Magnetic field generation by coherent turbulence structures

Demosthenes Kivotides
Mathematics Department
Magnetic field generation...

- The talk is based on the paper:
• The talk is based on the paper:
 • *D. Kivotides, A. J. Mee, C. F. Barenghi*, Magnetic field generation by coherent turbulence structures, *submitted*
Nonlinear systems of physical mathematics: what is their function within physics?
• Nonlinear systems of physical mathematics: what is their function within physics?
 • Analytical treatment quite difficult.
Nonlinear systems of physical mathematics: what is their function within physics?
- Analytical treatment quite difficult.
- Numerics & informatics effective but seek a conceptual understanding beyond formal manipulations.
• Nonlinear systems of physical mathematics: what is their function within physics?
 • Analytical treatment quite difficult.
 • Numerics & informatics effective but seek a conceptual understanding beyond formal manipulations.
 • Decompose difficult nonlinear problems into a network of simpler problems with known interconnections.
Nonlinear systems of physical mathematics: what is their function within physics?

- Analytical treatment quite difficult.
- Numerics & informatics effective but seek a conceptual understanding beyond formal manipulations.
- Decompose difficult nonlinear problems into a network of simpler problems with known interconnections.
- Take advantage of singular/near singular structures that dominate the system’s energetics:
Magnetic field generation...

- Nonlinear systems of physical mathematics: what is their function within physics?
 - Analytical treatment quite difficult.
 - Numerics & informatics effective but seek a conceptual understanding beyond formal manipulations.
- Decompose difficult nonlinear problems into a network of simpler problems with known interconnections.
- Take advantage of singular/near singular structures that dominate the system’s energetics:
 - Shocks, detonations, vortex tubes/sheets,
Magnetic field generation...

- Nonlinear systems of physical mathematics: what is their function within physics?
 - Analytical treatment quite difficult.
 - Numerics & informatics effective but seek a conceptual understanding beyond formal manipulations.
- Decompose difficult nonlinear problems into a network of simpler problems with known interconnections.
- Take advantage of singular/near singular structures that dominate the system’s energetics:
 - Shocks, detonations, vortex tubes/sheets,
 - particle-segregation patterns,
Magnetic field generation...

- Nonlinear systems of physical mathematics: what is their function within physics?
 - Analytical treatment quite difficult.
 - Numerics & informatics effective but seek a conceptual understanding beyond formal manipulations.
- Decompose difficult nonlinear problems into a network of simpler problems with known interconnections.
- Take advantage of singular/near singular structures that dominate the system’s energetics:
 - Shocks, detonations, vortex tubes/sheets,
 - particle-segregation patterns,
 - gravitational collapse structures.
• Turbulent magnetohydrodynamic dynamo \equiv magnetic field amplification by a turbulent flow field.
Magnetic field generation...

- Turbulent magnetohydrodynamic dynamo ≡ magnetic field amplification by a turbulent flow field.
- Two kinds: homogeneous-isotropic and shear.
Magnetic field generation...

- Turbulent magnetohydrodynamic dynamo ≡ magnetic field amplification by a turbulent flow field.
- Two kinds: homogeneous-isotropic and shear.
- Kinematic dynamo
Magnetic field generation...

- Turbulent magnetohydrodynamic dynamo \equiv magnetic field amplification by a turbulent flow field.
- Two kinds: homogeneous-isotropic and shear.
- Kinematic dynamo
- \(Re = 10^4, \quad Pr_m = \nu/\lambda = 10^{-8} - 0.4; \) use an LES method in vorticity space.
Magnetic field generation...

- Turbulent magnetohydrodynamic dynamo \equiv magnetic field amplification by a turbulent flow field.
- Two kinds: homogeneous-isotropic and shear.
- Kinematic dynamo
- $Re = 10^4$, $Pr_m = \nu/\lambda = 10^{-8} - 0.4$; use an LES method in vorticity space.
- Is there a turbulent vortex structures dynamo?
• Turbulent magnetohydrodynamic dynamo \equiv \text{magnetic field amplification by a turbulent flow field.}
• Two kinds: homogeneous-isotropic and shear.
• Kinematic dynamo
 \[Re = 10^4, \; Pr_m = \nu/\lambda = 10^{-8} - 0.4; \text{ use an LES method in vorticity space.} \]
• Is there a turbulent vortex structures dynamo?
• What are the structure and statistics of the amplified magnetic field?
Magnetic field generation...

- Vortex structures in turbulence (Farge et al, PRL 2001).
Magnetic field generation...

- Vortex structures in turbulence (Farge et al, PRL 2001).
- Vortex structures spectra (Farge et al, PRL 2001).
Magnetic field generation...

\[\frac{\partial \mathbf{X}}{\partial t} = \mathbf{V}, \]

\[\mathbf{V}(\mathbf{x}) = -\frac{1}{4\pi} \int_{L} \frac{(\mathbf{x} - \mathbf{X}) \times \omega(\mathbf{X}) d\mathbf{X}}{|\mathbf{x} - \mathbf{X}|^3}, \]

\[\omega(\mathbf{x}, t) = \gamma \int_{L} \frac{1}{\sigma(s, t)^3} \zeta \left(\frac{|\mathbf{x} - \mathbf{X}(s, t)|}{\sigma(s, t)} \right) \left(\frac{\partial \mathbf{X}}{\partial s} + \frac{\mathbf{x} - \mathbf{X}(s, t)}{\sigma(s, t)} \frac{\partial \sigma}{\partial s} \right) ds, \]

\[\frac{d\sigma_i^2}{dt} = 2\gamma\nu, \]

\[T_{L}^{t} \rightarrow T_{L}^{t+\Delta t}. \]
Magnetic field generation...

- Modeling changes in vortex tangle topology (Kivotides & Leonard, EPL 2003).
Magnetic field generation...
Physics of the vortex tube turbulence model:
Magnetic field generation...

- Physics of the vortex tube turbulence model:
 - Incorporates reconnections.
• Physics of the vortex tube turbulence model:
 • Incorporates reconnections.
 • LES formulation in vorticity space.
Physics of the vortex tube turbulence model:
- Incorporates reconnections.
- LES formulation in vorticity space.
- Kolmogorov scalings for second and third order structure functions.
Magnetic field generation...

- Physics of the vortex tube turbulence model:
 - Incorporates reconnections.
 - LES formulation in vorticity space.
 - Kolmogorov scalings for second and third order structure functions.
 - Qualitatively correct alignments between material or vorticity vectors and strain rate eigenvectors.
• Physics of the vortex tube turbulence model:
 • Incorporates reconnections.
 • LES formulation in vorticity space.
 • Kolmogorov scalings for second and third order structure functions.
 • Qualitatively correct alignments between material or vorticity vectors and strain rate eigenvectors.
 • Two positive, on average, eigenvalues of the strain rate tensor.
Magnetic field generation...

- Physics of the vortex tube turbulence model:
 - Incorporates reconnections.
 - LES formulation in vorticity space.
 - Kolmogorov scalings for second and third order structure functions.
 - Qualitatively correct alignments between material or vorticity vectors and strain rate eigenvectors.
 - Two positive, on average, eigenvalues of the strain rate tensor.
 - Qualitatively correct kinematics.
Physics of the vortex tube turbulence model:

- Incorporates reconnections.
- LES formulation in vorticity space.
- Kolmogorov scalings for second and third order structure functions.
- Qualitatively correct alignments between material or vorticity vectors and strain rate eigenvectors.
- Two positive, on average, eigenvalues of the strain rate tensor.
- Qualitatively correct kinematics.
- Predicted fractal dimension of concentrated vorticity, pdf’s of stretched filament radii, spectra of filament curvature and torsion...
• Schoinoidal model’s spectrum (Kivotides & Leonard, PRL 2003).
Magnetic field generation...

- Schoinoidal model’s spectrum (Kivotides & Leonard, PRL 2003).
- Schoinoidal model’s third order structure function (Kivotides & Leonard, PRL 2003).
Magnetic field generation...

- Magnetic field component, linear magnetic induction equation:

\[
\frac{\partial B}{\partial t} = \lambda \nabla^2 B + \nabla \times (V \times B).
\]
Magnetic field generation...

• Magnetic field component, linear magnetic induction equation:

\[
\frac{\partial B}{\partial t} = \lambda \nabla^2 B + \nabla \times (V \times B).
\]

• In a more familiar fluid dynamic form:

\[
\frac{\partial B}{\partial t} + V \cdot \nabla B = B \cdot \nabla V + \lambda \nabla^2 B.
\]
Magnetic field generation...

- Magnetic field component, linear magnetic induction equation:

\[\frac{\partial \mathbf{B}}{\partial t} = \lambda \nabla^2 \mathbf{B} + \nabla \times (\mathbf{V} \times \mathbf{B}). \]

- In a more familiar fluid dynamic form:

\[\frac{\partial \mathbf{B}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{B} = \mathbf{B} \cdot \nabla \mathbf{V} + \lambda \nabla^2 \mathbf{B}. \]

- The following constraint applies:

\[\nabla \cdot \mathbf{B} = 0. \]
Magnetic field generation...

- Snapshot of vortex tube turbulence model flow as initial condition.
Magnetic field generation by turbulent vortex structures; $Re = 10^4$.

![Diagram](image-url)
• Magnetic and fluid spectra; $Re = 10^4$, $Pr_m = 0.4$.
Magnetic field generation by coherent turbulence structures

- Magnetic field - strain rate alignment cosines
 \[g_i = \frac{|(\mathbf{B} \cdot \Lambda_i)|}{|\mathbf{B}||\Lambda_i|} \quad (i = 1, 2, 3); \quad Re = 10^4, Pr_m = 0.4. \]
 \[\langle \Lambda_1 \rangle = 23.284, \langle \Lambda_2 \rangle = 0.482, \text{ whereas } \langle \Lambda_3 \rangle = -23.766. \]
Magnetic field generation...

- Tube to ribbon transition; $Re = 10^4$, $Pr_m = 0.4$.

![Image of magnetic field generation](image.png)
- Vortex and magnetic structures; $Re = 10^4$, $Pr_m = 0.4$.
Magnetic field generation...

- Magnetic field spiraling around a vortex;

\[Re = 10^4, Pr_m = 0.4. \]
Magnetic field generation...

- Thermal superfluid \equiv inviscid superfluid \oplus viscous, Navier-Stokes normal-fluid \oplus mutual friction force.

Magnetic field generation...

- Thermal superfluid \equiv inviscid superfluid \oplus viscous, Navier-Stokes normal-fluid \oplus mutual friction force.
- The thermal superfluid dynamo:
• Thermal superfluid \equiv inviscid superfluid \oplus viscous, Navier-Stokes normal-fluid \oplus mutual friction force.

• The thermal superfluid dynamo:
 • Thermal superfluid \leftrightarrow Electrically conducting fluid.
Magnetic field generation...

- Thermal superfluid \equiv \text{inviscid superfluid} \oplus \text{viscous, Navier-Stokes normal-fluid} \oplus \text{mutual friction force.}

- The thermal superfluid dynamo:
 - Thermal superfluid \leftrightarrow \text{Electrically conducting fluid.}
 - Navier-Stokes normal-fluid \leftrightarrow \text{Navier-Stokes fluid.}
• Thermal superfluid \equiv inviscid superfluid \oplus viscous, Navier-Stokes normal-fluid \oplus mutual friction force.

• The thermal superfluid dynamo:
 • Thermal superfluid \longleftrightarrow Electrically conducting fluid.
 • Navier-Stokes normal-fluid \longleftrightarrow Navier-Stokes fluid.
 • Superfluid field \longleftrightarrow Magnetic field.
Magnetic field generation...

- Thermal superfluid \equiv inviscid superfluid \oplus viscous, Navier-Stokes normal-fluid \oplus mutual friction force.
- The thermal superfluid dynamo:
 - Thermal superfluid \leftrightarrow Electrically conducting fluid.
 - Navier-Stokes normal-fluid \leftrightarrow Navier-Stokes fluid.
 - Superfluid field \leftrightarrow Magnetic field.
 - Mutual friction \leftrightarrow Lorentz force.
Magnetic field generation...

- Superfluid vortex dynamics (Idowu, Kivotides, Barengghi & Samuels, JLTP 2000):

\[
\frac{\partial X_s}{\partial t} = V_s + h_0 V_s + h \times X'_s \times (V_n - V_s) - h \times X'_s \times (X'_s \times V_n),
\]

\[
V_s(x) = -\frac{\kappa}{4\pi} \int_{\mathcal{L}_s} d\xi_s \frac{X'_s \times (X_s - x)}{|X_s - x|^3},
\]

\[
X'_s \equiv \frac{\partial X_s}{\partial \xi_s},
\]

\[
T_{\mathcal{L}_s}^t \rightarrow T_{\mathcal{L}_s}^{t+\Delta t}.
\]
Magnetic field generation...
Magnetic field generation...

- A snapshot of the vortex tube model normal turbulent flow.
Magnetic field generation...

- A snapshot of the vortex tube model normal turbulent flow.
- A seed superfluid vorticity.
Magnetic field generation...

- A snapshot of the vortex tube model normal turbulent flow.
- A seed superfluid vorticity.
- Is there a dynamo? (Kivotides, PRL 2006).
Magnetic field generation...

- A snapshot of the vortex tube model normal turbulent flow.
- A seed superfluid vorticity.
- Is there a dynamo? (Kivotides, PRL 2006).
- \(Re = 40, \gamma \approx 100\kappa. \)
Magnetic field generation...
Magnetic field generation...

- Normal-fluid (green line) and superfluid (red lines) energy spectra.
• Normal-fluid (green line) and superfluid (red lines) energy spectra.
Thank you for your attention!