Exercises for the Warwick course on "Soluble models of turbulent transport"

Krzysztof Gawędzki

July 7, 2006

Exercise session I

Problem I.1. To recall the basic formalism of the stochastic ODE's, consider the equation for the noisy Lagrangian trajectory $\mathbf{R}(t)$ in a given smooth d-dimensional velocity field:

$$d\mathbf{R} = \mathbf{v}(t, \mathbf{r}) dt + \sqrt{2\kappa} d\boldsymbol{\beta}(t)$$
 (1.1)

where $\beta(t)$ is the *d* dimensional Brownian motion. $\beta(t) = \int_{-t}^{t} \eta(s) ds$ where $\eta(t)$ is the white noise: a Gaussian (generalized) process with mean zero and covariance

$$\overline{\eta^i(t)\,\eta^j(t')} \,=\, \delta^{ij}\,\delta(t-t')\,. \tag{1.2}$$

Eq. (1.1) does not require a choice of convention (why?) but for any regular function f, the composed process $f(\mathbf{R}(t))$ satisfies the Ito stochastic ODE

$$d f(\mathbf{R}) = (\nabla_i f)(\mathbf{R}) \left[v^i(t, \mathbf{R}) dt + \sqrt{2\kappa} \beta^i(t) \right] + \kappa (\nabla^2 f)(\mathbf{R}) dt$$
 (1.3)

or the Stratonovich one without the last (Ito) term:

$$df(\mathbf{R}) = (\nabla_i f)(\mathbf{R}) \left[v^i(t, \mathbf{R}) dt + \sqrt{2\kappa} \circ d\beta^i(t) \right]. \tag{1.4}$$

Problem I.2. Show that if $\mathbf{R}(t; t_0, \mathbf{r}_0)$ solves the stochastic ODE (1.1) with the condition $\mathbf{R}(t_0; t_0, \mathbf{r}_0) = \mathbf{r}_0$ then

$$n(t, \mathbf{r}) = \int \overline{\delta(\mathbf{r} - \mathbf{R}(t; t_0, \mathbf{r}_0))} n(t_0, \mathbf{r}_0) d\mathbf{r}_0, \qquad (1.5)$$

where the overline denotes the average over the white noise η , solves the density transport equation:

$$\partial_t n + \boldsymbol{\nabla} \cdot (n\boldsymbol{v}) - \kappa \boldsymbol{\nabla}^2 n = 0. \tag{1.6}$$

Problem I.3. With the same notations, show that

$$\theta(t, \mathbf{r}) = \int \overline{\delta(\mathbf{r}_0 - \mathbf{R}(t_0; t, \mathbf{r}))} \ \theta(t_0, \mathbf{r}_0) \, d\mathbf{r}_0 = \overline{\theta(t_0, \mathbf{R}(t_0; t; \mathbf{r}))}$$
(1.7)

satisfies the scalar transport equation:

$$\partial_t \theta + \boldsymbol{v} \cdot \boldsymbol{\nabla} \theta - \kappa \boldsymbol{\nabla}^2 \theta = 0. \tag{1.8}$$

Problem I.4. For $W_j^i(t;t_0,\boldsymbol{r}_0)=\frac{\partial}{\partial r_0^j}R^i(t;t_0,\boldsymbol{r}_0)$, show that

$$\boldsymbol{B}(t,\boldsymbol{r}) = \int \overline{\delta(\boldsymbol{r} - \boldsymbol{R}(t;t_0,\boldsymbol{r}_0)) W(t;t_0\boldsymbol{r}_0)} \boldsymbol{B}(t_0,\boldsymbol{r}_0) d\boldsymbol{r}_0$$
(1.9)

solves equation for the magnetic field transport:

$$\partial_t \mathbf{B} + (\mathbf{v} \cdot \nabla) \mathbf{B} + (\nabla \cdot \mathbf{v}) \mathbf{B} - (\mathbf{B} \cdot \nabla) \mathbf{v} - \kappa \nabla^2 \mathbf{B} = 0. \tag{1.10}$$

Exercise session II

Problem II.1. Show that the stochastic ODE for the Lagrangian trajectories

$$d\mathbf{R} = \mathbf{v}(t, \mathbf{R}) dt \tag{2.1}$$

in the Kraichnan model (white noise in time) velocities \boldsymbol{v} is the same with the Ito and Stratonovich conventions.

Problem II.2a. Show that the stochastic ODE for the infinitesimal separation of the Lagrangian trajectories

$$d \,\delta \mathbf{R} = (\delta \mathbf{R} \cdot \nabla) \mathbf{v}(t, \mathbf{R}(t)) \, dt \qquad (2.2)$$

where $\mathbf{R}(t)$ solves Eq. (2.1), is the same with the Ito and Stratonovich convention.

II.2b. Show that for the stochastic equation

$$d\,\delta\boldsymbol{R} = S(t)\,\delta\boldsymbol{R}\,dt \tag{2.3}$$

for the matrix-valued white noise S(t) with the covariance

$$\left\langle S_{k}^{i}(t) S_{l}^{j}(t') \right\rangle = -\delta(t - t') \nabla_{k} \nabla_{l} D^{ij}(\mathbf{0}) \equiv \delta(t - t') C_{kl}^{ij}$$
(2.4)

the Ito and Stratonowich conventions do not coincide, in general.

Problem II.3. Find the probability distribution function $\left\langle \delta(\Delta - \Delta(t; \Delta_0)) \right\rangle$ of the length of the infinitesimal separation $|\delta \boldsymbol{R}(t)| \equiv \Delta(t)$ in the isotropic Kraichnan model with

$$C_{kl}^{ij} = \beta(\delta_k^i \, \delta_l^j + \delta_l^i \, \delta_k^j) + \gamma \, \delta^{ij} \, \delta_{kl} \,. \tag{2.5}$$

Extract from the result the value of the top Lyapunov exponent.

Problem II.4. Show that

$$\lim_{\Delta_0 \to 0} \left\langle \delta(\Delta - \Delta(t; \Delta_0)) \right\rangle = \delta(\Delta), \qquad (2.6)$$

where Δ_0 is the time zero value of $\Delta(t)$.

Exercise session III

Problem III.1. Prove that if W(t) satisfies the multiplicative Ito stochastic ODE

$$dW = S(t) dt (3.1)$$

where S(t) is the matrix-valued white noise with the covariance given by Eqs. (2.4) and (2.5) above then

$$\frac{d}{dt} \langle f(W) \rangle = \langle (\mathcal{L}f)(W) \rangle \tag{3.2}$$

where

$$\mathcal{L} = \frac{\beta}{2} \sum_{ij} \mathcal{E}_i^{\ j} \mathcal{E}_j^{\ i} + \frac{\gamma}{2} \sum_{ij} (\mathcal{E}_i^{\ j})^2 + \frac{\beta}{2} \mathcal{D}^2 - \frac{(d+1)\beta + \gamma}{2} \mathcal{D}$$
 (3.3)

where $\mathcal{E}_{i}^{\ j}$ are the generators of the left action of the Lie algebra gl(d):

$$(\mathcal{E}_i^{\ j} f)(W) = \frac{d}{d\epsilon} \Big|_{0} f(e^{-\epsilon E_i^{\ j}} W) \tag{3.4}$$

for E_i^j denoting the matrices with 1 on the intersection of the *i*-th raw and *j*-th column and zeros elsewhere and where CD is the generator of dilations:

$$(\mathcal{D}f)(W) = \frac{d}{d\epsilon} \Big|_{0} f(e^{\epsilon}W). \tag{3.5}$$

Problem III.2. Show that if

$$f(W) = f(O'WO) (3.6)$$

for all $O, O' \in O(d)$ defining a function $\widetilde{f}(\boldsymbol{\rho})$ of the exponents $\rho_1, \dots \rho_d$ such that $W = O' \operatorname{diag}[e^{\rho_1}, \dots, e^{\rho_d}] O$ then

$$(\mathcal{L}f)(W) = \left[\frac{\beta + \gamma}{2} \left(\sum_{i=1}^{d} \frac{\partial^{2}}{\partial \rho_{i}^{2}} + \sum_{i \neq j} \coth(\rho_{i} - \rho_{j}) \frac{\partial}{\partial \rho_{i}}\right) + \frac{\beta}{2} \left(\sum_{i} \frac{\partial}{\partial \rho_{i}}\right)^{2} - \frac{(d+1)\beta + \gamma}{2} \sum_{i} \frac{\partial}{\partial \rho_{i}}\right] \widetilde{f}(\boldsymbol{\rho}).$$
(3.7)

Problem III.3 (for volunteers). Show that for

$$\mathcal{F}(\boldsymbol{\rho}) = e^{-\sum_{i} \rho_{i}/2} \left(\prod_{i < j} \sinh(\rho_{i} - \rho_{j}) \right)^{1/2}, \tag{3.8}$$

in the action on functions $\widetilde{f}(\boldsymbol{\rho})$,

$$-\mathcal{H}_{CM} \equiv \mathcal{F} \mathcal{L} \mathcal{F}^{-1} = \frac{\beta + \gamma}{2} \left(\sum_{i=1}^{d} \frac{\partial^{2}}{\partial \rho_{i}^{2}} + \frac{1}{2} \sum_{i < j} \sinh^{-2}(\rho_{i} - \rho_{j}) \right) + \frac{\beta}{2} \left(\sum_{i} \frac{\partial}{\partial \rho_{i}} \right)^{2} - \text{const.}$$
(3.9)

Calculate the constant. What is the bottom of the spectrum of the resulting Calogero-Moser Hamiltonian \mathcal{H}_{CM} ?