Scaling of space–time modes with Reynolds number in two-dimensional turbulence

Nicholas Kevlahan

Department of Mathematics & Statistics

McMaster University

18 July 2006
Collaborators

- Jahrul Alam
 McMaster University (PhD student)
- Oleg Vasilyev
 University of Colorado at Boulder
Outline

- **Introduction**
- **Adaptive wavelet numerical simulation**
- **Results**
- **Conclusions**
Intermittency and turbulence

- The active regions of turbulence are distributed inhomogeneously in space and time.
- The active proportion of the flow is believed to decrease with Reynolds number.
- This intermittency is a fundamental property of turbulence.
Intermittency and turbulence

- The active regions of turbulence are distributed inhomogeneously in space and time.
- The active proportion of the flow is believed to decrease with Reynolds number.
- This intermittency is a fundamental property of turbulence.
Intermittency and turbulence

- The active regions of turbulence are distributed inhomogeneously in space and time.
- The active proportion of the flow is believed to decrease with Reynolds number.
- This intermittency is a fundamental property of turbulence.
The active regions of turbulence are distributed inhomogeneously in space and time.

The active proportion of the flow is believed to decrease with Reynolds number.

This intermittency is a fundamental property of turbulence.
DNS of homogeneous isotropic turbulence at $Re_\lambda = 1217$ (Yokokawa et al. 2002). Active regions are intermittent (and fractal?).
Qualitative picture of intermittency

DNS of homogeneous isotropic turbulence at $Re_\lambda = 1217$ (Yokokawa et al. 2002). Active regions are intermittent (and fractal?).
Qualitative picture of intermittency

DNS of homogeneous isotropic turbulence at $Re_\lambda = 1217$ (Yokokawa et al. 2002). Active regions are intermittent (and fractal?).
Qualitative picture of intermittency

DNS of homogeneous isotropic turbulence at $Re_\lambda = 1217$ (Yokokawa et al. 2002). Active regions are intermittent (and fractal?).
Mathematical estimates of number of turbulence modes

- Foias & Prodi (1967) conjectured that solutions of the Navier–Stokes equations are determined uniquely by a finite number of spatial modes.
- Friz & Robinson (2001) proved this conjecture for stationary periodic 2D turbulence.
- Jones & Titi (1993) found an upper bound on the number of spatial Fourier required to represent 2D periodic turbulence of $O(Re^2)$.
- Galdi (2006) extended this result to 3D flow past bluff bodies.
Mathematical estimates of number of turbulence modes

- Foias & Prodi (1967) conjectured that solutions of the Navier–Stokes equations are determined uniquely by a finite number of spatial modes.
- Friz & Robinson (2001) proved this conjecture for stationary periodic 2D turbulence.
- Jones & Titi (1993) found an upper bound on the number of spatial Fourier required to represent 2D periodic turbulence of $O(Re^2)$.
- Galdi (2006) extended this result to 3D flow past bluff bodies.
Mathematical estimates of number of turbulence modes

- Foias & Prodi (1967) conjectured that solutions of the Navier–Stokes equations are determined uniquely by a finite number of spatial modes.
- Friz & Robinson (2001) proved this conjecture for stationary periodic 2D turbulence.
- Jones & Titi (1993) found an upper bound on the number of spatial Fourier required to represent 2D periodic turbulence of $O(Re^2)$.
- Galdi (2006) extended this result to 3D flow past bluff bodies.
Mathematical estimates of number of turbulence modes

- Foisas & Prodi (1967) conjectured that solutions of the Navier–Stokes equations are determined uniquely by a finite number of spatial modes.
- Friz & Robinson (2001) proved this conjecture for stationary periodic 2D turbulence.
- Jones & Titi (1993) found an upper bound on the number of spatial Fourier required to represent 2D periodic turbulence of $O(Re^2)$.
- Galdi (2006) extended this result to 3D flow past bluff bodies.
Mathematical estimates of number of turbulence modes

- Foias & Prodi (1967) conjectured that solutions of the Navier–Stokes equations are determined uniquely by a finite number of spatial modes.
- Friz & Robinson (2001) proved this conjecture for stationary periodic 2D turbulence.
- Jones & Titi (1993) found an upper bound on the number of spatial Fourier required to represent 2D periodic turbulence of $O(\text{Re}^2)$.
- Galdi (2006) extended this result to 3D flow past bluff bodies.
Computational complexity of turbulence simulations

- Assuming homogeneity, the spatial computational complexity of turbulence scales like $Re^{9/4}$ (or Re^1 in 2D).
- Similarly, space–time computational complexity scales like Re^3 (or $Re^{3/2}$ in 2D).
- Yakhot & Sreenivasan recently claimed it is even worse: Re^4.
- However, these estimates ignore intermittency.
Computational complexity of turbulence simulations

- Assuming homogeneity, the spatial computational complexity of turbulence scales like $Re^{9/4}$ (or Re^1 in 2D).
- Similarly, space–time computational complexity scales like Re^3 (or $Re^{3/2}$ in 2D).
- Yakhot & Sreenivasan recently claimed it is even worse: Re^4.
- However, these estimates ignore intermittency.
Computational complexity of turbulence simulations

- Assuming homogeneity, the spatial computational complexity of turbulence scales like $Re^{9/4}$ (or Re^1 in 2D).
- Similarly, space–time computational complexity scales like Re^3 (or $Re^{3/2}$ in 2D).
- Yakhot & Sreenivasan recently claimed it is even worse: Re^4.
- However, these estimates ignore intermittency.
Computational complexity of turbulence simulations

- Assuming homogeneity, the spatial computational complexity of turbulence scales like $Re^{9/4}$ (or Re^1 in 2D).
- Similarly, space–time computational complexity scales like Re^3 (or $Re^{3/2}$ in 2D).
- Yakhot & Sreenivasan recently claimed it is even worse: Re^4.
- However, these estimates ignore intermittency.
Computational complexity of turbulence simulations

- Assuming **homogeneity**, the spatial computational complexity of turbulence scales like $Re^{9/4}$ (or Re^1 in 2D).
- Similarly, **space–time** computational complexity scales like Re^3 (or $Re^{3/2}$ in 2D).
- Yakhot & Sreenivasan recently claimed it is even **worse**: Re^4.
- However, these estimates **ignore** intermittency.
Questions

- What is the actual scaling of spatial degrees of freedom with Reynolds number, Re^β?
- What is the actual scaling of space-time degrees of freedom with Reynolds number, Re^α?
- Is turbulence more intermittent in space or time?
- What is the fractal dimension of the active regions of the flow? (Assuming the β–model.)
Questions

- What is the actual scaling of spatial degrees of freedom with Reynolds number, \(Re^\beta \)?
- What is the actual scaling of space-time degrees of freedom with Reynolds number, \(Re^\alpha \)?
- Is turbulence more intermittent in space or time?
- What is the fractal dimension of the active regions of the flow? (Assuming the \(\beta \)-model.)
Questions

- What is the actual scaling of spatial degrees of freedom with Reynolds number, Re^β?
- What is the actual scaling of space-time degrees of freedom with Reynolds number, Re^α?
- Is turbulence more intermittent in space or time?
- What is the fractal dimension of the active regions of the flow? (Assuming the $\beta-$model.)
Questions

- What is the actual scaling of spatial degrees of freedom with Reynolds number, Re^β?
- What is the actual scaling of space-time degrees of freedom with Reynolds number, Re^α?
- Is turbulence more intermittent in space or time?
- What is the fractal dimension of the active regions of the flow? (Assuming the β–model.)
Questions

▶ What is the actual scaling of spatial degrees of freedom with Reynolds number, Re^β?
▶ What is the actual scaling of space-time degrees of freedom with Reynolds number, Re^α?
▶ Is turbulence more intermittent in space or time?
▶ What is the fractal dimension of the active regions of the flow? (Assuming the β–model.)
Numerical estimation of space-time modes

- Use a simultaneous space–time adaptive wavelet solver.
- Take the number of active space–time wavelet modes as an upper bound on the number of space–time degrees of freedom.
- Consider periodic, unforced, 2D turbulence.
- Perform a sequence of simulations for $1260 \leq Re \leq 40400$.
Numerical estimation of space-time modes

- Use a simultaneous space–time adaptive wavelet solver.
- Take the number of active space–time wavelet modes as an upper bound on the number of space–time degrees of freedom.
- Consider periodic, unforced, 2D turbulence.
- Perform a sequence of simulations for $1260 \leq Re \leq 40400$.
Numerical estimation of space-time modes

- Use a simultaneous space–time adaptive wavelet solver.
- Take the number of active space–time wavelet modes as an upper bound on the number of space–time degrees of freedom.
- Consider periodic, unforced, 2D turbulence.
- Perform a sequence of simulations for $1260 \leq Re \leq 40400$.

Nicholas Kevlahan
McMaster University

Scaling of space–time modes with Reynolds number
Numerical estimation of space-time modes

- Use a simultaneous space–time adaptive wavelet solver.
- Take the number of active space–time wavelet modes as an upper bound on the number of space–time degrees of freedom.
- Consider periodic, unforced, 2D turbulence.
- Perform a sequence of simulations for $1260 \leq \text{Re} \leq 40400$.
Numerical estimation of space-time modes

- Use a simultaneous space–time adaptive wavelet solver.
- Take the number of active space–time wavelet modes as an upper bound on the number of space–time degrees of freedom.
- Consider periodic, unforced, 2D turbulence.
- Perform a sequence of simulations for $1260 \leq Re \leq 40400$.
Why use a wavelet basis for adaptivity?

- High rate of data compression (e.g. jpeg2 2000 image compression).
- Fast $O(N)$ transform.
- Fast signal de-noising (optimal for additive Gaussian noise).
- Easy to control wavelet properties (e.g. smoothness, boundary conditions).
Why use a wavelet basis for adaptivity?

- High rate of data compression (e.g. jpeg2 2000 image compression).
- Fast $O(N)$ transform.
- Fast signal de-noising (optimal for additive Gaussian noise).
- Easy to control wavelet properties (e.g. smoothness, boundary conditions).
Why use a wavelet basis for adaptivity?

- High rate of data **compression** (e.g. jpeg2 2000 image compression).
- Fast $O(N)$ transform.
- Fast signal **de-noising** (optimal for additive Gaussian noise).
- Easy to **control** wavelet properties (e.g. smoothness, boundary conditions).
Why use a wavelet basis for adaptivity?

- High rate of data compression (e.g. jpeg2 2000 image compression).
- Fast $O(N)$ transform.
- Fast signal de-noising (optimal for additive Gaussian noise).
- Easy to control wavelet properties (e.g. smoothness, boundary conditions).
Why use a wavelet basis for adaptivity?

- High rate of data **compression** (e.g. jpeg2 2000 image compression).
- Fast $O(N)$ transform.
- Fast signal **de-noising** (optimal for additive Gaussian noise).
- Easy to **control** wavelet properties (e.g. smoothness, boundary conditions).
Wavelet multiresolution analysis of $L^2(\mathbb{R})$

A sequence of approximation subspaces

$$M = \{ V^j \subset L^2(\mathbb{R}) \mid j \in J \}$$
s.t.

- $V^j \subset V^{j+1}$ (subspaces are nested).
- $\bigcup_{j \in J} V^j$ is dense in $L^2(\mathbb{R})$.
- Each V^j has a Riesz basis of scaling functions $\{ \phi^j_k \mid k \in K^j \}$.
Wavelet multiresolution analysis of $L^2(\mathbb{R})$

A sequence of approximation subspaces
\[M = \{ V^j \subset L^2(\mathbb{R}) \mid j \in J \} \text{ s.t.} \]
- $V^j \subset V^{j+1}$ (subspaces are nested).
- $\bigcup_{j \in J} V^j$ is dense in $L^2(\mathbb{R})$.
- Each V^j has a Riesz basis of scaling functions $\{ \phi^j_k \mid k \in K^j \}$.
Wavelet multiresolution analysis of $L^2(\mathbb{R})$

A sequence of approximation subspaces $\mathbf{M} = \{ V^j \subset L^2(\mathbb{R}) \mid j \in \mathcal{J} \}$ s.t.

- $V^j \subset V^{j+1}$ (subspaces are nested).
- $\bigcup_{j \in \mathcal{J}} V^j$ is dense in $L^2(\mathbb{R})$.
- Each V^j has a Riesz basis of scaling functions $\{ \phi_k^j \mid k \in \mathcal{K}^j \}$.
Wavelet multiresolution analysis of $L^2(\mathbb{R})$

A sequence of approximation subspaces

$\mathbf{M} = \{V^j \subset L^2(\mathbb{R}) \mid j \in \mathcal{J}\}$ s.t.

- $V^j \subset V^{j+1}$ (subspaces are nested).
- $\bigcup_{j \in \mathcal{J}} V^j$ is dense in $L^2(\mathbb{R})$.
- Each V^j has a Riesz basis of scaling functions $\{\phi^j_k \mid k \in \mathcal{K}^j\}$.
Wavelet multiresolution analysis of $L^2(\mathbb{R})$

A sequence of approximation subspaces

$\mathbf{M} = \{ V^j \subset L^2(\mathbb{R}) \mid j \in \mathcal{J} \}$ s.t.

- $V^j \subset V^{j+1}$ (subspaces are nested).
- $\cup_{j \in \mathcal{J}} V^j$ is dense in $L^2(\mathbb{R})$.
- Each V^j has a Riesz basis of scaling functions $\{ \phi^j_k \mid k \in \mathcal{K}^j \}$.

Wavelets ψ^j_k span the complement space W^j, where $V^{j+1} = V^j \oplus W^j$, i.e. wavelet coefficients give the detail.
Nested collocation wavelet grids

Scaling functions are constructed from interpolating polynomials of degree \(2N - 1\) on nested grids:

\[\mathcal{G}^j = \left\{ x_k^j \in \Omega : x_k^j = x_{2k}^{j+1}, \ k \in K^j \right\} \]

Collocation: each scaling function and wavelet is associated to a unique grid point.
Nested collocation wavelet grids

Scaling functions are constructed from interpolating polynomials of degree $2N - 1$ on nested grids:

$$G^j = \left\{ x^j_k \in \Omega : x^j_k = x^{j+1}_{2k}, \ k \in K^j \right\}$$

Collocation: each scaling function and wavelet is associated to a unique grid point.

$$u(x) = \sum_{k \in K^J} u(x^J_k) \phi^J_k(x) = \sum_{k \in K^0} u(x^0_k) \phi^0_k(x) + \sum_{j=0}^{J-1} \sum_{k \in \mathcal{L}^j} d^j_k \psi^j_k(x)$$
Wavelet compression

\[u(x) = \sum_{k \in K^0} u(x_k^0) \phi_k^0(x) + \sum_{j=0}^{+\infty} \sum_{k \in L^j} d_k^j \psi_k^j(x) \]

Function \(u(x) \)

Wavelet locations \(x_k^j \)
Wavelet compression

\[u_{\ge}(x) = \sum_{k \in \mathcal{K}^0} u(x_k^0) \phi_k^0(x) + \sum_{j=0}^{J-1} \sum_{k \in \mathcal{L}^j} d_{k^j}^j \psi_{k^j}(x) \]

\[\sum_{k \in \mathcal{L}^j} |d_{k^j}^j| \ge \epsilon \]

Function \(u(x) \)

Wavelet locations \(x_{k^j} \) \(\epsilon = 10^{-3} \)
Wavelet compression

\[\| u(x) - u_{\geq}(x) \|_2 = O(\epsilon) \]
\[\mathcal{N} = O(\epsilon^{-1/2N}) \]
\[\| u(x) - u_{\geq}(x) \|_2 = O(\mathcal{N}^{-2N}) \]

Function \(u(x) \)

Wavelet locations \(x_k^j \) \(\epsilon = 10^{-3} \)
Space–time adaptive wavelet turbulence calculation

Advantages
Advantages

- Global error control in time.
- Local time step.
- Potentially optimal complexity for highly intermittent problems.
- Number of grid points is an approximation to the number of space–time degrees of freedom in the flow.
Space–time adaptive wavelet turbulence calculation

Advantages

- **Global** error control in time.
 Error grows uncontrollably in classical time marching.
- Local time step.
- Potentially optimal complexity for highly intermittent problems
- Number of grid points is an approximation to the number of space–time degrees of freedom in the flow.
Space–time adaptive wavelet turbulence calculation

Advantages

- **Global** error control in time. Error grows uncontrollably in classical time marching.
- **Local** time step.
- Potentially optimal complexity for highly intermittent problems
- Number of grid points is an approximation to the number of space–time degrees of freedom in the flow.
Space–time adaptive wavelet turbulence calculation

Advantages

- **Global** error control in time.
 Error grows uncontrollably in classical time marching.
- **Local** time step.
- Potentially optimal complexity for highly **intermittent** problems
- Number of grid points is an approximation to the number of space–time degrees of freedom in the flow.
Space–time adaptive wavelet turbulence calculation

Advantages

- **Global** error control in time.
 Error grows uncontrollably in classical time marching.
- **Local** time step.
- Potentially optimal complexity for highly intermittent problems
- Number of **grid points** is an approximation to the number of space–time **degrees of freedom** in the flow.
Numerical method: pseudo BVP in space–time domain

- Add dynamic pseudo boundary condition for long time boundary.
- Use adaptive wavelet multilevel solver with V-cycles for BVP.
- FAS approximation to cope with nonlinear equations.
- Iterate until residual satisfies L_2 norm tolerance.
- Split space–time domain in time direction into manageable slices.
Numerical method: pseudo BVP in space–time domain

- Add dynamic **pseudo boundary condition** for long time boundary.
- Use adaptive wavelet multilevel solver with V-cycles for BVP.
- FAS approximation to cope with nonlinear equations.
- Iterate until residual satisfies L_2 norm tolerance.
- Split space–time domain in time direction into manageable slices.
Numerical method: pseudo BVP in space–time domain

- Add dynamic **pseudo boundary condition** for long time boundary.
- Use **adaptive wavelet multilevel solver** with V-cycles for BVP.
- FAS approximation to cope with **nonlinear** equations.
- Iterate until residual satisfies L_2 norm tolerance.
- Split space–time domain in **time direction** into manageable slices.
Numerical method: pseudo BVP in space–time domain

- Add dynamic *pseudo boundary condition* for long time boundary.
- Use *adaptive wavelet multilevel solver* with V-cycles for BVP.
- *FAS* approximation to cope with *nonlinear* equations.
- Iterate until residual satisfies L_2 norm tolerance.
- Split space–time domain in *time direction* into manageable slices.

Nicholas Kevlahan
McMaster University

Scaling of space–time modes with Reynolds number
Numerical method: pseudo BVP in space–time domain

- Add dynamic pseudo boundary condition for long time boundary.
- Use adaptive wavelet multilevel solver with V-cycles for BVP.
- FAS approximation to cope with nonlinear equations.
- Iterate until residual satisfies L_2 norm tolerance.
- Split space–time domain in time direction into manageable slices.
Numerical method: pseudo BVP in space–time domain

- Add dynamic **pseudo boundary condition** for long time boundary.
- Use **adaptive wavelet multilevel solver** with V-cycles for BVP.
- FAS approximation to cope with **nonlinear** equations.
- **Iterate** until residual satisfies L_2 norm tolerance.
- **Split** space–time domain in **time direction** into manageable slices.
1D+t example: Burgers equation

\[\frac{\partial u}{\partial t} + (U + u)\frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in (-1, 1), \quad t > 0 \]

- **Steepening shock:** \(U = 0, \ u(x, 0) = -\sin(\pi x), \ u(\pm 1, t) = 0. \)
- **Moving shock:** \(U = 1, \ u(x, 0) = -\tanh((x + 1/2)/(2\nu)), \ u(\pm \infty, t) = \mp 1. \)
- **Parameters:** \(\nu = 10^{-2}, \ \epsilon = 10^{-5}. \)
1D+t example: Burgers equation

\[\frac{\partial u}{\partial t} + (U + u) \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in (-1, 1), \quad t > 0 \]

- **Steepening shock:** \(U = 0, \ u(x, 0) = -\sin(\pi x), \ u(\pm 1, t) = 0. \)
- **Moving shock:** \(U = 1, \ u(x, 0) = -\tanh((x + 1/2)/(2\nu)), \ u(\pm\infty, t) = \mp1. \)
- **Parameters:** \(\nu = 10^{-2}, \ \epsilon = 10^{-5}. \)
1D+t example: Burgers equation

\[
\frac{\partial u}{\partial t} + (U + u) \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in (-1, 1), \quad t > 0
\]

- **Steepening shock:** \(U = 0, \ u(x, 0) = -\sin(\pi x), \ u(\pm 1, t) = 0. \)
- **Moving shock:** \(U = 1, \ u(x, 0) = -\tanh((x + 1/2)/(2\nu)), \ u(\pm\infty, t) = \mp1. \)
- **Parameters:** \(\nu = 10^{-2}, \ \epsilon = 10^{-5}. \)
1D+t example: Burgers equation

\[
\frac{\partial u}{\partial t} + (U + u) \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in (-1, 1), \quad t > 0
\]

- **Steepening shock**: $U = 0$, $u(x, 0) = -\sin(\pi x)$, $u(\pm 1, t) = 0$.
- **Moving shock**: $U = 1$, $u(x, 0) = -\tanh((x + 1/2)/(2\nu))$, $u(\pm \infty, t) = \mp 1$.
- **Parameters**: $\nu = 10^{-2}$, $\epsilon = 10^{-5}$.

Nicholas Kevlahan
McMaster University

Scaling of space–time modes with Reynolds number
Burgers equation: steepening shock

Solution

Grid

Adapted grid

Scaling of space–time modes with Reynolds number
Burgers equation: moving shock

Solution and adapted grid for the Burgers equation at different times.
Burgers equation: time integration error

Global error in time

Comparison with time marching

Nicholas Kevlahan
McMaster University

Scaling of space–time modes with Reynolds number
2D decaying turbulence simulations

<table>
<thead>
<tr>
<th>Run</th>
<th>Re</th>
<th>Resolution</th>
<th>Δx</th>
<th>λ</th>
<th>Re$_\lambda$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1260</td>
<td>192 × 192</td>
<td>3.3×10^{-2}</td>
<td>1.1×10^{-1}</td>
<td>138</td>
</tr>
<tr>
<td>II</td>
<td>2530</td>
<td>192 × 192</td>
<td>3.3×10^{-2}</td>
<td>8.3×10^{-2}</td>
<td>195</td>
</tr>
<tr>
<td>III</td>
<td>5050</td>
<td>192 × 192</td>
<td>3.3×10^{-2}</td>
<td>5.9×10^{-2}</td>
<td>275</td>
</tr>
<tr>
<td>IV</td>
<td>10100</td>
<td>256 × 256</td>
<td>2.5×10^{-2}</td>
<td>4.1×10^{-2}</td>
<td>389</td>
</tr>
<tr>
<td>V</td>
<td>20200</td>
<td>384 × 384</td>
<td>1.6×10^{-2}</td>
<td>2.9×10^{-2}</td>
<td>551</td>
</tr>
<tr>
<td>VI</td>
<td>40400</td>
<td>512 × 512</td>
<td>1.2×10^{-2}</td>
<td>2.0×10^{-2}</td>
<td>779</td>
</tr>
</tbody>
</table>

Table: Parameters for space–time turbulence simulations.
2D decaying turbulence simulations

<table>
<thead>
<tr>
<th>Run</th>
<th>Re</th>
<th>Resolution</th>
<th>Δx</th>
<th>λ</th>
<th>Re_λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1260</td>
<td>192 × 192</td>
<td>3.3×10^{-2}</td>
<td>1.1×10^{-1}</td>
<td>138</td>
</tr>
<tr>
<td>II</td>
<td>2530</td>
<td>192 × 192</td>
<td>3.3×10^{-2}</td>
<td>8.3×10^{-2}</td>
<td>195</td>
</tr>
<tr>
<td>III</td>
<td>5050</td>
<td>192 × 192</td>
<td>3.3×10^{-2}</td>
<td>5.9×10^{-2}</td>
<td>275</td>
</tr>
<tr>
<td>IV</td>
<td>10100</td>
<td>256 × 256</td>
<td>2.5×10^{-2}</td>
<td>4.1×10^{-2}</td>
<td>389</td>
</tr>
<tr>
<td>V</td>
<td>20200</td>
<td>384 × 384</td>
<td>1.6×10^{-2}</td>
<td>2.9×10^{-2}</td>
<td>551</td>
</tr>
<tr>
<td>VI</td>
<td>40400</td>
<td>512 × 512</td>
<td>1.2×10^{-2}</td>
<td>2.0×10^{-2}</td>
<td>779</td>
</tr>
</tbody>
</table>

Table: Parameters for space–time turbulence simulations.

Comparison simulations were also done using a standard pseudo-spectral code, and time marching adaptive wavelet simulations were done to estimate the number of spatial degrees of freedom.
$Re = 40 \, 400$ simulation, $t = [0, 400]$
$Re = 40\ 400$ simulation, $t = [21, 128]$
Vorticity field at $Re = 40400$

7895 wavelet modes
263,169 Fourier modes
Energy spectrum
Vorticity at $t = 126$

$Re = 1260$

$Re = 2530$

$Re = 5050$

$Re = 10100$

$Re = 20200$

$Re = 40400$
Adaptive wavelet grids at $Re = 40\,400$

(a) $t \in [0, 2.1]$
(b) $t \in [123.8, 126.0]$
(c) Spatial grid only at $t = 126.0$
Adaptive wavelet grids at $Re = 40\,400$

(a) $t \in [0, 2.1]$
(b) $t \in [123.8, 126.0]$
(c) Spatial grid only at $t = 126.0$

Note the strong time intermittency of the solution: the smallest time step is strongly localized in space.
Scaling of modes with Reynolds number

Space–time

Space only
Scaling of modes with Reynolds number

Note that intermittency reduces the number of modes significantly compared with the usual computational estimates.
The β-model for two-dimensional turbulence implies that the spatial modes should scale like $N \sim \text{Re}^{\frac{3D_F}{D_F+4}}$.
The β-model for two-dimensional turbulence implies that the spatial modes should scale like $\mathcal{N} \sim \text{Re}^{\frac{3D_F}{D_F + 4}}$.
The β-model for two-dimensional turbulence implies that the spatial modes should scale like $N \sim \text{Re}^{\frac{3D_F}{D_F+4}}$.

- **Spatial fractal dimension** is $D_F \approx 1.2$
The β-model for two-dimensional turbulence implies that the spatial modes should scale like $N \sim \text{Re}^{\frac{3D_F}{D_F+4}}$.

- Spatial fractal dimension is $D_F \approx 1.2$
- A simple extension gives a temporal fractal dimension $D_F \approx 0.3$
The \(\beta \)-model for two-dimensional turbulence implies that the spatial modes should scale like
\[N \sim \text{Re}^{\frac{3D_F}{D_F+4}}. \]

- **Spatial** fractal dimension is \(D_F \approx 1.2 \)
- A simple extension gives a **temporal** fractal dimension \(D_F \approx 0.3 \)
- Flow appears to be much more intermittent in time
The β-model for two-dimensional turbulence implies that the spatial modes should scale like $N \sim Re^{\frac{3D_F}{D_F+4}}$.

- Spatial fractal dimension is $D_F \approx 1.2$
- A simple extension gives a temporal fractal dimension $D_F \approx 0.3$
- Flow appears to be much more intermittent in time

Assumes that the active proportion of the flow decreases like lengthscale to the power $D - D_F$.
Conclusions

- Spatial modes scale like $Re^{0.7}$
- Space–time modes scale like $Re^{0.9}$
- Spatial fractal dimension of active regions is 1.2
- Temporal fractal dimension is 0.3
- 2D turbulence is more intermittent than previously thought
Conclusions

- **Spatial** modes scale like $\text{Re}^{0.7}$

- **Space–time** modes scale like $\text{Re}^{0.9}$

- **Spatial** fractal dimension of active regions is 1.2

- **Temporal** fractal dimension is 0.3

- 2D turbulence is more intermittent than previously thought
Conclusions

- **Spatial** modes scale like $Re^{0.7}$
 (compared with homogeneous estimate Re^1)
- **Space–time** modes scale like $Re^{0.9}$
- Spatial fractal dimension of active regions is **1.2**
- Temporal fractal dimension is **0.3**
- 2D turbulence is more intermittent than previously thought
Conclusions

- **Spatial** modes scale like $Re^{0.7}$
 (compared with homogeneous estimate Re^1)
- **Space–time** modes scale like $Re^{0.9}$

- Spatial fractal dimension of active regions is 1.2
- Temporal fractal dimension is 0.3
- 2D turbulence is more intermittent than previously thought
Conclusions

- **Spatial** modes scale like $Re^{0.7}$
 (compared with homogeneous estimate Re^1)
- **Space–time** modes scale like $Re^{0.9}$
 (compared with homogeneous estimate $Re^{1.5}$)
- Spatial fractal dimension of active regions is **1.2**
- Temporal fractal dimension is **0.3**
- 2D turbulence is more intermittent than previously thought
Conclusions

- **Spatial** modes scale like $Re^{0.7}$
 (compared with homogeneous estimate Re^1)
- **Space–time** modes scale like $Re^{0.9}$
 (compared with homogeneous estimate $Re^{1.5}$)
- **Spatial fractal** dimension of active regions is **1.2**
- Temporal fractal dimension is **0.3**
- 2D turbulence is more intermittent than previously thought
Conclusions

- **Spatial** modes scale like $\text{Re}^{0.7}$
 (compared with homogeneous estimate Re^{1})
- **Space–time** modes scale like $\text{Re}^{0.9}$
 (compared with homogeneous estimate $\text{Re}^{1.5}$)
- **Spatial** fractal dimension of active regions is 1.2
- **Temporal** fractal dimension is 0.3
- 2D turbulence is more intermittent than previously thought
Conclusions

- **Spatial** modes scale like $Re^{0.7}$
 (compared with homogeneous estimate Re^1)
- **Space–time** modes scale like $Re^{0.9}$
 (compared with homogeneous estimate $Re^{1.5}$)
- **Spatial fractal** dimension of active regions is 1.2
- **Temporal fractal** dimension is 0.3
- 2D turbulence is more intermittent than previously thought
Conclusions

- **Spatial** modes scale like $Re^{0.7}$
 (compared with homogeneous estimate Re^1)
- **Space–time** modes scale like $Re^{0.9}$
 (compared with homogeneous estimate $Re^{1.5}$)
- Spatial **fractal** dimension of active regions is 1.2
- Temporal **fractal** dimension is 0.3
- 2D turbulence is *more intermittent* than previously thought

This is the first quantitative estimate of the Reynolds number dependence of the space–time intermittency of turbulence