not a catastrophe. On the contrary,
it affords an opportunity to develop a theory which may well act as a paradigm for many other turbulent fields.
The reasons for this optimism is that, in the wave turbulence situation, one can identify in many cases the strongly
nonlinear and coherent fluctuations that occur. We now discuss two applications.

Currently, we are attempting to develop a combined wave turbulence and sparse large fluctuations picture for
optical turbulence. This situation has been described by us previously [32,35] so we will only briefly outline the
ideas here. The model is the nonlinear Schrödinger equation

ut + i∇2u + iau2u∗ = 0 (4.3)

for which ωk = k2 and Tkk1,k2k3 = −a. Let us imagine that we insert particles and energy in a range of wavenumbers
where the weak turbulence approximation is valid. Four-wave resonances serve to redistribute particles and energy
with most energy (some particles) going to high k and most particles (some energy) going to lower k. This redistri-
bution is independent of the sign of a. Because the origin k = 0 has only finite capacity, once the particles reach
k = 0, a condensate will begin to grow. In the defocusing case a < 0, patches of condensate with different phases
will be built in different spatial domains and small fluctuations will propagate as dispersive waves on top of these
condensates. The dispersive waves will have a new dispersion relation discussed in Example (a) of Section 2.1. The
domain walls will also interact. For the focusing case a > 0, a more dramatic chain of events occurs. Condensates
(and indeed long periodic waves) are modulationally unstable. From these modulational instabilities, collapsing
filaments are formed giving rise to a very fast (the inviscid NLS equation for d ≥ 2 has a finite time singularity)
transfer of particles (the energy, i.e.

∫
(|∇u|2 − 1

2 a|u|4) d
x of each is zero) from k = 0 to ∞. The collapses occur
randomly in space and time. Their average frequency of occurrence would appear to be proportional to QL, the rate
at which particles flow towards the origin. This transfer of particles is carried by organized and coherent structures,
and very different to the direct cascade of particles due to four-wave resonances. As the collapsing filaments reach
k = ∞, the presence of dissipation causes incomplete burnout because each collapsing filament (in 2D) only carries
exactly the critical number Nc of particles requires to sustain the collapse. As a result, the collapse is arrested and
only 15–20% of the particle number Nc is lost. Nevertheless, significant particle loss occurs and this will produce
large fluctuations (spikes) in the dissipation signal, each spike coinciding precisely with a collapse event. Since the
energy is non-positive definite, the transport of particles to high k can lead to an energy source at large k. Specifically,
the viscous sink at large k will absorb a portion of the potential energy component −(a/2)

∫ |u|4 d
x of the zero
energy collapsing filament. The corresponding amount of kinetic energy component

∫ |∇u|2 d
x is then free to be
returned to the wave field. The returning particles (if f is the fraction lost) build up the inverse particle flux rate
from the initial input rate to (1/f )Q0 so that eventually all particle dissipation occurs by their transfer to k = 0 by
four-wave processes and then to k = ∞ by collapses.

We call this series of events the cycle of intermittency. It is very clear from our numerical experiments reported
in [32] that the intermittency seen in the signal is due to these large fluctuation events. They can be suppressed
by inserting damping near k = 0. As this damping is decreased, they become more and more frequent and, at
zero damping, they contribute significantly to the particle dissipation rate. Currently, we are attempting to build a
consistent model of a two species gas with waves and filaments in order to describe this cycle analytically. One has a
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clear advantage in that individual collapse events, once nucleated, do not feel the waves (the time scale is too short)
and that the waves feel the collapses only as a source of new waves arising from the incomplete burnout process.

The second application is deep-water gravity waves for which α = 1
2 , β = 7

4 , γ = 3 = 2β − α so that
L

ss1s2s3

k,
k1,
k2,
k3

and (1/ωk)(L
ss1s2

k
k1
k2

)2 have the same degree of homogeneity. The ratio tL/tNL is P 2/3k/g where we have

incorporated ε in P . If this becomes of order 1 at values of k less than k0 = √
ρwg/S (ρw is the water density, g

the gravity, S the surface tension) at which surface tension effects can absorb the energy flux, then one must expect
fully nonlinear behavior. This criterion, namely that P 2/3 > g/k0 translates to a criterion on the wind speed V

(P 2/3 = (ρa/ρw)V 2, ρa is the air density) namely V > (ρw/ρa)1/2(Sg/ρw)1/4, or approximately 6 m/s, the speed
at which whitecapping first occurs. Therefore, it is likely that the coherent nonlinear structure in this case is the local
formation of slope discontinuities on the water surface. A sea full of such discontinuities would lead to a Phillip’s
spectrum Ek ∼ k−4 for the energy density. It is interesting that the criterion that P 2/3 > g/k0 is also the criterion
for the Kolmogorov–Zakharov spectrum (3.19) to meet the Phillip’s spectrum before k = k0 [48].

5. How the Kolmogorov spectrum is realized: a new anomaly

Previous thinking [32,47] as to how the Kolmogorov spectra (2.28), (3.18) and (3.19) are reached may not be
generally correct in the finite capacity cases. The idea was that an initial isotropic spectrum on compact support
in k-space would propagate to k = ∞ (or k = 0) as a front k = kf(t) for which nk → 0 for k > kf(t) and
nk → cP1/2k−(β+d) for k < kf(t). Namely, the front propagates so as to leave the stationary Kolmogorov solution
in its wake. The transition would be described as a self-similar solution of the kinetic equation

n(
k, t) = 1

ta
n0

(
k

tb

)
. (5.1)

Substitution of (5.1) into the kinetic equation (5.2) gives an integral equation for n0(η = k/tb) and one relation

a = 1 + b(2β + d − a) (5.2)

between a and b. For infinite capacity case, one can obtain a second relation by realizing that eventually all the
energy put into the system will reside in the wake of the self-similar solution. Assuming that the rate of energy input
is constant, we have that

∫
ωk 
nk d
k grows like t and this means that

a + 1 = b(β + d). (5.3)

Together (5.2) and (5.3) give

b = 1

α − β
, a = β + d

α − β
,

which for, α > β, are both positive. The front moves towards infinity at the finite rate k = kf(t) = t1/(α−β). In the
wake, n(
k, t) → cP1/2k−(β+d) since a = (β + d)b.

This is, e.g. the case for water waves near k = 0 (with an analogous result from the four-wave resonance kinetic
equation) and for NLS near k = ∞.

But, for the finite capacity case β > α and b < 0. It is useful in this case to write (5.1) as

nk(
k, t) = 1

τa
n0

(
k

τb

)
with τ = t∗ − t. (5.4)

Again we find (5.2) obtains. However, we cannot assume (5.3) because in the finite capacity case the energy contained
in the Kolmogorov solution cannot grow past its finite capacity. Because b < 0, the front will reach k = ∞ in a



A.C. Newell et al. / Physica D 152–153 (2001) 520–550 549

finite time t∗. For 0 < t < t∗, a second relation between a and b must be found by treating the nonlinear integral
equation for n0(η = k(t∗ − t)−b) as a nonlinear eigenvalue problem. Assuming that the wake approaches a power
law state k−σ means that a = bσ . But a/b = σ may not be (β + d), the Kolmogorov power law.

We now have two examples where this is not the case. Both are reported in this volume, one here and one in
[53]. For three-wave processes, the first to realize this possibility were Galtier et al. [46,49] for the case of weak
MHD turbulence dominated by Alfven waves. This is consistent with the observations of Frisch and Fournier [51]
on the inviscid Burgers equation. More recently, Svistunov [52] and more recently Pomeau and Rica [53] have
noted similar behavior in the building of Bose condensates (cf. NLS). What we found in the MHD context was
the following. For 0 < t < t∗, the wake solution was n(
k, t) ∼ k−7/3 which is steeper than k−2, the Kolmogorov
spectrum. However, as t approached t∗, a remarkable transition took place. For t ≥ t∗, disturbances beginning
at large k propagated back along the k−7/3 spectrum and lifted it to the k−2 shape. It would appear that once the
connection to k = ∞ is made, the circuit between source and sink is closed allowing the usual finite flux spectrum
to be set up.

This remarkable behavior resembles to some extent the behavior observed in critically self-organized systems.
Can it be that in finite capacity cases, the Kolmogorov spectrum of wave turbulence is indeed such a “critical” state?
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