CHAPTER 3

Existence, regularity, and constrained
suboptimality of competitive allocations
when the asset market is incomplete

John D. Geanakoplos and Heraklis M. Polemarchakis

In 1951, Kenneth Arrow and Gerard Debreu independently established
what is still today probably the central argument of economic theory:
They proved that any competitive equilibrium of an “Arrow-Debreu”
economy is Pareto optimal. In 1954, they jointly discovered a subclass
of economies, now referred to as convex Arrow-Debreu economies, for
which competitive equilibria always exist. Debreu (1970) introduced the
techniques of differential topology into economics and proved that the
competitive equilibria of smooth, convex Arrow-Debreu economies are
generically locally unique. In this chapter we extend the study of the ex-
istence, optimality, and local uniqueness of competitive equilibria to a
wider class of economies: The class of economies, suggested by Arrow
in 1953, in which the asset market is possibly incomplete. We show that
when assets pay off in some numéraire commodity, equilibria exist and
are typically locally unique, even when the asset market is incomplete.
However, when the asset market is incomplete, competitive equilibrium
allocations are typically Pareto suboptimal in a strong sense: The market
does not make efficient use of the existing assets.

The old proof of Pareto optimality (see, e.g., Lange 1942) essentially
assumed differentiable utilities and strictly positive competitive equilib-
rium allocations. One considered the problem of how to divide the aggre-
gate endowment to maximize the utility of one individual subject to the
constraint that no other individual suffer a loss in utility. It was pointed
out that the first-order necessary conditions for a strictly positive alloca-
tion, x, to be a local maximum to this problem are satisfied if the alloca-
tion is a competitive equilibrium. Moreover, it is now commonly known
that in a concave programming problem the first-order necessary condi-
tions are also sufficient for global optimality. Thus, if we add the hypoth-
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esis that all the utilities are concave and apply this argument for x in turn
to each individual, this old approach yields that competitive equilibria are
Pareto optimal.

The new argument for Pareto optimality introduced by Arrow (1951)
and Debreu (1951) does not require the differentiability of utilities, or even
utility representations at all, nor does it require convexity of preferences
or strict positivity of the equilibrium allocation. It depends on the fact
that in a competitive equilibrium all potential allocations can be unambig-
uously valued at the equilibrium prices. If an alternative allocation makes
an individual better off without harming anyone else, then the bundle al-
located to this individual must cost strictly more than the endowment,
while the bundle allocated to any other individual must cost at least as
much as the endowment (given local nonsatiation). But this contradicts
the feasibility of the alternative allocation. This new argument for Pareto
optimality is analytically simple and requires a minimum of assumptions;
it suffices, roughly speaking, that the preferences of individuals not dis-
play local satiation. What is demanding is the appropriate interpretation
of the notion of a commodity or a market: As argued in Debreu (1959),
it is required that commodities be differentiated, not only by qualitative,
but by temporal and contingent characteristics as well, and that there be
at the initial period, with all individuals present, a single market for the
exchange of all commodities so specified. If the market in contingent com-
modities is thus complete, individuals optimize under one budget con-
straint and one price system. Economic activity past the initial contracting
period is limited to the execution of contracts; further trading in subse-
quent periods is not permitted, nor is it necessary.

It was Arrow’s (1953) contribution to suggest an alternative to a com-
plete market in contingent commodities: a complete asset market. If, for
each time period and realization of uncertainty, a pure security exists that
yields one unit of “revenue” or of a numéraire commodity at that date-
event pair and zero otherwise, any allocation obtained as a competitive
equilibrium with a complete market in contingent commodities at the ini-
tial period can be alternatively obtained as a competitive equilibrium with
a complete market in pure securities in the initial period, and subsequent
spot markets.

In Arrow’s formulation, and in the more general model of Radner
(1968) in which there may not be a complete system of assets, markets in
commodities and assets are active at distinct periods and under alternative
realizations of uncertainty. In such a framework of sequential exchange,
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if the asset market is indeed incomplete, individuals face a nontrivial mul-
tiplicity of budget constraints and price systems, and the Arrow-Debreu
argument for the Pareto optimality of competitive equilibrium fails. In-
deed, so does the Arrow-Debreu proof of the existence of equilibrium,
as Radner (1972) showed in a general model, where assets are thought of
as claims on a vector of commodities indexed by states. Hart (1975) gave
an explicit example in such a general framework of an economy with in-
complete markets that has no competitive equilibrium.

In this chapter we consider economies in which the assets are real; but
they yield payoffs denominated in a single numéraire commodity - such
as gold. (Others [Cass (1984), Duffie (1985), Geanakoplos and Mas-Collel
(1985) and Werner (1985)] have considered the case of financial securities
where asset yields are in terms of units of account.) Individuals can buy
or sell short any amount of each of the numeéraire assets, in some limited
collection. After the state of nature is revealed, they trade in the spot
market with income derived from the sale of their initial endowments,
_ plus the deliveries of the numéraire good they receive or make as a result
of their portfolio holdings. Individuals are assumed, in equilibrium, to
have perfect conditional foresight: They may not agree on the probability
of the states, but they all understand what spot prices will prevail condi-
tional on the state. In addition we postulate that in equilibrium all the
asset and spot markets clear; in particular, there is no bankruptcy.

Let us consider a concrete example with three states of nature s=0, 1,
2, L+1 commodities and only two assets a =0, 1 with numéraire payoffs
in the three states given by the matrix ’

R=

S O =

0
1
1

We can think of state 0 as period 0 and s =1, 2 as states 1 and 2 in period
1. The above asset structure allows individuals to save from period 0 to
period 1, by holding a negative amount of asset 0 and a positive amount
of asset 1, but not to insure between consumption in states 1 and 2. One
can see at once that a competitive equilibrium for such an economy is not
likely to be Pareto optimal. The question we address in Section 7 is to
what extent the market uses efficiently the limited assets that do exist.
Before our analysis of the constrained optimality question, we prove
in Section 2 that competitive equilibria always exist as long as preferences
are monotonic for the numéraire good in each state, and arbitrage is pos-
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sible when assets are free. The first difficulty to overcome in the proof
is that since individuals are allowed to sell short assets, there is no a pri-
ori lower bound that can be assumed for asset demands. As Hart (1975)
showed, this is fatal for existence when asset payoffs are in multiple com-
modities or when asset payoffs depend more generally on prices (Hart
1974; see, however, Cass 1984, Duffie 1985, and Werner 1985 for the fi-
nancial asset case). Second, since pure insurance involves assets that pay
positive and negative amounts, some equilibrium asset prices may be neg-
ative; since asset demand is not continuous at prices equal to zero, we
must carefully choose the space of asset prices on which to apply a fixed
point argument.

" In Section 3 we show that under smoothness conditions, demand is
differentiable; and in Section 6 we use the same transversality techniques
introduced first by Debreu (1972), which we explain in Section 5, to prove
that equilibria are generically locally unique. This is in contrast to the
study of Geanakoplos and Mas-Colell (1985), which shows that there is
an essential real indeterminacy when assets pay off in units of account.

The question of what is the appropriate definition of constrained opti-
mality when the asset market is incomplete has been vexing at least since
Hart (1975) gave an example of an incomplete markets economy, which
has two competitive equilibria that are Pareto comparable or, alterna-
tively, in which a further reduction in the set of assets traded leads to a
Pareto improvement at equilibrium. Newbery and Stiglitz (1979) provided
a second example and intuition. Grossman (1977) gave a definition of con-
strained optimality under which the first two theorems of welfare analy-
sis still apply, but, as Hart has remarked, it seems absurd to say that the
economy is using its markets efficiently at one equilibrium when there is
another equilibrium in which everyone is better off. A satisfactory defini-
tion of constrained optimality that recognizes that the underlying reasons
for the incompleteness of markets may also limit a central planner has
only recently been given by Stiglitz (1982) and Newbery and Stiglitz (1982).
These latter studies, and also Greenwald and Stiglitz (1984), suggest that
constrained suboptimality is a general phenomenon. They do not, how-
ever, develop the formal arguments and analytical apparatus needed to
prove that claim.

We say that the asset allocation at a competitive equilibrium is con-
strained suboptimal if a reallocation of assets alone can lead to a Pareto
improvement when prices and allocations in the commodity spot markets
adjust to maintain equilibrium.!
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We show in Section 7 that, when the asset market is incomplete, the
portfolio allocation at a competitive equilibrium is generically constrained
suboptimal; this is true even if the portfolio reallocations are required to
satisfy every agent’s budget constraint at the original equilibrium prices.
In the context of our earlier example, this means that if only the individ-
uals could have been induced to save different amounts, they could all
have been made better off. The intuition for this result is as follows: An
asset reallocation in any economy has two effects on an individual’s util-
ity - a direct effect from the income transfer and an indirect effect due to
the relative price change in the commodity spot markets. When markets
are complete, the income reallocation caused by the price change can be
decomposed into a combination of assets that have already been priced
by the market. When the asset market is incomplete, it is generically the
case that the price changes will cause an income redistribution that the
market itself could not directly implement. In essence, the central plan-
ner has access to a wider class of assets than those directly traded. In Sec-
tion 7.2 we discuss some special, nongeneric cases where competitive equi-
libria nevertheless can be constrained optimal.

Our method of proof is reminiscent of the old necessary conditions for
local optimality, dressed up in modern matrix notation. We consider the
matrix of utility effects caused by the various portfolio reallocations, and
we prove that if the asset market is incomplete, for a generic economy,
this matrix has full row rank. It follows immediately that there is a port-
folio reallocation that makes everyone better off. '

1 The economy

Transactions occur in real securities called assets before the state of na-
ture is known, and then subsequently in commodities, after the state of
nature is known. States of nature are se S={0,1, ..., S}.2

Commodities are f e L ={0, 1, ..., L}. Commodity ¢ in state s is denoted
£(s). A consumption plan is a vector X = (..., X(s),...) € ESTDUFD A
state s, commodity 0(s) is the designated numéraire commodity.

Individuals, he H=1{0, 1, ..., H} have preferences over consumption
plans represented by utility functions W": ES*D(EA4D , B 3.4 For some
problems we shall assume that W is representable as a von Neumann-
Morgenstern expected utility, W”=ES€S 7(s)U"(s). Individuals have
endowments e’ g ES+D(EHD,

Assetsae A=1{0,1,..., A} yield returns, denominated in the numéraire.
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The return of asset @ in state s is r,(s), which may be negative or positive;
the vector of asset returns at s is 7(s) = (..., r,(s), ... ); the matrix of asset
returns or asset return structure is R = {r,(s)}i¢ $,an (S+1)x(A+1) ma-
trix. A portfoliois ye £ A+1. again, the sign of y, may be positive or neg-
ative - there are no restrictions on short sales. The asset market is called
complete if and only if R also has full row rank; equivalently, if and only
if any distribution of revenue across states can be attained by a suitable
choice of a portfolio. If §> A, the asset market is necessarily incomplete.

We allow free disposal of commodities, and hence we only need to’
consider nonnegative commodity prices: p= (..., p(s),...)eEY (S+DEL+D,
Asset prices are ge E 4+1. they may be positive or negative.

Given prices (q,p) eEA“ x ESTNEHD the budget set of individ-
ual % is defined as B"(g, p) = {(y,x)eEA“ ESTIEAD 4.y =0 and
p(s)-(x(s)—e(s)) < py(s)(r(s)-y), for all se S}.

A commodity allocation is x = (x": he H) such that

T (x"—e=o.

heH

A portfolio or asset allocation is y = ( y" : he H) such that

Y yh=o.
heH

An allocation is a pair (y,X).

A competitive equilibrium for the economy with real, numéraire as-
sets is a 4-tuple of asset prices, commodity prices, an asset allocation and
a commodity allocation, (g, p,y,x) which satisfies

EheH(xh—eh)=O if pi(s)>0forallseS, feL;

(¥, X,) is maximal in B'(g,p) forall he H.
For a given asset allocation y a spot market competitive equilibrium is a
pair (p, x) which satisfies

S (x—e")y=0 if p(s)>0forallseS, telL;

x"is maximal in B(p;y") forall he H.

The budget set B"(p; y") is defined by

B'(psy") = (x e ESTVED | p(s)-(x(s) —e"(5)) < po(s) (r(5)-»")
forall se S}.

That is, a spot market equilibrium allows individuals to optimize in their
choice of consumption bundles but not in their portfolio choice.



Compgtition and incomplete asset markets 71

A commodity allocation x is suboptimal if there exists an alternative
commodity allocation x’ such that

w'(x'"y=w"(x"y for all he H, with some strict inequality.

An allocation (y; x) is constrained suboptimal if there exists an alter-
native commodity allocation x such that

W"(x”h) = Wh(xh) for all e H, with some strict inequality;

there exists a commodity price vector p and a portfolio
allocation y” such that (p,x”) is a spot market competitive
equilibrium for the portfolio allocation y”.

Constrained suboptimality is a stronger notion; it recognizes the con-
straints imposed by the asset structure, which suboptimality does not.
Note that by the second welfare theorem the two notions coincide if the
asset market is complete.

This appears to be the most natural, fully tractable model with real as-
sets.5 Radner (1968, 1972) gave a general formulation in which it is impos-
sible to prove in general the existence of a full equilibrium. Hart (1975),
for example, showed that, if assets pay off in multiple commodities, then
it is possible to construct an economy with no competitive equilibria. In
the next section we show that under mild conditions competitive equilib-
ria with real numéraire assets always exist. One might think of our for-
mulation as an abstraction of the theory of general equilibrium with pos-
sibly incomplete markets under the “gold standard.” Geanakoplos and
Mas-Colell (1985) show how the “gold standard equilibria” can be used
to understand the set of “financial equilibria” when “money” is not tied
to any standard. There, these equilibria are more precisely called financial
securities competitive equilibria.

As early as 1953 Arrow defined a financial securities competitive equilib-
rium for the special financial security structure R equal to the identity. In
a general financial securities equilibrium, there is a given securities struc-
ture R, where 7, (s) gives the payoff of financial security (bond) b in state s
in units of account. The budget set B"(q, p) is now defined as BM"q,p)=
(7, x)e EAT' X ELHDSHD 1 4.y =0and p(s)-(x(s)—e(s)) < r(s)-y for
all se S}, and (g, p) is allowed to vary over EA*!x ELHDSD | Arrow
showed that, when R =1I (the case of a complete set of “Arrow securi-
ties”), an allocation is part of a financial securities competitive equilib-
rium if and only if it is an Arrow-Debreu equilibrium allocation. The



72 John D. Geanakoplos and Heraklis M. Polemarchakis

object of study of Geanakoplos and Mas-Colell (1985) is the set of finan-
cial securities equilibrium allocations for general R, when the rank R<
(S+1). ,

We return to equilibria in which the asset payoffs r,(s) are in units of
the numéraire good 0(s), a€ A, and se S. When R has full row rank and
the asset market is thus complete, the set of equilibrium allocations is
identical to the set of Arrow-Debreu equilibrium allocations. At first this
might seem surprising, since, for example, an asset a with payoff r,(0) =
—r,(1) =1 appears to fix the rate of exchange between commodity 0 in
state 0 and commodity O in state 1. But this is misleading, for the rate of
exchange also depends on the asset prices ¢ and the asset return structure.
To see this, let (B, x) be an Arrow-Debreu equilibrium with p>>0. One
can define the vector v >> 0 by v(s) = Py(s), s€ S, and g to be g = R'v.
Then (q, p,y,X) is a competitive equilibrium with real numéraire assets
for some y. The argument in the reverse direction requires Farkas’ lemma
and is given in the next section. ]

Although we have indexed the spot commodity markets by referring to
different states of nature, these could be reinterpreted, given the proper
asset structure R, as time and state indexed; the same analysis thus covers
a broad range of problems. One case of central importance occurs when
state 0 is interpreted to be period 0 and state s, fors=1,,...,S, is inter-
preted to be period 1 in state s. If asset 0 is given by ry(0)=1, ro(s)=0
for s=1,..., S, and all other assets pay r,(0) =0 fora=1,..., A, then we
can interpret our model as one in which individuals decide at the same
time on consumption in period 0 and their holdings of risky assets before
knowing the state that will be revealed in period 1.

Another interesting special case occurs when the set of date-event con-
sumption nodes can be represented as a tree [see Debreu (1959)]. Con-
sumers are supposed to know where in the tree they are when they act,
but not which of the successor nodes will occur. Utilities are given by
W (x) =Yes wh(s)Uh(x(s);s), and agents update by Bayes’ law. Sup-
pose also that at every date-event node s consumers can trade all future
commodities contingent on which successor node s” will occur. This is
a situation of complete markets in the sense of Debreu. It can be repre-
sented in our model by an asset structure R that associates to every node
s in the tree an asset a(s) such that r, (s)=1= — Ty (P(S5))> where P(s)
is the predecessor of s, and 7,5 (s") =0 for s’ & {s, P(s)]}.

With these introductory remarks out of the way, we now state our
assumptions:
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(A1) W"is continuous and quasiconcave on E f”)(””; the range of
W' can be extended to E U {—oo}.

(A2) e">0.

(A3) W’ is monotonic in commodity 0(s) for each s € S: Let £ be any
consumption plan that is nonnegative in every coordinate, and
strictly positive at 0(s) for some s € S. Then for all erf“)“‘“’,
whix+%)>wW"(x). .

(A4) When securities are free, there is arbitrage: There is y € E4*!
with Ry > 0.

(D1) R has full column rank.

(D2) W" is twice continuously differentiable, DW">>0, and D*W" is
negative definite on E 5D+,

(D3) The closure of the indifference curves of W do not intersect the
boundary of E\ DG+,

(S) The asset market is incomplete: A < S.

(CS) Every set of A+1rows of R are linearly independent, and there

is a portfolio y with r(s)-y#0 for all s€ S.

Under assumptions Al-A4 we shall show in the next section that com-
petitive equilibria exist. Note that under the von Neumann-Morgenstern
hypothesis, W"(x) = Yes ' (s)U"(x(s),s), A3 implies 7"(s) > 0 for all
s € S. Under the additional hypotheses D1-D3, excess demand for assets
and commodities is differentiable over the domain of “nonarbitrage” prices,
which we shall specify. Assumptions Al-A4 and D1-D3 also suffice to
guarantee regularity of the equilibrium set. Finally, we show in the last
section that asset markét equilibria are generically Pareto suboptimal
when A < S and even generically constrained suboptimal when CS holds.

2 Existence of compeﬁtive equilibria

The proof of the existence of anm asset market competitive equilibrium
turns out not to be much more complicated than the standard existence
proof for Arrow-Debreu equilibria pioneered by Arrow-Debreu (1954),
and refined by Debreu (1959). When the consumption sets are bounded,
the demand correspondences of the individuals are upper hemi-continu-
ous. The only difficulty is finding the appropriate convex, compact price
space on whose boundary aggregate excess demand is properly behaved.
Here it turns out to be the set of nonarbitrage prices.

The recent work of Werner (1985) and Cass (1984) shows that the diffi-
culties with existence in the Radner~Hart models are absent in models of
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financial securities competitive equilibria. Here we show that the same is
true for real numéraire assets, a convenient middle ground between the
purely nominal securities in the latter models and complicated vector-
- commodity assets in the former models. Of course, an equilibrium with
real numéraire return structure R is also a financial market equilibrium
with return structure R = R. Our equilibrium existence proof thus implies
the existence of financial equilibria. The importance of the distinction be-
tween financial securities and real numéraire assets is discussed in Geana-
koplos and Mas-Colell (1985). There are some other, minor differences
between Werner’s existence result and ours. He specializes to the case
where financial security 0 pays off only in state 0 and other financial se-
curities pay nothing in state 0. We have a more general asset structure. In
the Werner model, financial securities pay out nonnegative amounts in
every state. Strictly speaking, insurance is a transfer of wealth from one
state to another, and that is why we have not restricted asset payoffs to be
nonnegative. In practice what is typically called insurance is a transfer of
wealth from the current period to some subset of future periods. It may
thus be achieved by a combination of selling (going short) in the 0th Wer-
ner financial security, and buying another financial security with the ap-
propriate nonnegative payoffs. Our more general asset structure intro-
duces complications which we return to when we discuss A4 before the
proof of Lemma 2.

Lemma 1. Consider the truncated individual demand correspondence

d"(@, p; K) = (9, %) €argmax[W(x) | g-y =0 and p(s)- () =)
.x)e =po(s)(r(s)-y) for all se S},

where K € E4*T!x ES*+DU+D 45 a closed rectangle with center at the ori-
gin. Under Al1-A3, d "( P, q;K) is nonempty, compact, convex valued,
and upper hemi-continuous at each (g, p) € EAT' X ES VD with g0
and p(s)#0 for all se S.

Proof: By continuity and compactness d h(q, p; K) is nonempty; by con-
cavity and convexity, it is convex valued.

Let (q,, Pn)a (g, p) and (¥,,x,), (¥, x) Where (y,, x,) ed"(q,,p,; K).
Suppose that (9,%£) e {(¥',x')eK|q-y'=0 and p(s)-(x’(s)—e”(s)) =
Do(s)(r(s)-y")} and W"()‘C)>W”(x). We shall derive a contradiction.
Take \ <1 but sufficiently large so that Wwh(\%)>W"(x); by continuity,
it also follows that for n large W"(\%) > W”(xn). Define
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Sy=argmin{|p—y||q,y'=0J.
g

Note that for g #0, 9,,5. Now consider that
P(s)-(A£(s)—e"(s)) = py(s) (r(s)-N9,) <O

for all s, for n large, since p(s)-e”(s) >0 for all s and A < 1. But this is a
contradiction, for (\y,, Ax) is preferred to (y,,x,) for n large.
Q.E.D.

Letd(q,p; K)= EhH=0 d"(g, p; K) be the aggregate truncated demand
correspondence. Recall that the sum of upper hemi-continuous, nonempty,
compact, convex-valued correspondences is upper hemi-continuous, and
nonempty, compact, convex valued.

If (»",x")ed"(q, p;K), then q-y"=0 and p(s)- (x"(s) —e"(s)) =
DPots)(r(s) -yM), for all seS. Hence if (y,x)ed(q,p;K), theng-y=0
and p(s)-(x(s)— =4 e"(s)) = py(s) (r(s)-y). This is the modified Wal-
ras law that holds for economies with possibly incomplete asset markets.

We must look for the appropriate price space - one that is convex and
has an appropriate boundary - to apply a fixed point argument.

Commodity prices pose no problem. Since a separate budget constraint
must be satisfied at every state s, we may restrict our attention to

p=(..,p(s),...) e ALSTD = s¢ AL,

seS
where

AF= ip(s) eEL! |?2Lpg<s) = 1}.

Since we have allowed securities to pay off negative amounts in some
states, the equilibrium asset prices ¢ may well have to have some nega-
tive components. On the other hand, since demand is not upper hemi-
continuous at g =0, it is not immediately obvious what price domain to
limit attention.

Assumption A4 allows us to describe a convex, compact set of poten-
tial equilibrium asset prices, which we call nonarbitrage prices. The as-
sumption is trivially satisfied when assets pay off in nonnegative amounts,
or when the asset market is complete. If there are no assets, or only one
asset, then in equilibrium there can be no trade in assets. Thus, both the
no-asset and one-asset cases are isomorphic to models with one asset that
pays a strictly positive amount in every state, and there A4 applies. It
is perhaps curious that we need to assume the possibility of arbitrage in
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order to find an equilibrium without arbitrage, but the idea is clear: To
apply a standard fixed point argument, we must eliminate 0 as a poten-
tial equilibrium.

We say that the asset prices g€ E A+1 4o not permit arbitrage if and
only if there is no yeEA+1 with g-y<0and Ry >0.

Lemma 2. Suppose A4 and DI hold. Let
C={quA+1|q=R’v,veE§rS+”}.

Then € is a closed, convex cone. Furthermore, g € int C if and only if
g does not permit arbitrage. In particular, if ge C/int C, then there is
$ with g-»=0 and Ry > 0. Finally, thereis ge EAYYC.

Proof: C is by construction a finite cone. All finite cones are convex and
closed. Note that int C # ¢, for if v>>0, theng= R’veint C, since R has
linearly independent columns. Suppose g € int C. Let Ry>0. Since g€
int C, g—ey eint C for small enough positive ¢; that is, Rv=¢g—ey for
some v=0. Now suppose that g-y <0. Then v'Ry=(q-y)—e(y-y)<O0.
But then, if 7, =v,+§ for very small §, s€ S, o>>0 and still 'Ry <0,
contradicting Ry > 0. Thus if g € int C, and Ry >0, then g-y >0. So int c
consists only of no arbitrage prices.

Recall now that by hypothesis there is some y with Ry > 0. Hence it
follows from the above that 0 ¢ int C, and hence that C=E*T.

Take ge EA™!, g ¢ int C. Since int C is convex, we can find a nontriv-
ial hyperplane (y#0) H;= {quA+l |g-p=¢-p} through ¢ with g-9=
g-y for all ge C. Since 0€C, g-y<0and g-y=0forallge C. Since y#0
and R has independent columns, this means R > 0. So we conclude that
if g ¢ int C, then there is a  that gives rise to arbitrage at prices g. Note
that if § € C/int C, then in the above demonstration we must have an ar-
bitrage portfolio with -9 =0. Q.E.D.

For g=R've C, various interpretations of the vector v are possible.
Since its components are all nonnegative, one can think of v as a measure
on S. With this measure, the price of each asset is the expectation of its
future payments. In the language of finance, the asset prices g display the
martingale property.

Given any finite cone C S E**' as above, there is a hyperplane H (of
dimension A) in E A+Vguch that 05 g e C if and only if there is some A>0
with \g e HN C, provided that C contains no full line segment (otherwise
take H to be half the unit sphere).
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Let Q = HNC be the set of normalized security prices. QO, the interior
of Q relative to H, is the set of normalized nonarbitrage security prices.
Q is closed, bounded, and convex (acyclic absolute neighborhood retract
if H is a half-sphere). ‘

We are now ready to state and prove our main proposition in this
" section.

Proposition 1 (Existence). If A1-A4 are satisfied, a competitive equilib-
rium for the economy with real numéraire assets exists.

Proof: Without loss of generality, we may assume that D1 is satisfied,
since, once we have priced a maximal set of linearly independent assets,
the prices of the remaining assets are determined by arbitrage.

Consider a rectangle K with center at the origin in E4*! x ES+D(E+D
so large that it contains (0, 222’;0 e"). Let Q be as above. Consider the
correspondence ®X: Q x ALS+D x K — QO x ALS+D x K defined compo-
nentwise as follows: Let <1>3K(q,p, (73, 2)=d(g,p; K)— (0,2 e") be
the aggregate truncated excess demand correspondence. By Lemma 2 this
correspondence is upper hemi-continuous and nonempty, compact, con-
vex valued.

Define ®,(q,p, (¥,2))={gearg max;. g-y} and similarly let &,=
(.ors ®5(8),...), s=0,1,..., S, where

®,(q, P, (7,2))(s) = {P(s) € A" | p(s) e argmax ,c . P-2(5)}-
Since Q and the A’ are compact and convex, it is trivial to verify that
®, and ®, are upper hemi-continuous and nonempty, compact, convex
valued (acyclic if H is the half-sphere).
By Kakutani’s (Eilenberg-Montgomery’s 1946) fixed point theorem,
there must be some point

(g% p* y* 2*) € ®5(q*, p*, y*, 2*).
Note first that Ry*<0, for if r(s)-y*>0 for some s, then
q*+(0,...,1,...,0)R=gq

satisfies g-y*>0 and A\g € Q for some \ >0, contradicting the maximal-
ity of g*-y*=0. By Walras’ law it now follows that p*(s)-z*(s) <0 for
all se §, and hence that zj(s) <0 for all se S and { € L (otherwise there
would be p e AL with p-z*(s) >0 > p*(s)-z*(s)). But since x" =0, it fol-
lows from z*=<0 that |x"| <|Z,. . e"| for all A.

Now let K, be a sequence of successively larger rectangles. For each n
there must be a fixed point [g, pX, yi=3,cy V' 2t =3,y (X —e")]
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for X, From the above compactness of the |x*| it follows that by pass-
ing to convergent subsequences we must have g}, g*, p}, p*, and for all A,
x;‘,fx*h. Suppose that pg(s) >0 for all se S. Then

[p*(s)(x*"(s)—e"(s))] forallseS

1
rey= p5(s)

has a unique solution y*" = lim, y,’;”. It is immediate that

(@5 p* ¥ = (o ) x = (i, L)

xh

is an asset equilibrium. For large n, (y*", x*") is interior to K,, and hence
by continuity and convexity of W", (y*", x*") is maximal in B"(*q, *p).
By continuity, if y*EEheHy*h then g*-y*=0 and from the first para-
graph, (Ry*) <0. But then y*=0, for by hypothesis R has independent
columns, and if Ry*<0, then R(—y*) >0, and consumer /4 could better
choose y” = y*"+(—y*), contradicting the maximality of (y*", x*") in
B"(g*, p*). Finally, if y*=0, then by Walras’ law p*(s)z*(s) =0, and
since z*(s) < 0 it must be that z;(s) =0 if pj(s)>0.

It only remains to check that it is impossible that lim,, _, ., p§(s), =
pi(s)=0for some se S. Suppose pi(s)=0. Let u,(s) be the unit vector in
E S+ in the 0(s) direction. For any consumer /, let k=min,_; e;'(s);
by monotonicity, W (x*"+ kuy(s)) > w"(x*"), and by continuity of W*,
since (pE(s),), 0 and x*ix*" Wh((1—(p§(s)),)x*" + kuy(s)) > W"(x:")
for large enough n. But if pj(s), <1, then

[(1=(p3(s),)y*", (1= (DE(s)),)x2" + kuy(s)] € B'(qr, pINK,,
contradicting the fact that (y2",x*"yed"(q’, p?;K,). Q.E.D.

3 Continuous differentiability of demand

We have shown in the last section that the interior of C is the set of non-
arbitrage asset prices, an open set in EA*!. If g eint C, then there is no
y#0 with ¢-y=0and Ry =0, if R has independent columns. Let (g, p)e
int Cx E SFVE+D 1t follows that the demand d (g, p) is nonempty: With
‘positive prices p there is only a compact set of y which satisfy g-y=0and
leave consumer 4 with nonnegative wealth in every state.

We shall 'now show that if A1-A4 and D1-D3 are satisfied, the indi-
vidual demand d”(q, p) is a continuously differentiable function on

int Cx E S+,

Clearly d"(q, p) is a singleton and lies in E**'x E S+ DE+D,
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Without loss of generality; po(s)=1, s€S. The necessary and suffi-
cient first-order conditions for an interior optimum are

D, W"—\(s)p(s)=0 }
x(s) 4
for all se S,
p(s) = (x(s)—e"(s))—r(s)-y=0,
NR—-pq=0, q-y=0,

for A\=(..., \(s), ...)eE:f:t1 and peE. Totally differentiating the first-
order conditions, we obtain the matrix of coefficients

D*W P 0 0
P 0 R
A= 0
0 R 0 g¢q
0 0 ¢ 0

From the implicit function theorem, continuous differentiability obtains
if |A| # 0. Suppose that for some 2= (%, X, , i), AZ=0and so0 (2)’A(2) =
0. Multiplying out one finds that from the negative definiteness of D*wh,
#=0. Since p(s)#0 for all se S and g#0, it follows that As) =0 for
all se S and 4 =0. Finally, since R has full colinear rank, y =0 as well.
Hence Z =0, which completes the argument. ,

The aggregate demand function d(q,p)=(y(q,p),x(q,p))'and the
aggregate excess demand function

£@,p) =g, p),x(q,p)— (0,2, e

are similarly well defined and continuously differentiable on E**'x E(SFDE,

4 The space of economies

Rather than concentrating on an arbitrary fixed economy, we now con-
sider a broader class of economies, within which we shall establish prop-
erties of “typical” economies. Consider an open set I CE LS:”(“”(H +h
of possible endowments for each of the H+1 agents. Assume that [ is
bounded and that the closure if I, I, does not intersect any boundary:
That is, assume all possible endowments are bounded away from zero
for every commodity.

We have already described our hypothesis on w". What is important
is that on some large but bounded rectangle containing the largest pos-
sible aggregate endowment from 7, the W' are twice continuously differ-
entiable and strictly concave in the interior, and satisfy the previously dis-
cussed boundary condition. Note that adding to such a W' a sufficiently
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small multiple ef of any smooth function f (f must be smooth on the
" boundary as well) will produce another utility V'= W+ e f also satisfying
the same assumptions. We shall take our space of utilities W to be a finite
dimensional manifold of utility functions as above that is sufficiently rich
in perturbations. Explicitly, if We W and ef is quadratic and separable
between states, then for all sufficiently small ¢, V'=W+e¢fe W. Note that
if W' is of the form W' =33_, n"(s)U"(s) then so is W+ef.

In the remainder of the chapter we shall argue that certain properties
hold for “nearly all” choices of economies (e, W)e E=1X wH+! In Sec-
tion 5 we describe the mathematical technique of transversality we shall
use in Sections 6 and 7.

5 Transversality

The crucial mathematical idea we use to establish our generic results is
the so-called transversality theory. Debreu (1970) was the first to apply
these ideas to the study of economics.

Suppose that M and N are smooth m- and n-dimensional manifolds, re-
spectively, lying in some finite dimensional Euclidean space. Let f: M—>N
be a smooth map.¢ Let 0 be a point in V. We say that f is transverse to 0,
and we write £ /0, if for all xe M with f(x)=0, Df |, has full rank n.
Note that if 7 < n, then it is impossible that Df | , has rank #; in that case
fR0if and only if £71(0) is empty.

If &0, then f ~1(0) is either an m — n-dimensional manifold, or else
empty. In particular, if m=n, and f71(0) is not empty, then f0)isa
zero-dimensional manifold, and thus is a discrete set of points. If KCM
is any compact set, then f ~1(0)N K consists of at most a finite number of
points. '

Consider now a third manifold L, of dimension £, and a smooth func-
tion f: L X M — N. Suppose that f & 0. We know from the preceding dis-
cussion that f~'(0)CL XM is an (£ + m— n)-dimensional manifold, or
else empty. Let x be any fixed element of L, and consider the smooth func-
tion f,: M — N given by f,(y) = f(x,) for all ye M. A natural question
arises: Is it likely that f, is transverse to 0? Likely can be taken in two
senses. With any manifold there is a natural definition of measure zero
or null set. So we might say that likely means for all x € L except those
x in some null set. Recall that any set whose complement is null must be
dense. Alternatively, we might take likely to mean for all x in some open
and dense set.
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Transversality theorem. Let L, M, and N be manifolds of dimension ¢,
m, and n, respectively. Let £ f 0, for a point 0 € N. Then except for a null
set of xe L, f, 7 0. Moreover, for any compact set K C M, the set of x in
L for which f, f 0, when f, is restricted to K, is open in L. In particular,
if f‘l(O) c LxK, for some compact K C M, then the set of x in L such
that f, /0 is open, dense, and its complement is null.

We call any open, dense set with null complement a generic set. The
two cases of most importance to us will be when m = n, or when m <n.
Suppose m=n, and f /0, and f71(0)c L xK for some compact K. We
can conclude that for a generic set D C L, if x e D, then f, fi 0 and fx_l(O)
is a finite set. If m<n and ff 0, then for a generic set DCL, if xe D,
then f,”'(0)=D.

Let us see how the transversality theorem can be used to show that an
n X n matrix is generically invertible. This shall be the basis of our proof
in Section 7. The set R"*" of matrices is certainly a manifold. Let e;; be
the matrix that is 0 everywhere except at the (i, j)th element, which is 1.
The matrices e;; form a basis for the manifold of nxn matrices. Consider
also the compact (n—1)-dimensional manifold

S”_l={zly ceesdp |27=| Z,‘2=1}-

Let f: R""x S"~ ! R" be defined by (A, z) =zA. Note that f is smooth.
Moreover, A is invertible if and only if f A"(O) is empty. Suppose that we
could show f /0. Then by the transversality theorem we could conclude
that for a generic matrix 4, f, 7 0. But f, maps an (n—1) manifold into
a »n manifold; hence, as we have said, it can be transverse to 0 only if
f A_I(O) is empty, that is, only if A is invertible.

Thus, to conclude the proof that a generic matrix is invertible, it suf-
fices to show that f 0. Let e; be the jth unit vector in R”. We must show
that if 7’4 =0, then for any direction e ; we can find some directional de-
rivative of f, evaluated at (A4, Z), that gives a multiple \e; of e, A#O0.
Note that

of | _.

o, A,zfziej.

Since there must be at least one element Z; of Z€ $"~' that is nonzero, we
conclude that indeed Df | 4 ; has full rank, and hence that f /0.

In fact our proof can be slightly modified to produce a stronger result.

Suppose that we replace the set of all matrices with a smaller manifold L
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that has the property that for any 4 € L, small symmetric perturbations of
A are also in L. In other words, assume that we can have derivatives with
respect to e;; +e;;. Then once again consider f: L X S"1LR", f(A,z)=
zA. Let 274 =0. Let e; be given. If Z;#0, then

| s
dej;+ej;)

- J
Az

gives a nonzero multiple of e;. If Z; =0, take some i/ with Z; #0. Then

v
3(e,-j+ej,-)

A,z
which is again a nonzero multiple of e;.

One final fact that we use is that if D’ is generic in D, which is generic
in E, then D’ is generic in E.

6 Regularity

In this section we prove the following two propositions:

Proposition 2 (Regularity). If A1-A4 and D1-D3 are satisfied, then for
any choice of utilities W e W ! there is a generic set (W) of endow-
ments in 7 such that for every economy (e, W), with e e (W), the set of
competitive equilibria’ is a continuously differentiable function of the
endowment allocation e.

Proposition 3 (Strong regularity). If A1-A4 and DI1-D3 are satisfied,
there is a generic set of economies D C E on which

the set of competitive equilibria is finite, and is a continuously
differentiable function of the endowment and utility assignment
(e, W);

the spot market competitive equilibrium corresponding to
any competitive equilibrium portfolio allocation is, locally,
a continuously differentiable function of the portfolio
allocation vy.

Proof of generic regularity: Without loss of generality we may assume
that asset O satisfies r(s)=0 for all s=0, ..., S. In other words, if y'=
(1,0,...,0), Ry>0. It follows that for geint C, g, 0, and hence we
can normalize asset prices by setting q,=1. Similarly, we take commodity
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0(s) to be the numéraire in each state s. The price domain is thus M =
EAXE fLS:”L. This is an open set, and hence a manifold, of dimension
A+(S+1)L. The excess demand function for assets and commodities
other than the numéraire a=0 and 0(s), s € S, we denote by

f=(,2): EXM—EAxESTDL,

no confusion should arise. Let us now fix the utility allocation W. On ac-
count of Walras’ law if all but the numéraire markets clear then they do
too, so fw 1(0) is the graph of the equilibrium correspondence. Let us
check that fy /0. Given an element (¢, g, p) € f“?‘(O) and any spot com-
modity j(s), we can look at the change in excess demand when agent 0’s
endowment of good j(s) is increased by 1 and the endowment of good
0(s) is decreased by p;(s). Evidently, demand stays the same, but now
supply in the j(s) market has increased by 1, so there is a net effect of
,...,—1,...,0) on excess demand. Similarly, for any asset a=1, ..., 4,
we can increase agent 0’s endowment of good 0 in state s by r,(s) —q,7y(s),
for each s =0, ..., S. Clearly, the effect on agent 0’s demand will be a de-
crease in asset @ by 1, an increase in asset 0 by ¢, and nothing else. Thus,
by varying over assets =1, ..., 4, and commodities s and s(j) (s=0, ..., S,
j=1,...,L), we can show fy £ 0. Notice that we have shown that Do fy
has full rank, not using prices, or endowments for agents 1, ..., H at all.
It is also easy to see, given that I is contained in some compact set, and
hence has compact closure, that fy 1(0) c I x K for some compact set K.
Hence we can apply the full transversality theorem, deducing that for

any utility allocation W and a generic endowment e € I(W), f, w, 0.
Q.E.D.

Proof of generic strong regularity: The proof of generic strong regularity
is almost as simple. Let N=E XM and let f:N—»EAxE(S“)L be the
non-numéraire excess demand function, this time with utilities free to
vary as well.

Consider for each he H the function 2": EA*!x E(SHDE pG+DE
given by 2"(y", p), the excess demand by agent /# for commodities £(s),
ses, £=1,...,L, given that the agent’s portfolio is fixed at yh. Let

5. p(HADA+D) o o (S+DL (S+1L
3 E XE "> E

be given by 2(y, p) =2(3°, ...,y", p) =3, . 2"(»", p). We must show
that for a generic economy (W, e) in E= wH+1x 1, if y is an equilibrium
portfolio allocation and if p is the corresponding vector of commodity
prices, then D, Z(y, p) is invertible.
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The essential idea of the proof is borrowed from demand theory. We
know that for any consumer, say 2 =0, if we perturb the second deriva-
tives D2W", without disturbing the first derivatives DW" at the point of
demand x”, given prices p and income specified by y”, then the demand
2"(y", p) will be unaffected at the old ( " p), but the derivative Dpz‘h
can be altered by any symmetric matrix K. [Recall the Slutsky equations
with a single budget constraint: D,z =K —vz’, where K is symmetric and
negative definite, but otherwise K and v can be chosen arbitrarily by vary-
ing ‘D*W, leaving p and z’ fixed - see Geanakoplos and Polemarchakis
(1980).]

Consider now the function

G:NXS(S+])L-]—’EAXE(S+”LXE(S+])L

given by G(n,r)=(f(n),r'D,Z) where n=(e, W, g, p) and where Z =
Z(e,W,y(n),p) and D,Z is the Jacobian with respect to the last argu-
ment, holding y fixed. The vector r is any element of the sphere S (S+DL-1
of dimension (S+1)L—1.

From the foregoing proof that f 0 and from the remarks on the ge-
neric invertibility of matrices admitting symmetric perturbations given in
Section 5, together with our observation that by varying the utility wo
of agent 0 in the right way, it is possible to perturb D, Z without changing
f, it follows that G 0. Hence, by the transversality theorem, for a ge-
neric choice (e, W)€ E, G, w) 1 0. But then since the domain of G, w,
has dimension one less than the range, G(;,lw)(O) = ¢. Thus for a generic
(e, W)eE, (e, W) is aregular economy and at each equilibrium r’'D,2=0
has no solution, that is, D, 2 is invertible and (e, W) is strongly regular.

Q.E.D.

7 Suboptimality

Let us suppose that there are at least two assets. We can imagine 2H in-
‘dependent allocations of the assets. Let " be the amount of asset @ that
individual O gives individual #’, a=0,..., 4, h'=1,...,H. If a” is small
enough, then by our strong regularity theorem, after the transfer is made,
it is possible to calculate the unique small change in the spot market al-
location and prices that will clear those markets. Thus, it is possible to
calculate the effect on the final utility levels of all the individuals resulting
from such a reallocation of assets between two of them. One can imagine
the (H+1)x [H x (A4+1)] matrix expressing the derivatives of W' with
respect to a”:
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01 11 12 . IH
WO
w! WY h'e H/(0)
: A={ah }heEH/
wH

Notice in the diagram we have listed explicitly only H +1 of the possible
columns. Clearly there are many more.

The remarkable property is this: To prove generic constrained sub-
optimality, it suffices to show that the matrix A has full row rank! For
then in particular there is an infinitesimal change da”’ in the various a”
that increases each W". This matrix formulation of suboptimality was
first articulated by Smale (1974).

Let us consider more carefully whether we should expect this matrix
to have full rank or not. Note first that A4 is the sum of two matrices, A =
T+ P, where T is the direct transfer effect on utilities and P is the effect on
utilities caused by the price redistribution. Let us concentrate first on 7

Ol ll 12 13 lH

wo -4y —4, —4, —4, —4q,

w'lq gq 0 0 0
- w*lo 0 gq 0 O
Wil o 0

wilo o 0o 0 g
We have normalized the utilities by the appropriate marginal utility of in-
come. One sees at once that the matrix T does not have full row rank:
Indeed, letting u be the vector in E H+1 consisting of all I’s, #'T'=0. The
redistribution of assets alone, without any further change in the spot mar-
kets, will not cause a Pareto improvement. On the other hand, looking at
the columns 14, ...,17 (assuming g, #0), it is clear that the rank of T is
already H.

7.1 Suboptimality

Proposition 4 (Suboptimality). If the asset market is incomplete (S), and
if A1-A4 and D1-D3 are satisfied, then for any economy (e, W)e D, a
generic set, all competitive equilibria are suboptimal.
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Proof: Consider another asset « not in the span of R, and now replace
column 0 in 7 with o', getting the matrix 7. We can easily show that for
a generic economy, at each equilibrium the corresponding T has full row
rank. In fact, by inspection of T it is obvious that if the sum of elements
in the column «' is not equal to zero, then 7" has full row rank.

Let G: N— EAx ESTVLx E be given by G(n) = (f(1), Zpen @h)s
where o} is the Ath element in the column o' evaluated at assignment of
goods given by f(y), where n=(e, W, g, p). We shall show now that it
is always possible to find a linear perturbation of individual 0’s utility
w° that will leave f and «,, h=1, ..., H, unaffected, but will change o).
Since we have already shown that f 0, this will imply that G 70, and
that G ~'(0) = ¢; hence Yhen @, #0 whenever f(5)=0.

Perturb W° by the linear function x — A-x given as follows. Since the
asset o payoff is not in the span of R, we can find Ay = (A,(s); s € S) such
that Ay R =0 and yet Aj-a# 0. That is, if we perturb the 0(s)th marginal
utilities of W° by Ay(s), s€ S, then the marginal utilities to agent 0 of
assets a=0,1, ..., A are all unchanged, while that of the hypothetical as-
set does change. Hence a(l) must be different. On the other hand, if we let
Al(S)=py(5)Ay(s), s€S, £=1,..., L, then individual 0’s demand for com-
modities and existing assets (given that « is unavailable) is left unaltered.

Q.E.D.

7.2 Constrained suboptimality

To prove the generic constrained suboptimality of competitive equilib-
rium allocations when the asset market is incomplete is of course much
more difficult than proving Pareto suboptimality, because it must be done
with the existing assets. For ease of notation, and not because it makes
the proof easier, we shall assume W " is separable:
whx)= T w"(s)U"(x(5);5).
ses

A central role in our analysis is played by the vector of marginal utili-

ties of the numeéraire good over the different states of nature:

aUh(x(s);s)

vi=(...,v/(s), ..;), where V/(s) =
axy(s)

/[Lh for s=0,1,...,S.
Recall that at an equilibrium (g, p,y, x), we must have RV"=gq for all
h e H. We have already seen that when asset markets are incomplete, then
generically the vectors v" are not equal.

Consider a strongly regular economy (W, e) and one of its competi-
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tive equilibria, (g, p,y,x). Recall that by definition the associated excess
demand function, with the portfolios y" held fixed, for the (S+1)L non-
numeéraire commodities given by Z(y, p) has D,Z invertible. We can thus
calculate the change in equilibrium spot prices when y is perturbed from
the implicit function theorem:

()  dp=-(D,2) (D) dy.

This expression can be made more explicit after we introduce some no-
tation. Let V"e ES+DL be the vector of income effects. We can think of
V" as a (S+1) list of L-vectors, where the L-vector V(s) gives the addi-
tional consumption that would occur in the L goods, £(s) =1(s), ..., L(s)
given an extra unit of state s income. Notice that the separability hypoth-
esis allows us to assume that an extra dollar in state s has no effect on con-
sumption in state s’ # s. Define a list o as an ordered collection of (S+1)
i X j matrices. Suppose £ is a list of (S+1) j X k matrices. Then we shall
write a X 8 to mean the list of (S+1) i X k matrices obtained by the com-
ponentwise product of « and (.

Let us return to our expression for dp. Recall that a” is the gift of
one unit of asset by agent 0 to agent 4". Let R, be the ath column of R.
Think of R, as a list of 1x1 matrices; then for column a,

(i)  dpr=—(D,2) " (V"'=V°)xR,da".

Let 2" be the (S+1)L vector of excess demands of agent h. We can
think of 2" as an (S+1) list of 1 x L matrices. We can now write the ex-
pression for the change in utility dW" given a change in the portfolio al-
location dy (using the envelope theorem):

(i)  dw'"=v"Rdy"-v"-("xD,p).

From this expression it is easy to derive the matrices A =T+ P. To calcu-
late W "/da"’, for b’ #0, set dy)'=1= —dy? and dy!’ =0 for all other
h” and a’. )

The first term in (iii), V”-Rdy" is the direct effect of the transfer of
assets dy”, assuming all prices remain constant. It can equivalently be
written g-dy”. The second term is the effect on utility produced by the
change in relative prices p stemming from the portfolio change dy.

We must now show that for a generic economy, there is no vector r e
S the H-dimensional sphere, with r’4=0. By combining expressions
(i), (i), and (iii) we see that there are a number of special cases where r’' =
(1,1,...,1) solves r’A =0, and hence allows for constrained optimality.
[Most of these cases have been pointed out by Stiglitz (1982).]
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7.2.1 Some nongeneric examples where constrained optimality is possible.
First, suppose that markets are complete, so 4 =S. From Arrow’s (1953)
analysis, we know that we must be at a full Pareto optimum. We can see
that locally, in our analysis, by checking that if R is square, then R'V'=
¢ has a unique solution V" so all the V" are the same, and we must be
at a full local Pareto optimum. Of course, any Pareto optimum must be
a constrained optimum. Indeed, taking r=(1,...,1) allows r’A=0. For
the first term of (iii), corresponding to the T matrix, we already saw that
(1,...,1)T=0, no matter what the v" since $pey dy"=0and R'Vl=q
for all &. As for the second term, when all the V" are identical, we obtain
Shen V(@ xdp)=V"- (S, ey 2" xdp)=V"-0-dp =0, since in equilib-
rium ¥, 4 2"=0.

There are other cases when we do not have full optimality, and yet we
may have constrained optimality. Suppose that A < S, and that the V" are
not colinear at some equilibrium. If at the equilibrium there is no trade,
2" =0 for all 4, then the second expression disappears, and again we must
have (1,...,1)A=(1,...,1)T=0.

Alternatively, if V=¥ for all #’, then we see from (ii) that once again
the second term in (iii) disappears. Relative spot prices will not readjust
when income is redistributed among the agents. The standard examples
of equality among income effects occur when they are all equal to zero.
For example, if there is only one good, good 0, in each state, then of
course nothing is ever spent on goods 1, ..., L. This is the case studied by
Diamond (1967), for which he proved constrained optimality. Another ex-
ampleis where W"=3__¢ 7"(s)U"(x(s);s) and each U”(s) can be written
U"(x(5), X,(8), -+ -, X1 (8)) = Xo(8) + U"(x, (), ..., x,(5); 5), that is, the
case of constant marginal utility of “money” (the numeéraire good).

A final case to consider is where all individuals # have identical and
homothetic von Neumann-Morgenstern utilities, wh= Yses w"(s)U(s).

In the next section we show that all of the above cases are fortuitous
accidents. If we are allowed to perturb the endowments, typically there
will be trade in equilibrium. If we are allowed quadratic perturbations of
the utilities, then typically the income effect terms V" will be distinct.

Before moving to the formal proof, let us note that if the portfolio
reallocation dy were required to satisfy the budget constraint g-dy"=0
for all A, then the direct effect would entirely disappear. The second term
would be slightly altered, giving

h
=" {z‘hx [—(Dpz‘.)”l(V”'— Vo) x (Ra— Z—ZRO)] } :

The same special cases of constrained optimality apply here as well.

(iv).
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7.2.2 Proof of constrained suboptimality

Proposition 5 (Constrained suboptimality). Suppose 0<2L <H < SL. If
the asset market is incomplete, S, and if A1-A4, D1-D3, and CS are satis-
fied, then for any economy (e, W) € D, a generic set, all competitive equi-
libria are constrained suboptimal as long as there are at least two assets,
(A+1)=2. If (A+1)=3, this remains true even if the reallocation of
assets must satisfy the asset budget constraint for each individual at the
equilibrium asset prices.
. /

Remark: An upper bound on H is necessary if Pareto improvement is
to take place through reallocations that satisfy the original budget con-
straint. From (iv) we know that we can write

D,W"=(V"x2")-D,p,

and there cannot be more than (S+1)L linearly independent vectors
(Vhxz").

Proof of constrained suboptimality: Suppose that 0 <2L < H < SL and
that D is a generic set of economies such that all economies in D are regu-
lar and strongly regular, and each of their equilibria satisfy:

(1) For the H+1 different portfolio reallocations dy given
by d0',d1}, ..., d1", the (S+1)L-dimensional vectors
D, pd0',...,D, pd1™ are linearly independent, even if
attention is restricted to any SL of their coordinates
(by ignoring an arbitrary state).

(2) Given any vector re SH it is possible in at least S of the
S+1 states s to arbitrarily perturb X, _ 5 r'v(s)z"(s) by
perturbing the economy (e, W) in D without changing
aggregate excess demand, or the derivative of aggregate
excess demand D, 2 or the income effect terms V" for any
he H, all evaluated at the given equilibrium (g, p,y,X)
for (e, W).

Notice that condition (1) is at least possible if H+1=<SL, and con-
dition (2) is possible if H > L. Notice that (2) implies that it is possible
to alter the weighted sum E,;E H r"v"(s)z"(s) without altering the sum
ZheH z"(s) of excess demands. We shall show that in fact there is a ge-
neric D where both (1) and (2) hold. Clearly (2) could not hold for r =
(,...,1) if all the V” were identical under all perturbations of (W, e).
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Given (1) and (2), let N=DxE*xE{$*"" and consider the map F:
NxSH 5 EAx EGSTVEx Ef 1 given by F(y,r) = (f(n), r’A), where 7 is
an economy and equilibrium, f is the non-numéraire excess demand func-
tion, re S, and A is the matrix T+ P of utility effects of the H+1 port-
folio reallocations described in the last section. Since we have already
shown that f /0, it suffices to show that by perturbations in D that leave
f unaffected, we can make the function u(n, r) =r’A transverse to 0. We
know from the last section that for each column a” of A, we can write
the corresponding entry of r’/P=r'(A—T) as:

u(n,r)=< EH(rhV"XZh))'(Dypdah').
he

From hypothesis (2) we know that for SL coordinates we can perturb the
vector y= i r"v"x 2"y arbitrarily, and from hypothesis (1) the vec-
tors dp,»w =(Dyp da") are linearly independent even when restricted to
those SL coordinates. Hence for each column of the P matrix there is a
perturbation of the economy (e, W) that changes v in a way which has
nonzero dot product with dp,», and zero with all the other H vectors of
price changes. At the same time this perturbation leaves the aggregate ex-
cess demands, hence f unchanged, and also the derivatives D, Z. But re-
call that each column dp,» = (D, p) da” = —(D,2) "’(Vh'— 149 xR,,dah',
and by hypothesis (2) none of this is changed by the perturbation, nor is
r'T.

Thus, we have shown that by perturbing (e, W) we can change any ele-
ment of r’A, without changing the others, and without changing f. This
implies that F #0. But then for a generic set of economies D'C D CE,
if (W,e)eD’, then F, w, 0. But the domain of F, y, has one less di-
mension than the range, hence F, (;V', 0(0)=. Thus, for a generic (e, W)
in D, if f(e,W, g, p) =0, then r’A4 has no solution. In other words, for '
a generic (e, W) € E, all its equilibria are constrained suboptimal: Thus
to verify our proof, we need only check that there is a generic set D of
strongly regular economies that satisfy conditions (1) and (2). ‘

Before proceeding to this part of the proof, notice that we have made
no use of the direct utility effects of the transfer. Exactly the same theo-
rem would hold if in addition we required that g-dy”"=0 for all he H.

"’(We would then need to require at least three assets.)

Let us begin by reviewing what can be changed by perturbations of the
utilities. Note that [as shown, for example, in Geanakoplos and Polemar-
chakis (1980)] the Jacobian (with portfolios held fixed) of non-numéraire
excess demand 2”(p) at a point p in state s may be written

Ni(s)K(s)—V"(s)z" (s,
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where K is symmetric and negative definite, but otherwise K #(s) and V' (s)
can be perturbed arbitrarily by altering the second derivatives D*U"(s) at
x"(s) = e"(s) 4+ z"(s) without changing the demand at p. To verify that (1)
generically holds, we must show that (V'—V?) X R, and vh—v? X R,
for h’e H/{0} are linearly independent when restricted to any SL coor-
dinates at every equilibrium of a generic economy. Note first that, on ac-
count of CS, perhaps by relabeling assets, we may assume that 7,(s) #0
for all s € S. We also know from CS that there is another asset, say 0, such
that restricted to any S states R and R, are linearly independent. To verify
condition (1) then it suffices to use our standard transversality argument.
Take F'=(f, g), where f is excess demand and g = 0 only if (1) is not met.
Then, since we can perturb the V", and hence g, without disturbing f,
generically F ~1(0) = @. We have given this argument too many times to
repeat it again formally here.

As for condition (2), note again that if A/ = L, it can be shown in the
usual manner that for any set of L +1 distinct individuals, A, ..., A, , the
differences V"o(s) — V"1(s), ..., Vo(s) = V"L (s) are all linearly indepen-
dent for all s at any equilibrium of a generically chosen economy. In par-
ticular, it follows that any vector Ae EX may be written as a linear combi-
nation of these L differences. From now on D shall denote the open, dense,
full-measured (i.e., generic) set of economies that are regular, strongly
regular, to which condition (1) applies, and for which at any equilibrium,
and state s, and collection of L+1 individuals, {¥V'"'— V"0} span E*.

We now want to show that we can perturb a weighted sum of indi-
vidual excess demands without disturbing the aggregate excess demand
(unweighted sum) or its derivatives. It is not difficult to increase individ-
ual 0’s excess demand and decrease some other individual’s by the same
amount, thus changihg the weighted but not the unweighted sum. This,
however, is not enough because from the Slutsky equation we know that
such a change would affect the derivatives of the excess demand. Our
method consists of choosing changes in the excess demands that produce
symmetric changes in the Jacobian of the excess demand, which can then
be undone by simultaneously perturbing the utilities.

Consider now an arbitrary perturbation A of the endowment of agent
hy’s non-numéraire L commodities in state s at some equilibrium (g, p) of
an economy in D. Perturb the endowment e(’]’ (s) by just the right amount
A, (s) to keep A’s income constant at the equilibrium spot prices p(s),
Ay(s)+ (s)-A=0. Choose another consumer 4’# A, and perturb the 4’
endowment (e(')’/(s), e"(s)) by —(Aq(s), A). Then aggregate demand is un-
changed though individual 4,’s excess demand has changed by —A. But
we can do even better than that, since the perturbation to 4, and 4’ alone
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may change Dpz\.‘JLet us write A =YL, A’, where each A'is a scalar mul-
tiple of Vhi(s)— V'o(s) for the L+1 distinct individuals Ay, &y, ..., A, . If
we altered the endowments of agents /;, i =1, ..., L, by —(Af(s), A7),
where Al(s)=—p(s)-A’, then once again agent hy’s excess demand in
state s has been changed arbitrarily by —A, without changing aggregate

excess demand. Furthermore, from the Slutsky decomposition

D, 2"(s) =N K" (s) = V"(5)2" (s,

we see that the derivative of aggregate excess demand has been altered
by Ef‘zl (Vhi(s) - V'o(s))(A’), which is symmetric. Hence by simulta-
neously perturbing some agent’s K matrix, we can also maintain the de-
rivative D, ;) 2(5) of aggregate excess demand in state s.

Suppose finally that the numbers ms” are given, and that we are in-
terested not in A+ X%_{(—4"), but in B=m"(s)A+ZF_, m'i(s)(~=A").
When, by choosing A \arvbitrarily and then constructing A’ as above, can
we be sure to obtain any vector 3? Clearly, if all the m"i are the same for
i=1,...,L, it is impossible to achieve any 8 other than 0, since by con-
struction A—E,-Lzl A’ = 0. On the other hand, we now show that if m'i(s)#
m"o(s)#0, then it is possible. Let B be the LXL matrix whose /th col-
umn is V" — V"o, and let m be the L x L diagonal matrix with th diagonal
element equal to m'i(s). Then we must solve 8= [m"O(s)I—BmB"]A.
Clearly, this has a solution for all 8 if and only if the matrix BmB ' does
not have an eigenvalue equal to m"o(s) #0, that is, if and only if m"i(s) #
m"o(s)#0 forall i=1,..., L. '

In summary, we have shown so far that given L+1 numbers

h h
mo(s), ..., m"L(s),

if m"o(s)#0 and m"o(s) = m"i(s), i=1,..., L, it follows that by pertur-
bations of the economy (e, W) in D it is possible to perturb

N

L
S mi(s)2"i(s)
i=0

at a given equilibrium arbitrarily, without affecting aggregate excess de-
mand, in any state, or the derivative of excess demand, or the income
efffect terms V" of any individual 4 at the given equilibrium.

We are interested finally in the case where m”(s) = r"V"(s), where re
SH can be arbitrary. Suppose that V/(s)/V"(s") # V" (s)/V" (s") for any
pairs h# k', s # s’ and that V"(s) =0 for all 4, s. We will show that in at
least all but one of the states there are individuals Ay, A, ..., h; such that
05 rhovho(s) = r"iv’i(s) for i=1, ..., L. To see this, take A, so that rfoz0
(there must be one since r € S H). Take any s; by hypothesis
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m"o=rhovho(sy =0,

since V’0 has no zero elements. Suppose it is impossible to find L other
agents with r'vh(s)# m"o(s). Then if H = 2L, it must be that for at least L
of them, m”(s) = m"o(s). But then by the hypothesis on the v(s), 0
m"o(s) = m"(s") for all other states s’, for all of these individuals.

Thus, to conclude the proof we need only check that for a generic set
of economies in D, at each equilibrium V/(s)/V"(s') 2 V" (s)/V"(s"), if
h#h and s #s’. If asset markets are incomplete by 2, (A<S§—2), then
there is some V e ES*! with V(s) #0=V(s’) such that V'R =0. By add-
ing V to V" but not to v", we can change v'(s)/V"(s’) but not excess
demand or V"(s)/ v"(s’). A familiar transversality argument will then
show that for a generic economyﬁin D, all its equilibria satisfy the above
gradient conditions.

If A=S—1, then there is a unique V with VR =0, and it may happen
that V*(s)/ vi(s')y=V(s)/V(s'), so we must give a slightly longer argu-
ment. Perturb all the V” by adding e in the sth position. Add er(s), the
sth row of R, to g. Then still R'V"=gq for all h. Change each y(’,’ by dy”
to maintain, at the new prices g, q- y"=0. Change each consumer’s Oth
endowment in every state by de(’,’ (s)=ry(s)d. 'y". This does not change ag-
gregate excess demand (2, dy"=0=2, . €7(s)), but it does change
all the V”(s)/V"(s’). Thus, generically, we cannot have vis)/Vi(s') =
V(s)/V(s’) in equilibrium. But now perturb v" by adding V, without
changing v, Q.E.D.

8 Conclusion

~

The normative appeal of competitive equilibrium rests nowadays on its
Pareto optimality. Yet, the analysis of this chapter shows, as Stiglitz has
suggested, that when the asset market is incomplete the exigting oppor-
tunities for trade are typically not efficiently used in a competitive equi-
librium. To be sure, there are exceptions: If all consumers have identi-
cal income effects or if there is no trade, incomplete markets’ competitive
equilibria can be constrained Pareto optimal. But we believe that for gen-
eral economies the notion of the efficiency of the market must be reexam-
ined. Kenneth Arrow, among others, has for a long time asserted that
markets are incomplete and therefore to move toward Pareto optimality
might require active (government) intervention in the economic arena.
The preceding analysis strengthens that assertion by showing that even if
the government is limited to the same assets as the market, it can still typ-
ically effect Pareto improvements.
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When markets are incomplete, knowledge of demand functions is not
sufficient information to recover preferences. (Think, for example, of the
case of two states of nature and no assets; in that case it is impossible to
deduce the relative importance to a consumer of consumption in the two
states from a knowledge of the demand functions.) Whether it is gener-
ically possible to effect a Pareto-improving portfolio reallocation when
knowledge of investors’ preferences is limited to market demand func-
tions is an open questjon.

To be sure, in order to effect a Pareto-improving reallocation of as-
sets, the government must be able to forecast all the resulting adjustments
in spot market prices and their effects on individual’s utilities. This is an
enormous information burden, which it may be argued the government
cannot carry. But such an argument against market intervention, based
on the presumed ignorance of the government, is radically different from
the standard argument for Pareto optimality that does not rely on any
lack of information.

NOTES -

1 We show in Section 6 that, generically, in a neighborhood of a competitive
equilibrium, the equilibrium prices and allocations in the commodity spot
markets are uniquely determined by the asset allocation.

2 We use the same symbol to denote a set and also its last element - no confusion
should arise.

3 E denotes the real numbers, E, the nonnegative reals, and E_ , the positive
reals. Similarly, we use EX, EX, and EX ..

4 Given two vectors y and z, we write y =z; ¥ >z; ¥y >> z to mean y; = z; for all
i; y;=z; for all i and y # z; and finally y; > z; for all i, respectively.

5 It suffices, more generally, that for each state there be an a priori specified
bundle of commodities in which the returns of all assets are denominated.

6 For the transversality theorem that follows, smooth can be taken to mean
max[1, m—n] times continuously differentiable.

7 A set is a differentiable function if all its elements are differentiable functions.
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