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Abstract

This is a short course on developed turbulence, weak and strong. The main emphasis is on

fundamental properties like universality and symmetries. Two main notions are explained: i)

fluxes of dynamical integrals of motion, ii) statistical integrals of motion.
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I. INTRODUCTION

Turbulence is a state of a physical system with many interacting degrees of freedom

deviated far from equilibrium. This state is irregular both in time and in space. Turbulence

can be maintained by some external influence or it can be decaying turbulence on the way

of relaxation to equilibrium. As the term suggests, it first appeared in fluid mechanics and

was later generalized for far-from-equilibrium states in solids and plasma. For example,

obstacle of size L placed into fluid moving with velocity V provides for a turbulent wake if

the Reynolds number is large: Re = V L/ν À 1. Here ν is the kinematic viscosity. At large

Re, flow perturbations produced at the scale L have their viscous dissipation small compared

to the nonlinear effects. Nonlinearity produces motions of smaller and smaller scales until

viscous dissipation stops this at a scale much smaller than L so that there is a wide (so-

called inertial) interval of scales where viscosity is negligible and nonlinearity dominates.

Another example is the system of waves excited on a fluid surface by wind or moving bodies

and in plasma and solids by external electromagnetic fields. The state of such system is

called wave turbulence when the wavelength of the waves excited strongly differs from the

wavelength of the waves that effectively dissipate. Nonlinear interaction excites waves in

the interval of wavelengths (called transparency window or inertial interval) between the

injection and dissipation scales. The ensuing complicated and irregular dynamics calls for a

statistical description based over averaging either over regions of space or intervals of time.

Here we focus on a single-time statistics of steady turbulence that is on the spatial structure

of fluctuations. Because of the conceptual simplicity of the inertial range, it is natural to

ask if our expectation of universality—that is, freedom from the details of external forcing

and internal friction—is true at the level of a physical law. Another facet of the universality

problem concerns features that are common to different turbulent systems. This quest

for universality is motivated by the hope of being able to distinguish general principles

that govern far-from-equilibrium systems, similar in scope to the variational principles that

govern thermal equilibrium.

Constraints on dynamics are imposed by conservation laws, and therefore conserved quan-

tities must play an essential role in turbulence. The conservation laws are broken by pumping

and dissipation, but both factors do not act in the inertial interval. For example, in the in-

compressible turbulence, the kinetic energy is pumped by external forcing and is dissipated
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by viscosity. According to the idea suggested by Richardson in 1921, the kinetic energy

flows throughout the inertial interval of scales in a cascade-like process. The cascade idea

explains the basic macroscopic manifestation of turbulence: the rate of dissipation of the

dynamical integral of motion has a finite limit when the dissipation coefficient tends to zero.

For example, the mean rate of the viscous energy dissipation does not depend on viscosity

at large Reynolds numbers. That means that a symmetry of the inviscid equation (here,

time-reversal invariance) is broken by the presence of the viscous term, even though the

latter might have been expected to become negligible in the limit Re →∞.

The cascade idea fixes only the mean flux of the respective integral of motion demanding

it to be constant across the inertial interval of scales. We shall see that flux constancy

determines the system completely only for weakly nonlinear system (where the statistics is

close to Gaussian). To describe an entire turbulence statistics of strongly interacting systems,

one has to solve problems on a case-by-case basis with most cases still unsolved. Particularly

difficult (and interesting) are the cases with broken scale invariance where knowledge of flux

does not allow one to predict even the order of magnitude of high moments. We describe

the new concept of statistical integrals of motion which allows for the description of system

with broken scale invariance. We also describe situations when not only scale invariance is

restored but a wider conformal invariance takes place in the inertial interval.

II. WEAK WAVE TURBULENCE

From a theoretical point of view, the simplest case is the turbulence of weakly interacting

waves. Examples include waves on the water surface, waves in plasma with and without

magnetic field, spin waves in magnetics. We assume spatial homogeneity and denote ak the

amplitude of the wave with the wavevector k. When the amplitude is small, it satisfies the

linear equation

∂ak/∂t = −iωkak + fk(t)− γkak . (1)

Here the dispersion law ωk describes wave propagation, γk is the decrement of linear damp-

ing and fk describes pumping. For the linear system, ak is different from zero only in the

regions of k-space where fk is nonzero. To describe wave turbulence that involves wavenum-

bers outside the pumping region, one must account for the interaction between different

waves. Considering for a moment wave system as closed (that is without external pumping

4



and dissipation) one can describe it as a Hamiltonian system using wave amplitudes as nor-

mal canonical variables — see, for instance, the monograph [1]. At small amplitudes, the

Hamiltonian can be written as an expansion over ak, where the second-order term describes

non-interacting waves and high-order terms determine the interaction:

H =
∫

ωk|ak|2 dk (2)

+
∫ (

V123a1a
∗
2a
∗
3 + c.c.

)
δ(k1 − k2 − k3) dk1dk2dk3 + O(a4) .

Here V123 = V (k1,k2,k3) is the interaction vertex and c.c. means complex conjugation. In

the Hamiltonian expansion, we presume every subsequent term smaller than the previous

one, in particular, ξk = |Vkkkak|kd/ωk ¿ 1 — wave turbulence that satisfies that condition

is called weak turbulence. Here d is space dimensionality which can be 1, 2 or 3.

The dynamic equation which accounts for pumping, damping, wave propagation and

interaction has thus the following form:

∂ak/∂t = −iδH/δa∗k + fk(t)− γkak . (3)

It is likely that the statistics of the weak turbulence at k À kf is close to Gaussian for wide

classes of pumping statistics (that has not been shown rigorously though). This is definitely

the case for the random force with the statistics not very much different from Gaussian. We

consider here and below a pumping by a Gaussian random force statistically isotropic and

homogeneous in space, and white in time:

〈fk(t)f
∗
k′(t

′)〉 = F (k)δ(k + k′)δ(t− t′) . (4)

Angular brackets mean spatial average. We assume γk ¿ ωk (for waves to be well defined)

and that F (k) is nonzero only around some kf .

Since the dynamic equation (3) contains a quadratic nonlinearity then the statistical

description in terms of moments encounters the closure problem: the time derivative of the

second moment is expressed via the third one, the time derivative of the third moment ix

expressed via the fourth one etc. Fortunately, weak turbulence in the inertial interval is

expected to have the statistics close to Gaussian so one can express the fourth moment as

the product of two second ones. As a result one gets a closed equation for the single-time

pair correlation function [1] 〈aka
∗
k′〉 = nkδ(k + k′)

∂nk

∂t
= Fk − γknk + I

(3)
k , I

(3)
k =

∫
(Uk12 − U1k2 − U2k1) dk1dk2 , (5)

U123 = π[n2n3 − n1(n2 + n3)]|V123|2δ(k1 − k2 − k3)δ(ω1 − ω2 − ω3) .

5



It is called kinetic equation for waves. The collision integral I
(3)
k results from the cubic

terms in the Hamiltonian i.e. from the quadratic terms in the equations for amplitudes. It

can be interpreted as describing three-wave interactions: the first term in the integral (5)

corresponds to a decay of a given wave while the second and third ones to a confluence with

other wave.

One can estimate from (5) the inverse time of nonlinear interaction at a given k as

|V (k, k, k)|2n(k)kd/ω(k). We define kd as the wavenumber where this inverse time is com-

parable to γ(k) and assume nonlinearity to dominate over dissipation at k ¿ kd. As has

been noted, wave turbulence appears when there is a wide (inertial) interval of scales where

both pumping and damping are negligible, which requires kd À kf , the condition analogous

to Re À 1. This is schematically shown in Fig. 1.

F

P

k

k

k γk

inertial interval

n k

k

FIG. 1: A schematic picture of the cascade.

The presence of frequency delta-function in I
(3)
k means that in the first order of pertur-

bation theory in wave interaction we account only for resonant processes which conserve

the quadratic part of the energy E =
∫

ωknk dk =
∫

Ekdk. For the cascade picture to be

valid, the collision integral has to converge in the inertial interval which means that energy

exchange is small between motions of vastly different scales, the property called interaction

locality in k-space. Consider now a statistical steady state established under the action of

pumping and dissipation. Let us multiply (5) by ωk and integrate it over either interior

or exterior of the ball with radius k. Taking kf ¿ k ¿ kd, one sees that the energy flux

through any spherical surface (Ω is a solid angle), is constant in the inertial interval and is
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equal to the energy production/dissipation rate ε:

Pk =
∫ k

0
kd−1dk

∫
dΩ ωkI

(3)
k =

∫
ωkFk dk =

∫
γkEk dk = ε . (6)

That (integral) equation determines nk. Let us assume now that the medium (char-

acterized by the Hamiltonian coefficients) can be considered isotropic at the scales in the

inertial interval. In addition, for scales much larger or much smaller than a typical scale (like

Debye radius in plasma or the depth of the water) the medium is usually scale invariant:

ω(k) = ckα and |V (k,k1,k2)|2 = V 2
0 k2mχ(k1/k,k2/k) with χ ' 1. Remind that we pre-

sumed statistically isotropic force. In this case, the pair correlation function that describes

a steady cascade is also isotropic and scale invariant:

nk ' ε1/2V −1
0 k−m−d . (7)

One can show that (7), called Zakharov spectrum, turns I
(3)
k into zero [1].

If the dispersion relation ω(k) does not allow for the resonance condition ω(k1)+ω(k2) =

ω(|k1 + k2|) then the three-wave collision integral is zero and one has to account for four-

wave scattering which is always resonant, that is whatever ω(k) one can always find four

wavevectors that satisfy ω(k1) + ω(k2) = ω(k3) + ω(k4) and k1 +k2 = k3 +k4. The collision

integral that describes scattering,

I
(4)
k =

π

2

∫
|Tk123|2[n2n3(n1 + nk)− n1nk(n2 + n3)]δ(k + k1 − k2 − k3)

×δ(ωk + ω1 − ω2 − ω2) dk1dk2dk3 , (8)

conserves the energy and the wave action N =
∫

nk dk (the number of waves). Pumping

generally provides for an input of both E and N . If there are two inertial intervals (at

k À kf and k ¿ kf ), then there should be two cascades. Indeed, if ω(k) grows with k then

absorbing finite amount of E at kd →∞ corresponds to an absorption of an infinitely small

N . It is thus clear that the flux of N has to go in opposite direction that is to large scales.

A so-called inverse cascade with the constant flux of N can thus be realized at k ¿ kf . A

sink at small k can be provided by wall friction in the container or by long waves leaving

the turbulent region in open spaces (like in sea storms). The collision integral I
(3)
k involves

products of two nk so that flux constancy requires Ek ∝ ε1/2 while for the four-wave case

I
(4)
k ∝ n3 gives Ek ∝ ε1/3. In many cases (when there is a complete self-similarity) that

knowledge is sufficient to obtain the scaling of Ek from a dimensional reasoning without
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actually calculating V and T . For example, short waves on a deep water are characterized

by the surface tension σ and density ρ so the dispersion relation must be ωk ∼
√

σk3/ρ which

allows for the three-wave resonance and thus Ek ∼ ε1/2(ρσ)1/4k−7/4. For long waves on a deep

water, the surface-restoring force is dominated by gravity so that the gravity acceleration g

replaces σ as a defining parameter and ωk ∼
√

gk. Such dispersion law does not allow for the

three-wave resonance so that the dominant interaction is four-wave scattering which permits

two cascades. The direct energy cascade corresponds to Ek ∼ ε1/3ρ2/3g1/2k−5/2. The inverse

cascade carries the flux of N which we denote Q, it has the dimensionality [Q] = [ε]/[ωk]

and corresponds to Ek ∼ Q1/3ρ2/3g2/3k−7/3.

k

k

n

N E

N E

FIG. 2: Two cascades under four-wave interaction.

Since the statistics of weak turbulence is near Gaussian, it is completely determined by

the pair correlation function, which is in turn determined by the respective flux. We thus

conclude that weak turbulence is universal in the inertial interval.

8



Problem 1.

Show that (7) turns I
(3)
k into zero and satisfies (6). Show that the sign of the flux is given

by the derivative of the collision integral with respect to the power of the spectrum.

Problem 2.

A general equilibrium solution of I
(3)
k = 0 depends on the energy and the momentum of

the wave system: n(k, T,u) = T [ωk − (k · u)]−1 (Doppler-shifted Rayleigh-Jeans distribu-

tion). A general non-equilibrium solution depends on the fluxes P and R of the energy and

momentum respectively. Find the form of the weakly anisotropic correction to the isotropic

Zakharov spectrum. Show that the ratio

δn(k)/n0(k) ∝ ω(k)/k

i.e. increases with k for waves with the decay dispersion law. That is the spectrum of the

weak turbulence generated by weakly anisotropic pumping is getting more anisotropic as we

go into the inertial interval of scales. We see that the conservation of the second integral

(momentum) can lead to the non-restoration of symmetry (isotropy) in the inertial interval.

Open problem: It is reasonable to believe that when the forcing fk(t) is Gaussian then

the statistics of ak(t) is close to Gaussian as long as nonlinearity is weak. However, in most

cases in nature and in the lab, the force is not Gaussian even though its amplitude can

be small. Under what conditions the wave field is close to Gaussian with 〈ak(0)a∗k′(t)〉 =

nk exp(−ıωkt)δ(k + k′) so that we can use the kinetic equation? This problem actually

breaks into two parts. The first one is to solve the linear equation for the waves in the

spectral interval of pumping and formulate the criteria on the forcing that guarantee that

the cumulants are small for ak(t) = exp(−ıωkt−γkt)
∫ t
0 fk(t

′) exp(ıωkt+γkt) dt′. The second

part is more interesting: even when the pumping-related waves are non-Gaussian, it may

well be that as we go in k-space away from pumping (into the inertial interval) the field

ak(t) is getting more Gaussian. Unless we indeed show that, most of the applications of the

weak turbulence to the real world are in doubt.
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III. STRONG WAVE TURBULENCE

One cannot treat wave turbulence as a set of weakly interacting waves when the wave

amplitudes are big enough (so that ξk ≥ 1) and also in the particular case of linear (acoustic)

dispersion relation ω(k) = ck for arbitrarily small amplitudes. Indeed, there is no dispersion

of wave velocity for acoustic waves so that waves moving at the same direction interact

strongly and produce shock waves when viscosity is small. Formally, there is a singularity

due to coinciding arguments of delta-functions in (5) (and in the higher terms of perturbation

expansion for ∂nk/∂t), which is thus invalid at however small amplitudes. Still, some features

of the statistics of acoustic turbulence can be understood even without closed description.

We discuss that in a one-dimensional case which pertains, for instance, to sound propagating

in long pipes. Since weak shocks are stable with respect to transversal perturbations [2],

quasi one-dimensional perturbations may propagate in 2d and 3d as well. In the reference

moving with the sound velocity, the weakly compressible 1d flows (u ¿ c) are described by

the Burgers equation [2–4]

ut + uux − νuxx = 0 . (9)

Burgers equation has a propagating shock-wave solution u=2v{1+exp[v(x−vt)/ν]}−1 with

the energy dissipation rate ν
∫

u2
x dx independent of ν. The shock width ν/v is a dissipative

scale and we consider acoustic turbulence produced by a pumping correlated on much larger

scales (for example, pumping a pipe from one end by frequencies much less than cv/ν).

After some time, it will develop shocks at random positions. Here we consider the single-

time statistics of the Galilean invariant velocity difference δu(x, t) = u(x, t) − u(0, t). The

moments of δu are called structure functions Sn(x, t) = 〈[u(x, t) − u(0, t)]n〉. Quadratic

nonlinearity relates the time derivative of the second moment to the third one:

∂S2

∂t
= −∂S3

3∂x
− 4ε + ν

∂2S2

∂x2
. (10)

Here ε = ν〈u2
x〉 is the mean energy dissipation rate. Equation (10) describes both a free

decay (then ε depends on t) and the case of a permanently acting pumping which generates

turbulence statistically steady at scales less than the pumping length. In the first case,

∂S2/∂t ' S2u/L ¿ ε ' u3/L (where L is a typical distance between shocks) while in the

second case ∂S2/∂t = 0 so that S3 = 12εx + ν∂S2/∂x.

Consider now limit ν → 0 at fixed x (and t for decaying turbulence). Shock dissipation
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provides for a finite limit of ε at ν → 0 then

S3 = −12εx . (11)

This formula is a direct analog of (6). Indeed, the Fourier transform of (10) describes the

energy density Ek = 〈|uk|2〉/2 which satisfies the equation (∂t − νk2)Ek = −∂Pk/∂k where

the k-space flux

Pk =
∫ k

0
dk′

∫ ∞

−∞
dxS3(x)k′ sin(k′x)/24 .

It is thus the flux constancy that fixes S3(x) which is universal that is determined solely

by ε and depends neither on the initial statistics for decay nor on the pumping for steady

turbulence. On the contrary, other structure functions Sn(x) are not given by (εx)n/3.

Indeed, the scaling of the structure functions can be readily understood for any dilute set

of shocks (that is when shocks do not cluster in space) which seems to be the case both

for smooth initial conditions and large-scale pumping in Burgers turbulence. In this case,

Sn(x) ∼ Cn|x|n + C ′
n|x| where the first term comes from the regular (smooth) parts of the

velocity (the right x-interval in Fig. 3) while the second comes from O(x) probability to have

a shock in the interval x. The scaling exponents, ξn = d ln Sn/d ln x, thus behave as follows:

ξn = n for n ≤ 1 and ξn = 1 for n > 1. That means that the probability density function

u

x

FIG. 3: Typical velocity profile in Burgers turbulence

(PDF) of the velocity difference in the inertial interval P (δu, x) is not scale-invariant, that is

the function of the re-scaled velocity difference δu/xa cannot be made scale-independent for

any a. As one goes to smaller scales, the low-order moments decrease faster than the high-

order ones, that means that the smaller the scale the more probable are large fluctuations.

In other words, the level of fluctuations increases with the resolution. When the scaling

exponents ξn do not lie on a straight line, this is called an anomalous scaling since it is

related again to the symmetry (scale invariance) of the PDF broken by pumping and not

restored even when x/L → 0.
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As an alternative to the description in terms of structures (shocks), one can relate the

anomalous scaling in Burgers turbulence to the additional integrals of motion. Indeed, the

integrals En =
∫

u2n dx/2 are all conserved by the inviscid Burgers equation. Any shock

dissipates the finite amount of En at the limit ν → 0 so that similarly to (11) one denotes

〈Ėn〉 = εn and obtains S2n+1 = −4(2n + 1)εnx/(2n− 1) for integer n.

Note that S2(x) ∝ |x| corresponds to E(k) ∝ k−2, since every shock gives uk ∝ 1/k at

k ¿ v/ν, that is the energy spectrum is determined by the type of structures (shocks) rather

than by energy flux constancy. Similar ideas were suggested for other types of strong wave

turbulence assuming them to be dominated by different structures. Weak wave turbulence,

being a set of weakly interacting plane waves, can be studied uniformly for different systems

[1]. On the contrary, when nonlinearity is strong, different structures appear. Broadly, one

distinguishes conservative structures (like solitons and vortices) from dissipative structures

which usually appear as a result of finite-time singularity of the non-dissipative equations

(like shocks, light self-focussing or wave collapse). For example, nonlinear wave packets are

described by nonlinear Schrödinger equation, iΨt+∆Ψ+T |Ψ|2Ψ = 0. Weak wave turbulence

is determined by |T |2 and is the same both for T < 0 (wave repulsion) and T > 0 (wave

attraction). At high levels of nonlinearity, different signs of T correspond to dramatically

different physics: At T < 0 one has a stable condensate, solitons and vortices, while at

T > 0 instabilities dominate and wave collapse is possible at d = 2, 3. No analytic theory is

yet available for such strong turbulence.

Nonlinearity parameter ξ(k) generally depends on k so that there may exist weakly turbu-

lent cascade until some k∗ where ξ(k∗) ∼ 1 and strong turbulence beyond this wavenumber,

that is weak and strong turbulence can coexist in the same system. Presuming that some

mechanism (for instance, wave breaking) prevents appearance of wave amplitudes that cor-

respond to ξk À 1, one may suggest that some cases of strong turbulence correspond to the

balance between dispersion and nonlinearity local in k-space so that ξ(k) =const throughout

its domain in k-space. That would correspond to the spectrum Ek ∼ ω3
kk
−d/|Vkkk|2 which is

ultimately universal that is independent even of the flux (only the boundary k∗ depends on

the flux). For gravity waves, this gives Ek = ρgk−3, the same spectrum one obtains presum-

ing wave profile to have cusps (another type of dissipative structure leading to whitecaps in

stormy sea [5]). It is unclear if such flux-independent spectra are realized.
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IV. INCOMPRESSIBLE TURBULENCE

Incompressible fluid flow is described by the Navier-Stokes equation

∂tv(r, t) + v(r, t) · ∇v(r, t)− ν∇2v(r, t) = −∇p(r, t) , div v = 0 . (12)

We are again interested in the structure functions Sn(r, t) = 〈[(v(r, t)− v(0, t)) · r/r]n〉 and

consider distance r smaller than the force correlation scale for a steady case and smaller

than the size of turbulent region for a decay case. We treat first the three-dimensional case.

Similar to (10), one can derive [2] the Karman-Howarth relation between S2 and S3:

∂S2

∂t
= − 1

3r4

∂

∂r
(r4S3) +

4ε

3
+

2ν

r4

∂

∂r

(
r4∂S2

∂r

)
. (13)

Here ε = ν〈(∇v)2〉 is the mean energy dissipation rate. Neglecting time derivative (which is

zero in a steady state and small comparing to ε for decaying turbulence) one can multiply

(13) by r4 and integrate: S3(r) = −4εr/5 + 6νdS2(r)/dr. Kolmogorov considered the limit

ν → 0 for fixed r and assumed nonzero limit for ε which gives the so-called 4/5 law [2, 6, 7]:

S3 = −4

5
ε r . (14)

This relation is a direct analog of (6,11), it also means that the kinetic energy has a constant

flux in the inertial interval of scales (the viscous scale η is defined by νS2(η) ' εη2). At

first sight, it might appear from (12) that the energy dissipation would vanish as ν →
0 (or as Re → ∞), but an important feature of turbulence is that the average rate of

energy dissipation per unit mass, 〈ε〉, remains finite in this limit: no matter how small the

viscosity, or how high the Reynolds number, or how extensive the scale-range participating

in the energy cascade, the energy flux remains equal to that injected at the stirring scale.

Historically, this is the first example of what is now called “anomaly” in theoretical physics:

a symmetry of the equation (here, time-reversal invariance) remains broken even as the

symmetry-breaking factor (viscosity) becomes vanishingly small [8]. If one screens a movie

of steady turbulence backwards, we can tell that something is indeed wrong!

The law (14) implies that the third-order moment is universal, i.e. it does not depend

on the details of the turbulence production but is determined solely by the mean energy

dissipation rate. The rest of the structure functions have never been derived. Kolmogorov [7]

(and also Heisenberg, von Weizsacker and Onsager) presumed the pair correlation function
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to be determined only by ε and r which would give S2(r) ∼ (εr)2/3 and the energy spectrum

Ek ∼ ε2/3k−5/3. Experiments suggest that ζn = d ln Sn/d ln r lie on a smooth concave curve

sketched in Fig. 4. While ζ2 is close to 2/3 it has to be a bit larger because experiments show

that the slope at zero dζn/dn is larger than 1/3 while ζ(3) = 1 in agreement with (14). Like

in Burgers, the PDF of velocity differences in the inertial interval is not scale invariant in the

3d incompressible turbulence. So far, nobody was able to find an explicit relation between

the anomalous scaling for 3d Navier-Stokes turbulence and either structures or additional

integrals of motion.
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FIG. 4: The scaling exponents of the structure functions ξn for Burgers, ζn for 3d Navier-Stokes

and σn for the passive scalar. The dotted straight line is n/3.

While not exact, the Kolomogorov’s approximation S2(η) ' (εη)2/3 can be used to esti-

mate the viscous scale: η ' LRe−3/4. The number of degrees of freedom involved into 3d in-

compressible turbulence can thus be roughly estimated as N ∼ (L/η)3 ∼ Re9/4. That means,

in particular, that detailed computer simulation of water or oil pipe flows (Re ∼ 104 ÷ 107)

or turbulent cloud (Re ∼ 106 ÷ 109) is out of question for a foreseeable future. To calculate

correctly at least the large-scale part of the flow, it is desirable to have some theoretical

model to parameterize the small-scale motions, the main obstacle being our lack of quali-

tative understanding and quantitative description of how turbulence statistics changes with

the scale. This breakdown of scale invariance in the inertial range is another example of

anomaly (effect of pumping scale does not disappear even at the limit r/L → 0). Such an

anomalous (or multi-fractal) scaling, is arguably an important feature of turbulence, and

sets it apart from the usual critical phenomena: one needs to work out the behavior of mo-

ments of each order independently without succumbing to dimensional analysis. Anomalous
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scaling in turbulence is such that ζ2n < nζ2 so that S2n/S
n
2 for n > 2 increases as r → 0.

The relative growth of high moments means that strong fluctuations become more probable

as the scales become smaller. Its practical importance is that it limits our ability to produce

realistic models for small-scale turbulence.

We know neither the structures nor the extra conservation laws that are responsible

for an anomalous scaling in the 3d incompressible turbulence. To get some qualitative

understanding of this very complicated problem we now pass to another (no less complicated)

problem of 2d turbulence, which will motivate us to consider passive scalar turbulence, which

will, in particular, teach us a new concept of statistical conservation laws that will shed some

light on 3d turbulence too.

2d Turbulence. Large-scale motions in shallow fluid can be approximately considered

two-dimensional. When the velocities of such motions are much smaller than the velocities

of the surface waves and the velocity of sound, such flows can be considered incompressible.

Their description is important for understanding atmospheric and oceanic turbulence at

the scales larger than the atmosphere height and the ocean depth. Vorticity ω = curl v is

a scalar in a two-dimensional flow. It is advected by the velocity field and dissipated by

viscosity. Taking curl of the Navier-Stokes equation one gets

dω/dt = ∂tω + (v · ∇)ω = ν∇2ω . (15)

Two-dimensional incompressible inviscid flow just transports vorticity from place to place

and thus conserves spatial averages of any function of vorticity, Ωn ≡
∫

ωndr. In particular,

we now have the second quadratic inviscid invariant (in addition to energy) which is called

enstrophy: Ω2 =
∫

ω2 dr. Since the spectral density of the energy is |vk|2/2 while that of

the enstrophy is |k × vk|2 then (similarly to the cascades of E and N in wave turbulence

under four-wave interaction) one expects that the direct cascade (towards large k) is that

of enstrophy while the inverse cascade is that of energy, as was suggested by Kraichnan [9].

What about other Ωn? The intuition developed so far might suggest that the infinity of

dynamical conservation laws must bring about anomalous scaling. Turbulence never fails to

defy natural expectations as we shall see.

Passive Scalar Turbulence. Before discussing vorticity statistics in two-dimensional

turbulence, we describe a similar yet somewhat simpler problem of passive scalar turbulence

which allows one to introduce the necessary notions of Lagrangian description of the fluid

15



flow. Consider a scalar quantity θ(r, t) which is subject to molecular diffusion and advection

by the fluid flow but has no back influence on the velocity (i.e. passive):

∂tθ + (v · ∇)θ = κ∇2θ + ϕ . (16)

Here κ is molecular diffusivity. The examples of passive scalar are smoke in the air, salinity

in the water and temperature when one can neglect thermal convection. Without pumping,

dissipation and diffusion, ω and θ are advected in the same way in the same 2d flow — they

are both Lagrangian invariants satisfying dω/dt = dθ/dt = 0. Note however that vorticity is

related to velocity while the passive scalar is not. If the source ϕ produces the fluctuations

of θ on some scale L then the inhomogeneous velocity field stretches, contracts and folds the

field θ producing progressively smaller and smaller scales — this is the mechanism of the

scalar cascade. If the rms velocity gradient is Λ then molecular diffusion is substantial at the

scales less than the diffusion scale rd =
√

κ/Λ. For scalar turbulence, the ratio Pe = L/rd,

called Peclet number, plays the role of the Reynolds number. When Pe À 1, there is an

inertial interval with a constant flux of θ2:

〈(v1 · ∇1 + v2 · ∇2)θ1θ2〉 = 2P , (17)

where P = κ〈(∇θ)2〉 and subscripts denote the spatial points. In considering the passive

scalar problem, the velocity statistics is presumed to be given. Still, the correlation function

(17) mixes v and θ and does not generally allow one to make a statement on any correlation

function of θ. The proper way to describe the correlation functions of the scalar at the

scales much larger than the diffusion scale is to employ the Lagrangian description that is

to follow fluid trajectories [11]. Indeed, if we neglect diffusion, then the equation (16) can

be solved along the characteristics R(t) which are called Lagrangian trajectories and satisfy

dR/dt = v(R, t). Presuming zero initial conditions for θ at t → −∞ we write

θ
(
R(t), t

)
=

∫ t

−∞
ϕ

(
R(t′), t′

)
dt′ . (18)

In that way, the correlation functions of the scalar Fn =〈θ(r1, t) . . . θ(rn, t)〉 can be obtained

by integrating the correlation functions of the pumping along the trajectories that satisfy

the final conditions Ri(t) = ri. We consider a pumping which is Gaussian, statistically

homogeneous and isotropic in space and white in time:

〈ϕ(r1, t1)ϕ(r2, t2)〉 = Φ(|r1 − r2|)δ(t1 − t2)
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where the function Φ is constant at r ¿ L and goes to zero at r À L. The pumping provides

for symmetry θ → −θ which makes only even correlation functions F2n nonzero. The pair

correlation function is as follows:

F2(r, t) =
∫ t

−∞
Φ

(
R12(t

′)
)
dt′ . (19)

Here R12(t
′) = |R1(t

′) − R2(t
′)| is the distance between two trajectories and R12(t) = r.

The function Φ essentially restricts the integration to the time interval when the distance

R12(t
′) ≤ L. Simply speaking, the stationary pair correlation function of a tracer is Φ(0)

(which is twice the injection rate of θ2) times the average time T2(r, L) that two fluid particles

spent within the correlation scale of the pumping. The larger r the less time it takes for

the particles to separate from r to L and the less is F2(r). Of course, T12(r, L) depends

on the properties of the velocity field. A general theory is available only when the velocity

field is spatially smooth at the scale of scalar pumping L. This so-called Batchelor regime

happens, in particular, when the scalar cascade occurs at the scales less than the viscous

scale of fluid turbulence [11–13]. This requires the Schmidt number ν/κ (called Prandtl

number when θ is temperature) to be large, which is the case for very viscous liquids. In

this case, one can approximate the velocity difference v(R1, t)− v(R2, t) ≈ σ̂(t)R12(t) with

the Lagrangian strain matrix σij(t) = ∇jvi. In this regime, the distance obeys the linear

differential equation

Ṙ12(t) = σ̂(t)R12(t) . (20)

The theory of such equations is well-developed and is related to what is called La-

grangian chaos and multiplicative large deviations theory described in detail in the course

of K. Gawȩdzki. Fluid trajectories separate exponentially as typical for systems with dy-

namical chaos (see, e.g. [11, 14]): At t much larger than the correlation time of the random

process σ̂(t), all moments of R12 grow exponentially with time and 〈ln[R12(t)/R12(0)]〉 = λt

where λ is called a senior Lyapunov exponent of the flow (remark that for the description

of the scalar we need the flow taken backwards in time which is different from that taken

forward because turbulence is irreversible). Dimensionally, λ = Λf(Re) where the limit of

the function f at Re →∞ is unknown. We thus obtain:

F2(r) = Φ(0)λ−1 ln(L/r) = 2Pλ−1 ln(L/r) . (21)

In a similar way, one shows that for n ¿ ln(L/r) all Fn are expressed via F2 and the

structure functions S2n = 〈[θ(r, t) − θ(0, t)]2n〉 ' (P/λ)n lnn(r/rd) for n ¿ ln(r/rd). That
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can be generalized for an arbitrary statistics of pumping as long as it is finite-correlated in

time [11]. Note that for a compressible flow

2d Enstrophy cascade. Now, one can use the analogy between passive scalar and

vorticity in 2d [9, 15]. For the enstrophy cascade, one derives the flux relation analogous to

(17):

〈(v1 · ∇1 + v2 · ∇2)ω1ω2〉 = 2D , (22)

where D = 〈ν(∇ω)2〉. The flux relation along with ω = curl v suggests the scaling δv(r) ∝ r

that is velocity being close to spatially smooth (of course, it cannot be perfectly smooth to

provide for a nonzero vorticity dissipation in the inviscid limit, but the possible singularitites

are indeed shown to be no stronger than logarithmic). That makes the vorticity cascade

similar to the Batchelor regime of passive scalar cascade with a notable change in that the

rate of stretching λ acting on a given scale is not a constant but is logarithmically growing

when the scale decreases. Since λ scales as vorticity, the law of renormalization can be

established from dimensional reasoning and one gets 〈ω(r, t)ω(0, t)〉 ∼ [D ln(L/r)]2/3 which

corresponds to the energy spectrum Ek ∝ D2/3k−3 ln−1/3(kL). High-order correlation func-

tions of vorticity are also logarithmic, for instance, 〈ωn(r, t)ωn(0, t)〉 ∼ [D ln(L/r)]2n/3. Note

that both passive scalar in the Batchelor regime and vorticity cascade in 2d are universal that

is determined by the single flux (P and D respectively) despite the existence of high-order

conserved quantities. Experimental data and numeric simulations support those conclusions

[10, 11].

Problem 3.

Find the Lyapunov exponents for a spatially smooth short-correlated flow (Batchelor-

Kraichnan model) with

〈vi(r, t)vj(0, 0)〉 = δ(t)
[
D0δij − dij(r)

]
,

dij() = D1

[
(d + 1− 2℘) δij r2 + 2(℘d− 1) rirj

]
+ o(r2) . (23)

The degree of compressibility ℘ ≡ 〈(∇iv
i)2〉/〈(∇iv

j)2〉 is between 0 and 1, with the the two

extrema corresponding to the incompressible and the potential cases.
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V. ZERO MODES AND ANOMALOUS SCALING

Let us now return to the Lagrangian description and discuss it when velocity is not

spatially smooth, for example, that of the energy cascades in the inertial interval. One can

assume that it is Lagrangian statistics which is determined by the energy flux when the

distances between fluid trajectories are in the inertial interval. That assumption leads, in

particular, to the Richardson law for the asymptotic growth of the interparticle distance:

〈R2
12(t)〉 ∼ εt3 , (24)

first established from atmospheric observations (in 1926) and later confirmed experimentally

for energy cascades both in 3d and in 2d. There is no consistent theoretical derivation of (24)

and it is unclear whether it is exact (likely to be in 2d) or just approximate (possible in 3d).

Semi-heuristic argument usually presented in textbooks is based on the mean-field estimate:

Ṙ12 = δv(R12, t) ∼ (εR12)
1/3 which upon integration gives: R

2/3
12 (t) − R

2/3
12 (0) ∼ ε1/3t. For

the passive scalar it gives, by virtue of (19), F2(r) ∼ Φ(0)ε−1/3[L2/3 − r2/3] as suggested

by Oboukhov and Corrsin [16, 17]. The structure function is then S2(r) ∼ Φ(0)ε−1/3r2/3.

Experiments measuring the scaling exponents σn = d ln Sn(r)/d ln r generally give σ2 close to

2/3 but higher exponents deviating from the straight line even stronger than the exponents

of the velocity in 3d. Moreover, the scalar exponents σn are anomalous even when advecting

velocity has a normal scaling like in 2d energy cascade.

To describe multi-point correlation functions or high-order structure functions one needs

to study multi-particle statistics, Here an important question is what memory of the initial

configuration remains when final distances far exceed initial ones. To answer this question

one must analyze the conservation laws of turbulent diffusion. We now describe a general

concept of conservation laws which, while conserved only on the average, still determine

the statistical properties of strongly fluctuating systems. In a random system, it is always

possible to find some fluctuating quantities which ensemble averages do not change. We

now ask a more subtle question: is it possible to find quantities that are expected to change

on the dimensional grounds but they stay constant [8, 11]. Let us characterize n fluid

particles in a random flow by inter-particle distances Rij (between particles i and j) as

in Figure 5. Consider homogeneous functions f of inter-particle distances with a nonzero

degree ζ, i.e. f(λRij) = λζf(Rij). When all the distances grow on the average, say according

to < R2
ij >∝ ta, then one expects that a generic function grows as f ∝ taζ/2. How to build
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(specific) functions that are conserved on the average, and which ζ-s they have? As the

particles move in a random flow, the n-particle cloud grows in size and the fluctuations in

the shape of the cloud decrease in magnitude. Therefore, one may look for suitable functions

of size and shape that are conserved because the growth of distances is compensated by the

decrease of shape fluctuations.

2

R13

R
12

1

3

FIG. 5: Three fluid particles in a flow

For the simplest case of Brownian random walk, inter-particle distances grow by the

diffusion law: 〈R2
ij(t)〉 = R2

ij(0) + κt, 〈R4
ij(t)〉 = R4

ij(0) + 2(d + 2)[R2
ij(0)κt + κ2t2]/d, etc.

Here d is the space dimensionality. Two particles are characterized by a single distance.

Any positive power of this distance grows on the average. For three particles, one can

build conserved quantities by taking the differences where all powers of t cancel out: f2 =

〈R2
12 − R2

13〉, f4 = 〈2(d + 2)R2
12R

2
13 − d(R4

12 + R4
13)〉, etc. These polynomials are called

harmonic since they are zero modes of the Laplacian in the 2d-dimensional space of R12,

R13. One can write the Laplacian as ∆ = R1−2d∂RR2d−1∂R + ∆θ, where R2 = R2
12 + R2

13

and ∆θ is the angular Laplacian on 2d− 1-dimensional unit sphere. Introducing the angle,

θ = arcsin(R12/R), which characterizes the shape of the triangle, we see that the conservation

of both f2 = 〈R2 cos 2θ〉 and f4 = 〈R4[(d + 1) cos2 2θ − 1]〉 can be also described as due to

cancellation between the growth of the radial part (as powers of t) and the decay of the

angular part (as inverse powers of t). For n particles, the polynomial that involves all

distances is proportional to R2n (i.e. ζn = n) and the respective shape fluctuations decay as

t−n.

The scaling exponents of the zero modes are thus determined by the laws that govern

decrease of shape fluctuations. The zero modes, which are conserved statistically, exist
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for turbulent macroscopic diffusion as well. However, there is a major difference since the

velocities of different particles are correlated in turbulence. Those mutual correlations make

shape fluctuations decaying slower than t−n so that the exponents of the zero modes, ζn, grow

with n slower than linearly. This is very much like the total energy of the cloud of attracting

particles does not grow linearly with the number of particles. Indeed, power-law correlations

of the velocity field lead to super-diffusive behavior of inter-particle separations: the farther

particles are, the faster they tend to move away from each other, as in Richardson’s law

of diffusion. That is the system behaves as if there was an attraction between particles

that weakens with the distance, though, of course, there is no physical interaction among

particles (but only mutual correlations because they are inside the correlation radius of the

velocity field). Let us stress that while zero modes of multi-particle evolution exist for all

velocity fields—from those that are smooth to those that are extremely rough as in Brownian

motion—only those non-smooth velocity fields with power-law correlations provide for an

anomalous scaling. Zero modes were discovered in [19–21] and then described in [22–24].

The existence of multi-particle conservation laws indicates the presence of a long-time

memory and is a reflection of the coupling among the particles due to the simple fact that

they are all in the same velocity field.

We shall now ask: How does the existence of these statistical conservation laws (called

martingales in the probability theory) lead to anomalous scaling of fields advected by turbu-

lence? According to (18), the correlation functions of θ are proportional to the times spent

by the particles within the correlation scales of the pumping. The structure functions of

θ are differences of correlation functions with different initial particle configurations as, for

instance, S3(r12) ≡ 〈[θ(r1)−θ(r2)]
3〉 = 3〈θ2(r1)θ(r2)−θ(r1)θ

2(r2)〉. In calculating S3, we are

thus comparing two histories: the first one with two particles initially close to the position

r1 and one particle at r2, and the second one with one particle at r1 and two particles at

r2— see Fig 6. That is, S3 is proportional to the time during which one can distinguish

one history from another, or to the time needed for an elongated triangle to relax to the

equilateral shape. That time decreases as r12 grows: the further away the particles, the

faster they loose correlations.

Quantitative details can be worked out for the white in time velocity [18] (profound insight

of Kraichnan was that it is spatial rather than temporal non-smoothness of the velocity that
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FIG. 6: Two configurations (upper and lower) determining the third structure function

is crucial for an anomalous scaling).

〈vi(r, t)vj(0, 0)〉 = δ(t)
[
D0δij − dij(r)

]
,

dij = D1 r2−γ
[
(d + 1− γ) δij + (γ − 2)rirjr−2

]
. (25)

Here the exponent γ ∈ [0, 2] is a measure of the velocity nonsmoothness with γ = 0 corre-

sponding to a smooth velocity while γ = 2 to a velocity very rough in space (distributional).

Richardson-Kolmogorov scaling of the energy cascade corresponds to γ = 2/3. Lagrangian

flow is a Markov random process for the Kraichnan ensemble (25). Every fluid particle

undergoes a Brownian random walk with the so-called eddy diffusivity D0. The PDF P (r, t)

for two particles to be separated by r after time t satisfies the diffusion equation (see e.g.

[11])

∂tP = L2P , L2 = dij(r)∇i∇j = D1(d− 1)r1−d∂rr
d+1−γ∂r , (26)

with the scale-dependent diffusivity D1(d − 1)r2−γ. The asymptotic solution of (26) is

P (r, t) = rd−1td/γ exp
(
−const rγ/t

)
(lognormal for γ = 0). For γ = 2/3, it reproduces, in

particular, the Richardson law. Multiparticle probability distributions also satisfy diffusion

equations in the Kraichnan model as well as all the correlation functions of θ. Multiplying

(16) by θ2 . . . θ2n and averaging over the Gaussian statistics of v and ϕ one derives

∂tF2n = L2nF2n +
∑

l,m

F2n−2Φ(rlm) , L2n =
∑

dij(rlm)∇i
l∇j

m . (27)

This equation enables one, in principle, to derive inductively all steady-state F2n start-

ing from F2. The equation ∂tF2(r, t) = L2F2(r, t) + Φ(r) has a steady solution F2(r) =

2[Φ(0)/γd(d− 1)D1][dLγ/(d− γ)− rγ], which has the Corrsin-Oboukhov form for γ = 2/3.
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Further, F4 contains the so-called forced solution having the normal scaling 2γ but also,

remarkably, a zero mode Z4 of the operator L4: L4Z4 = 0. Such zero modes necessarily

appear (to satisfy the boundary conditions at r ' L) for all n > 1 and the scaling exponents

of Z2n are generally different from nγ that is anomalous. In calculating the scalar struc-

ture functions, all terms cancel out except a single zero mode (called irreducible because

it involves all distances between 2n points). Analytically and numerical calculations of Zn

and their scaling exponents σn (described in detail in the course of K. Gawȩdzki and in the

review [11]) give σn lying on a convex curve (see Fig. 4) which saturates [24] to a constant

at large n. Such saturation [25] is a signature that most singular structures in a scalar field

are shocks like in Burgers turbulence, the value σn at n →∞ is the fractal codimension of

fronts in space.

The existence of statistical conserved quantities breaks the scale invariance of scalar

statistics in the inertial interval and explains why scalar turbulence knows about pumping

“more” than just the value of the flux. Note that both symmetries, one broken by pumping

(scale invariance) and another by damping (time reversibility) are not restored even when

r/L → 0 and rd/r → 0.

For the vector field (like velocity or magnetic field in magnetohydrodynamics) the La-

grangian statistical integrals of motion may involve both the coordinate of the fluid particle

and the vector it carries. Such integrals of motion were built explicitly and related to the

anomalous scaling for the passively advected magnetic field in the Kraichnan ensemble of

velocties [11]. Doing that for velocity that satisfies the 3d Navier-Stokes equation remains

a task for the future.

Problem 4.

Show that the sum of the Lyapunov exponents is non-positive.

23



VI. INVERSE CASCADES

Here we consider inverse cascades and discover that, while time reversibility remains bro-

ken, the scale invariance is restored in the inertial interval. Moreover, even wider symmetry

of conformal invariance may appear there.

Passive scalar in a compressible flow.

Similar to (19) one can derive from (18)

〈θ(t, r1) . . . θ(t, r2n)〉 =
∫ t

0
dt1 . . . dtn

×〈Φ(R(t1|T, r12)) . . . Φ(R(tn|T, r2n−1,2n))〉+ . . . , (28)

The functions Φ in (28) restrict integration to the time intervals where Rij < L. If the

Lagrangian trajectories separate, the correlation functions reach at long times the stationary

form for all rij. Such steady states correspond to a direct cascade of the tracer (i.e. from

large to small scales) considered above. That generally takes place in incompressible and

weakly compressible flows.

It is intuitively clear that in compressible flows the regions of compressions can trap

fluid particles counteracting their tendency to separate. Indeed, one can show that particles

cluster in flows with high enough compressibility [26, 27]. In particular, the solution of

the Problem 3 shows that all the Lyapunov exponents are negative when the compressibility

degree of a short-correlated flow exceeds d/4 [26, 28]. Even in the non-smooth flow with high

enough compressibility, the trajectories are unique, particles that start from the same point

will remain together throughout the evolution [27]. That means that advection preserves

all the single-point moments 〈θN〉(t). Note that the conservation laws are statistical: the

moments are not dynamically conserved in every realization, but their average over the

velocity ensemble are. In the presence of pumping, the moments are the same as for the

equation ∂tθ = ϕ in the limit κ → 0 (nonsingular now). It follows that the single-point

statistics is Gaussian, with 〈θ2〉 coinciding with the total injection Φ(0)t by the forcing. That

growth is produced by the flux of scalar variance toward the large scales. In other words,

the correlation functions acquire parts which are independent of r and grow proportional

to time: when Lagrangian particles cluster rather than separate, tracer fluctuations grow

at larger and larger scales — phenomenon that can be loosely called an inverse cascade of

a passive tracer [26, 27]. As is clear from (28), correlation functions at very large scales
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are related to the probability for initially distant particles to come close. In a strongly

compressible flow, the trajectories are typically contracting, the particles tend to approach

and the distances will reduce to the forcing correlation length L (and smaller) for long

enough times. On a particle language, the larger the time the large the distance starting

from which particle come within L. The correlations of the field θ at larger and larger scales

are therefore established as time increases, signaling the inverse cascade process.

<θ(0,t) θ(r,t)>

t t

t
1

2 > t1
1 2

r

/< θ2(t)>

FIG. 7: Growth of large-scale correlations with time.

The uniqueness of the trajectories greatly simplifies the analysis of the PDF P(δθ, r).

Indeed, the structure functions involve initial configurations with just two groups of particles

separated by a distance r. The particles explosively separate in the incompressible case and

we are immediately back to the full N -particle problem. Conversely, the particles that are

initially in the same group remain together if the trajectories are unique. The only relevant

degrees of freedom are then given by the intergroup separation and we are reduced to a

two-particle dynamics. It is therefore not surprising that the statistics of the passive tracer

is scale invariant in the inverse cascade regime [27].

An example of strongly compressible flow is given by Burgers turbulence (9) where there

is clustering (in shocks) for the majority of trajectories (full measure in the inviscid limit).

Considering passive scalar in such a flow, θt +uθx−κ∆θ = φ, we conclude that it undergoes

an inverse cascade. The statistics of θ is scale invariant at the scales exceeding the correlation

scale of the pumping φ. While the limit κ → 0 is regular (i.e. no dissipative anomaly), the

statistics is time irreversible because of the flux towards large scales. It is instructive to

compare u and θ which are both Lagrangian invariants (tracers) in the unforced undamped

limit. Yet passive quantity θ (and all its powers) go to large scales under pumping while

all powers of u cascade towards small scales and are absorbed by viscosity. Physically, the

difference is evidently due to the fact that the trajectory evidently depends on the value of
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u it carries, the larger the velocity the faster it ends in a shock and dissipates the energy

and other integrals. Formally, for active tracers like un one cannot write a formula like (28)

obtained by two independent averages over the force and over the trajectories.

Inverse energy cascade in two dimensions.

For the inverse energy cascade, there is no consistent theory except for the flux relation

that can be derived similarly to (14):

S3(r) = 4εr/3 . (29)

This scaling one can also get from phenomenological dimensional arguments, though in

two seemingly unrelated ways. Consider the velocity difference vr at the distance r. On

the one hand, one may require that the kinetic energy v2
r divided by the typical time r/vr

must be constant and equal to the energy flux, ε: v3
r ∼ εr. On the other hand, it can

be argued that vorticity, which cascades to small scales, must be in equipartition in the

inverse cascade range6. If this is the case, the enstrophy rdω2
r accumulated in a volume

of size r is proportional to the typical time r/vr at such scale, i.e. rdω2
r ∼ r/vr. Using

ωr ∼ vr/r we derive v3
r ∼ r3−d which for d = 2 is exactly the requirement of constant

energy flux. Amazingly, the requirements of vorticity equipartition (i.e. equilibrium) and

energy flux (i.e. turbulence) give the same Kolmogorov-Kraichnan scaling in 2d. Let us

stress that (29) means that time reversibility is broken in the inverse cascade. Experiments

[10, 29, 30] and numerical simulations [31], however, demonstrate a scale-invariant statistics

with the vorticity having scaling dimension 2/3: ωr ∝ r−2/3. In particular, S2 ∝ r2/3 which

corresponds to Ek ∝ k−5/3. It is ironic that probably the most widely known statement on

turbulence, the 5/3 spectrum suggested by Kolmogorov for 3d, is not correct in this case

(even though the true scaling is close) while it is probably exact in the Kraichnan’s inverse

2d cascade. Qualitatively, it is likely that the absence of anomalous scaling in the inverse

cascade is associated with the growth of the typical turnover time (estimated, say, as r/
√

S2)

with the scale. As the inverse cascade proceeds, the fluctuations have enough time to get

smoothed out as opposite to the direct cascade in 3d, where the turnover time decreases in

the direction of the cascade.

Remarkably, there are indications that scale invariance can be extended to conformal in-

variance at least for some properties of 2d turbulence [33]. Under conformal transformations

the lengths are re-scaled non-uniformly yet the angles between vectors are left unchanged
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(a useful property in navigation cartography where it is often more important to aim in

the right direction than to know the distance). Conformal invariance has been discovered

by analyzing the large-scale statistics of the boundaries of vorticity clusters, i.e. large-scale

zero-vorticity (nodal) lines. In equilibrium critical phenomena, cluster boundaries in the con-

tinuous limit of vanishingly small lattice size were recently found to belong to a remarkable

class of curves that can be mapped into Brownian walk (called Stochastic Loewner Evolution

or SLE curves)[34–38]. Namely, consider a curve γ(t) that starts at a point on the boundary

of the half-plane H (by conformal invariance any planar domain is equivalent to the upper

half plane). One can map the half-plane H minus the curve γ(t) back onto H by an analytic

function gt(z) which is unique upon imposing the condition gt(z) ∼ z + 2t/z + O(1/z2) at

infinity. The growing tip of the curve is mapped into a real point ξ(t). Loewner found in

1923 that the conformal map gt(z) and the curve γ(t) are fully parametrized by the driving

function ξ(t). Almost eighty years later, Schramm [34] considered random curves in planar

domains and showed that their statistics is conformal invariant if ξ(t) is a Brownian walk,

i.e. its increments are identically and independently distributed and 〈(ξ(t) − ξ(0))2〉 = κt.

In simple words, the locality in time of the Brownian walk translates into the local scale-

invariance of SLE curves, i.e. conformal invariance. SLEκ provide a natural classification (by

the value of the diffusivity κ) of boundaries of clusters of 2d critical phenomena described

by conformal field theories (see [35–38] for a review).

L

ω=0

FIG. 8: Vorticity nodal line with the gyration radius L.

The fractal dimension of SLEκ curves is known to be Dκ = 1+κ/8 for κ < 8. To establish

possible link between turbulence and critical phenomena, let us try to relate the Kolmogorov-

Kraichnan phenomenology to the fractal dimension of the boundaries of vorticity clusters.

Note that one ought to distinguish between the dimensionality 2 of the full vorticity level

set (which is space-filling) and a single zero-vorticity line that encloses a large-scale clus-
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ter. Consider the vorticity cluster of gyration radius L which has the “outer boundary” of

perimeter P (that boundary is the part of the zero-vorticity line accessible from outside, see

Fig. 8 for an illustration). The vorticity flux through the cluster,
∫

ωdS ∼ ωLL2, must be

equal to the velocity circulation along the boundary, Γ =
∮ ·d`. The Kolmogorov-Kraichnan

scaling is ωL ∼ ε1/3L−2/3 (coarse-grained vorticity decreases with scale because contributions

with opposite signs partially cancel) so that the flux is ∝ L4/3. As for circulation, since the

boundary turns every time it meets a vortex, such a contour is irregular on scales larger than

the pumping scale. Therefore, only the velocity at the pumping scale Lf is expected to con-

tribute to the circulation, such velocity can be estimated as (εLf )
1/3 and it is independent of

L. Hence, circulation should be proportional to the perimeter, Γ ∝ P , which gives P ∝ L4/3,

i.e. the fractal dimension of the exterior of the vorticity cluster is expected to be 4/3. This

is a remarkable dimension known to correspond to a self-avoiding random walk (SLE curve)

which is also known to be an exterior boundary (without self-intersections) of percolation

cluster (yet another SLE curve). Data analysis of the zero-vorticity lines have shown that

indeed within an experimental accuracy their statistics is indistinguishable from percolation

clusters while that of their exterior boundary from the statistics of self-avoiding random

walk [33]. Whether the statistics of the zero-vorticity isolines indeed falls into the simplest

universality class of critical phenomena (that of percolation) deserves to be a subject of more

study.

Let us briefly discuss weak turbulence from the viewpoint of conformal invariance. Gaus-

sian scalar field in 2d is conformal invariant if its correlation function is logarithmic i.e.

the spectral density decays as k−2. Such is the case, for instance, for the fluid height in

gravitational-capillary wave turbulence on a shallow water (see [1], Sect. 5.1.2). It is inter-

esting if deviations from Gaussianity due to wave interaction destroy conformal invariance.
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VII. CONCLUSION

We briefly reiterate the conclusions related to the status of symmetries in turbulence.

Turbulence statistics is always time-irreversible.

Weak turbulence is scale invariant and universal. It is generally not conformal invariant.

Strong turbulence:

Direct cascades often have scale invariance broken. That can be alternatively explained in

terms of either structures or statistical conservation laws (zero modes). Anomalous scaling

in a direct cascade may well be a general rule apart from some degenerate cases like passive

scalar in the Batchelor case (where all the zero modes have the same scaling exponent, zero,

as the pair correlation function).

Inverse cascades in systems with strong interaction may be not only scale invariant but

also conformal invariant.

For Lagrangian invariants, we are able to explain the difference between direct and inverse

cascades in terms of separation or clustering of fluid particles.
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