

Black-hole & white-hole horizons for capillary-gravity waves in superfluids

Cosmolog

COSLAB

Particle physics

Warwick

December 9, 2005

G. Volovik

Helsinki University of Technology & Landau Institute

Effective Lorentzian metric is typical for condensed matter

 $\mathbf{L} = (-\mathbf{g})^{1/2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\mu} \phi$

* Phonons in moving superluids & sound waves in moving liquid

Landau-Khalatnikov two-fluid equations are analogs of Einstein equations for gravity and matter

- * Spin waves in inhomogeneous medium
- * Elasticity theory with dislocations and disclinations
- * Light in moving dielectric
- * Quasiparticles in superconductors with nodes
- * Quasiparticles in ³He-A This system is most instructive since gravity appears together with chiral fermions, gauge fields,Lorentz invariance gauge invariance, the same speed of light for fermions & bosons
- * Ripplons on the surface of liquid or interface between liquids best system for simulating event horizon of black hole

 $T^{\mu\nu}_{;\mu} = 0$

Acoustic metric in liquids (Unruh, 1981) & superfluids

Doppler shifted spectrum in moving liquid

 $E = cp + \mathbf{p} \cdot \mathbf{v}$ speed of sound C $E - \mathbf{p} \cdot \mathbf{v} = cp$ $g^{\mu\nu}p_{\mu}p_{\nu} = 0$ $p_{\nu} = (-E, \mathbf{p})$ $g^{00} = -1$ $g^{0i} = -v^i$ $g^{ij} = c^2 \delta^{ij} - v^i v^j$ $-(E - \mathbf{p} \cdot \mathbf{v})^2 + c^2 p^2 = 0$ inverse metric $g_{\mu\nu}$ determines effective spacetime in which phonons move along geodesic curves $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$ $ds^2 = -dt^2 c^2 + (d\mathbf{r} - \mathbf{v}dt)^2$ reference frame for phonon is dragged by moving liquid

review:

Barcelo, Liberati & Visser,

Analogue Gravity

gr-qc/0505065

Acoustic gravity

Doppler shifted spectrum in moving liquid

speed of sound

$$E = cp + \mathbf{p} \boldsymbol{\cdot} \mathbf{v}$$

acoustic metric

$$ds^2 = -dt^2 c^2 + (d\mathbf{r} - \mathbf{v}dt)^2$$

reference frame for phonon is dragged by moving liquid

Effective metric for phonons propagating in radial superflow v(r)

after time transformation

 $dt = dt - vdr/(c^2 - v^2)$

03a

Schwarzschild metric: $ds^2 = -dt^2 (c^2 - v^2) + dr^2 / (c^2 - v^2) + r^2 d\Omega^2$ g₀₀ f $f_{g_{m}}$

 $v^2(r)$ Kinetic energy of superflow =

potential of gravitational field

$$v^2(r) = \frac{2GM}{r}$$

Painleve-Gulstrand metric

 $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$

geometry

speed of light

С

 $g^{\mu\nu}$

 $g_{\mu \upsilon}$

 $ds^{2} = -dt^{2} (c^{2} - v^{2}) + 2 v dr dt + dr^{2} + r^{2} d\Omega^{2}$

 $g^{\mu\nu}p_{\mu}p_{\nu}=0$

Acoustic Black Hole

03b

Vacuum resistance to formation of horizon

Hydrodynamic instability of spherical black hole

along the stream line of stationary flow:

 $\frac{d(\rho v)}{dv} = \rho(1 - v^2(r)/c^2)$

continuity equation: $\rho v = Const / r^2$

horizon cannot be achieved because continuity equation requires

ed on v=c(=s) unstable region behind horizon v

 $\frac{d(\rho v)}{dv} > 0$

Such instability is absent if speed of "light" c < s speed of sound in Fermi superfluids c << s

Analog Black Holes

Painleve-Gulstrand metric

$$ds^{2} = -dt^{2}(c^{2}-v^{2}) + 2v dr dt + dr^{2} + r^{2}d\Omega^{2}$$

Acoustic horizon in Laval nozzle

Let us try surface waves

Schutzhold & Unruh 2002: horizon for gravity waves in shallow water

Helsinki experiments 2002: ergoregion instability for surface waves at the interface between superfluids

ENS experiments 2005 (Rolley et al. physics/0508200): hydraulic jump in superfluids as white hole (physics/0508215)

05a

* Kelvin-Helmholtz criterion (dynamic instability of interface under shear flow)

3 criteria for interface instability at T=0ripplon A-phase $\sim v_{sA} = 0$ interface **B**-phase $v_{sB} = v$ * Kelvin-Helmholtz criterion $\rho_{sB} = \rho$ (dynamic instability of interface under shear flow) $\rho_{sA} = \rho$ $\rho v^2 = 4\sqrt{F\sigma}$ $k_c = \sqrt{F/\sigma}$ $\omega(k) = \sqrt{\frac{kF + k^3}{\sigma}}$ $v = min_k \frac{\omega(k)}{k}$ * Landau criterion (excitation of quasiparticles -ripplons = capillary-gravity waves) ripplon spectrum in deep water $\rho v^2 = \sqrt{F\sigma}$ $k_c = \sqrt{F/\sigma}$

* Thermodynamic (ergoregion) instability criterion

(negative free energy = ergoregion at T=0)

$$\rho v^2 = 2\sqrt{F\sigma}$$

$$k_c = \sqrt{F/\sigma}$$

* Thermodynamic instability criterion

(negative free energy of perturbations)

$$\rho_{sB}(\mathbf{v}_{sB} - \mathbf{v}_n)^2 + \rho_{sA}(\mathbf{v}_{sA} - \mathbf{v}_n)^2 = 2\sqrt{F\sigma}$$

instability is caused by winds of superfluid components with respect to the normal component (or with respect to the container wall at T=0). It occurs even if $\mathbf{v}_{sB} = \mathbf{v}_{sA}$

flapping of sails and flags (Rayleigh)

wind velocity with respect to flag pole is the same on both sides of flexible membrane

* Conventional Landau criterion (applicable for single superfluid liquid only)

$$\omega(\mathbf{k}, \mathbf{v}_s) = \omega(k) + \mathbf{k} \cdot \mathbf{v}_s < 0 \qquad \longrightarrow \qquad \mathbf{v} = \min \ \frac{\omega(k)}{k}$$

* Generalized Landau criterion for two superfluid liquids

Coincides with thermodynamic instability criterion

 $\Gamma \sim T^3$ (Kopnin, 1987)

Ergoregion for ripplons living at the AB-brane in Helsinki experiments

interface between static B-phase and A phase circulating with solid-body velocity $v=\Omega r$ (velocity is shown by arrows)

Relativistic ripplons -- quasiparticles living on brane between two **shallow** superfluids (future experiments, see "The Universe in a Helium Droplet" Oxford 2003)

Artificial black hole for ripplons at AB-brane (radial flow)

Artificial black hole for ripplons within AB-brane (azimuthal flow)

Hawking radiation as tunneling

Hydraulic jump

1. Relativistic ripplons in shallow water

Effective metric for ripplons

$$ds^{2} = -dt^{2} (1 - v^{2}/c^{2}) + dr^{2} \frac{1}{c^{2} - v^{2}} + r^{2} d\phi^{2}$$
 Speed of "light"
$$c^{2} = (F/\rho_{s})h$$

circular hydraulic jump

Courtesy Piotr Pieranski

2. Hydraulic jump as white hole

2

3. Observation of instability in the ergoregion E. Rolley et al. physics/0508200

$$ds^{2} = -dt^{2} \left(1 - \frac{v^{2}}{c^{2}}\right) + dr^{2} \frac{1}{c^{2} - v^{2}} + r^{2} d\phi^{2}$$

Conclusion

- * Ripplons on the surface of liquid or interface between liquids: **best system for simulating event horizon of black & white holes**
- * Thermodynamic instability of interface: analog of vacuum instability in the ergoregion
- * Kelvin-Helmholtz instability of interface: analog of black-hole singularity
- * Lesson for gravity:

vacuum instability in the ergoregion may be the main mechanism of decay of black hole

* Hydraulic jump in superfluids:

first realization of instability of relativistic ergoregion