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1. Introduction

In this note we show the equivalence of two conditions on the primitive elements in an

SL(2,C) representation ρ of the free group F2 =< a, b > on two generators, which may hold

even when the image ρ(F2) is not discrete. One is the condition of primitive stability PS intro-

duced by Minsky [13] and the other is the so-called BQ-conditions introduced by Bowditch [3]

and generalised by Tan, Wong and Zhang [18]. This result was proved in [11] and independently

in [15]. This note is a revised version of [15], which can be greatly simplified by incorporating

the elegant estimates and ideas in [11]. The reason for writing it is to give a concise presentation

using the language of the Bowditch tree developed in [3] and [18] and used in [15].

Both [11] and [15] introduced a third condition which we call the bounded intersection

property BIP , which they showed was implied by but may not imply the other two (depending

on the precise definition, see below). We also explain this condition and prove the implication

here.

We begin by explaining these three conditions one by one. Recall that an element u ∈ F2

is called primitive if it forms one of a generating pair (u, v) for F2. Let P denote the set of

primitive elements in F2. It is well known that up to inverse and conjugacy, the primitive

elements are enumerated by the rational numbers Q̂ = Q ∪∞, see Section 2 for details.

1.1. The primitive stable condition PS. The notion of primitive stability was introduced

by Minsky in [13] in order to construct an Out(F2)-invariant subset of the SL(2,C) character

variety χ(F2) strictly larger than the set of discrete free representations.

Let d(P,Q) denote the hyperbolic distance between points P,Q in hyperbolic 3-space H3.

Recall that a path t 7→ γ(t) ⊂ H3 for t ∈ I (where I is a possibly infinite interval in R) is called
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a (K, ε)-quasigeodesic if there exist constants K, ε > 0 such that

(1) K−1|s− t| − ε ≤ d(γ(s), γ(t)) ≤ K|s− t|+ ε for all s, t ∈ I.
For a representation ρ : F2 → SL(2,C), in general we will denote elements in F2 by lower

case letters and their images under ρ by the corresponding upper case, thus X = ρ(x) for

x ∈ F2. In particular if (u, v) is a generating pair for F2 we write U = ρ(u), V = ρ(v).

Fix once and for all a basepoint O ∈ H3 and suppose that w = e1 . . . en, ek ∈ {u±, v±}, k =

1, . . . , n is a cyclically reduced word in the generators (u, v). The broken geodesic brρ(w; (u, v))

of w with respect to (u, v) is the infinite path of geodesic segments joining vertices

. . . , , E−1n E−1n−1E
−1
n−2O,E

−1
n E−1n−1O,E

−1
n O,O,E1O,E1E2O, . . . , E1E2 . . . EnO,E1E2 . . . EnE1O, . . . .

where Ei = ρ(ei).

Definition 1.1. Let (u, v) be a fixed generating pair for F2. A representation ρ : F2 → SL(2,C)

is primitive stable, denoted PS, if the broken geodesics brρ(w; (u, v)) for all words w =

e1 . . . en ∈ P , ek ∈ {u±, v±}, k = 1, . . . , n, are uniformly (K, ε)-quasigeodesic for some fixed

constants (K, ε).

Remark 1.2. Notice that this definition is independent of the choice of basepoint O and

makes sense since the change from brρ(w; (u, v)) to brρ(w; (u′, v′)) for some other generator

pair (u′, v′) changes all the constants for all the quasigeodesics uniformly. Notice also that if

a broken geodesic is quasigeodesic, then it is within bounded distance of the corresponding

geodesic axis. To see this, use the stability of quasigeodesics as for example in [2] Theorem

III.H.1.7 to compare the broken geodesic segments between points ρ(w−n)(O), ρ(wn)(O) to

the hyperbolic geodesic joining ρ(w−n)(O) to ρ(wn)(O), and note that ρ(w−n)(O), ρ(wn)(O)

converge to the (necessarily distinct) fixed points of ρ(w). In particular, if ρ is PS then the

images of all primitive elements must be loxodromic, moreover Ax ρ(w) is at uniformly bounded

distance from brρ(w; (u, v)), independent of u, v or w.

For g ∈ F2 write ||g|| or more precisely ||g||u,v for the word length of g, that is the shortest

representation of g as a product of generators (u, v). It is easy to see that for fixed generators,

the condition PS is equivalent to the existence of K, ε > 0 such that

(2) K−1||g′|| − ε ≤ d(O, ρ(g′)O) ≤ K||g′||+ ε

for all finite subwords g′ of the infinite reduced word . . . e1 . . . en . . . e1 . . . en . . .

Recall that an irreducible representation ρ : F2 → SL(2,C) is determined up to conjugation

by the traces of U = ρ(u), V = ρ(v) and UV = ρ(uv) where (u, v) is a generator pair for F2.

More generally, if we take the GIT quotient of all (not necessarily irreducible) representations,

then the resulting SL(2,C) character variety of F2 can be identified with C3 via these traces,

see for example [9] and the references therein. (The only non-elementary (hence reducible) rep-

resentation occurs when Tr[U, V ] = 2. We exclude this from the discussion, see for example [17]

Remark 2.1.)

Proposition 1.3 ([13] Lemma 3.2). The set of primitive stable ρ : F2 → SL(2,C) is open in

the SL(2,C) character variety of F2.

Minsky showed that not all PS representations are discrete.
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1.2. The Bowditch BQ-conditions. The BQ-conditions were introduced by Bowditch in [3]

in order to give a purely combinatorial proof of McShane’s identity.

Again let (u, v) be a generator pair for F2 and let ρ : F2 → SL(2,C).

Definition 1.4. Following [18], an irreducible representation ρ : F2 → SL(2,C) is said to

satisfy the BQ-conditions if

Tr ρ(g) /∈ [−2, 2] ∀g ∈ P and

{g ∈ P : |Tr ρ(g)| ≤ 2} is finite.
(3)

We denote the set of all representations satisfying the BQ-conditions by B.

Proposition 1.5 ([3] Theorem 3.16, [18] Theorem 3.2). The set B is open in the SL(2,C)

character variety of F2.

Bowditch’s original work [3] was on the case in which the commutator [X, Y ] = XYX−1Y −1

is parabolic and Tr[X, Y ] = −2. He conjectured that all representations in B of this type are

quasifuchsian and hence discrete. While this question remains open, it is shown in [17] that

without this restriction, there are definitely representations in B which are not discrete.

1.3. The bounded intersection property BIP. Recall that a word w = e1e2 . . . en in gen-

erators (u, v) of F2 is palindromic if it reads the same forwards and backwards, that is, if

e1e2 . . . en = enen−1 . . . e1. Palindromic words have been studied by Gilman and Keen in [6, 7].

Suppose that ρ : F2 → SL(2,C) and let (u, v) be a generating pair, and suppose that

the images ρ(u), ρ(v) are not parabolic, so they have well defined axes. Denote the extended

common perpendicular of the axes of U = ρ(u), V = ρ(v) by E(U, V ). By applying the π

rotation about E(U, V ), it is not hard to see that if a word w is palindromic in a generator pair

(u, v) then, provided W = ρ(w) is not parabolic, its axis intersects E(U, V ) perpendicularly, see

for example [1]. (See [11] Remark 6.9 for an interesting remark on the failure of the converse.)

For the case of parabolic elements see Remark 1.7 below.

Fix generators (a, b) for F2. We call the pairs (a, b), (a, ab) and (b, ab) the basic generator

pairs. Assume given ρ : F2 → SL(2,C) for which none of A = ρ(a), B = ρ(b) and ρ(ab) are

parabolic, and consider the three common perpendiculars E(A,B), E(A,AB) and E(B,AB).

(We could equally well chose to use BA in place of AB; the main point is that the choice is

fixed once and for all.) We call these lines the special hyperelliptic axes.

Definition 1.6. Fix a basepoint O ∈ H3. A representation ρ : F2 → SL(2,C) satisfies the

bounded intersection property BIP if no primitive elements have parabolic images and there

exists D > 0 so that if a generator w is palindromic with respect to one of the three basic

generators pairs, then its axis intersects the corresponding special hyperelliptic axis in a point

at distance at most D from O. Equivalently, the axes of all palindromic primitive elements

intersect the appropriate hyperelliptic axes in bounded intervals.

It is not hard to see that this definition is independent of the choice of O. We prove that

it is independent of the choice of generators in Proposition 6.3.

Remark 1.7. We remark that, in contrast to [11] Definition 6.10, we do not assume in the

definition of BIP that the images of primitive elements are necessarily loxodromic. (The

statement in a previous version of this paper that the second statement of Theorem II in [11]
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is incorrect was wrong and followed from a misreading of this point.) Our version of the

condition rules out parabolicity (consider the fixed point of a palindromic parabolic element to

be a degenerate axis which clearly meets the relevant hyperelliptic axis at infinity). However

BIP does not obviously rule out elliptic elements in ρ(P). In particular, consider any SO(3)

representation, discrete or otherwise. Here all axes are elliptic and all pass through a central

fixed point which is also at the intersection of all three hyperelliptic axes. Such a representation

clearly satisfies BIP .

A similar condition but related to all palindromic axes was used in [7] to give a condition

for discreteness of geometrically finite groups.

In Section 6 we show that every generator is conjugate to one which is palindromic with

respect to one of the three basic generator pairs. In fact each primitive element can be conju-

gated (in different ways) to be palindromic with respect to two out of the three possible basic

pairs. For a more precise statement see Proposition 6.2.

1.4. The main result. The main results of this paper are:

Theorem A. The conditions BQ and PS are equivalent.

Theorem B. The conditions BQ and PS both imply, but are not implied by, the condition

BIP .

In the case of real representations, Damiano Lupi [12] showed by case by case analysis

following [8] that the conditions BQ and PS are equivalent.

To see that BIP does not imply the other conditions, first note that conditions PS and

BQ both imply that no element in ρ(P) is elliptic or parabolic. However, as explained in

Remark 1.7, it is possible that all axes in a SO(3) representation are elliptic and satisfy BIP .

If one excludes elliptics from BIP as in [11], as far as we know the equivalence of the other

conditions with BIP is not known.

The plan of the paper is as follows. The hardest part of the work is to prove Theorem 5.3,

that if ρ satisfies the BQ-conditions then ρ is primitive stable. In [15] this was done by first

showing that if ρ satisfies the BQ-conditions then ρ has the bounded intersection property, and

using this to deduce PS. However, as explained in Section 4, this is shown to be unnecessarily

complicated by the improved estimates and methods of [11].

In Section 2 we present background on the Farey tree and also introduce Bowditch’s con-

dition of Fibonacci growth. In Section 3, we summarise Bowditch’s method of assigning an

orientation to the edges of the Farey tree (T -arrows) and, subject to the BQ-conditions, the

existence of a finite attracting subtree. In 3.1 we introduce a second way of orienting edges

based on word length (W -arrows), and show that for all but finitely many words these two

orientations coincide.

In Section 4 we collect the background and estimates used to prove Theorem A. This is

based almost entirely on [11], in particular we need the amplitude of a right angle hexagon

whose three alternate sides correspond to the axes of a generator triple (u, v, uv). As we shall

explain, this quantity defined in [5] is an invariant of the representation ρ and plays a crucial

part what follows. We then continue following [11] to get the crucial result Proposition 4.11.

Theorem A is proved in Section 5. That PS implies BQ follows easily from the condition

of Fibonacci growth (see Definition 2.2). This was proved in [12]. Proposition 4.11 and the

results of Section 3 then lead to the proof of Theorem 5.3, that BQ implies PS.
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In Section 6 we discuss the condition BIP . We begin with a result which may be of

independent interest on the palindromic representation of primitive elements, Proposition 6.2.

Theorem B, that BQ implies BIP , is then easily deduced from Theorem 5.3. In Theorem 6.4

we give an alternative direct proof using Inequality (7) in the proof of Proposition 4.9, which

uses the invariance of the amplitude of ρ to give an improved version of the estimates in [15].

We would like to thank Ser Peow Tan and Yasushi Yamashita for initial discussions about

the original version [15] of this paper. The work involved in Lupi’s thesis [12] also made a

significant contribution. We also thank Tan for pointing us to the work of Lee and Xu, and for

a careful reading of this paper. The idea of introducing the condition BIP arose while trying

to interpret some very interesting computer graphics involving non-discrete groups made by

Yamashita. We hope to return to this topic elsewhere.

As we hope we have made clear above, there is little in this revised version of [15] which is

not essentially contained in [11] and we wish to fully acknowledge the elegance and ingenuity

of their method.

I would also like to thank the referee for his or her exceptionally careful reading of the text

and pointing out several non-trivial errors.

2. Primitive elements, the Farey tree and Fibonacci growth

The Farey tessellation F as shown in Figures 1 and 2 consists of the images of the ideal

triangle with vertices at 1/0, 0/1 and 1/1 under the action of SL(2,Z) on the upper half plane,

suitably conjugated to the position shown in the disk. The label p/q in the disk is just the

conjugated image of the actual point p/q ∈ R.

�1/0 = 1/0

1/1�1/1

0/1

1/2

2/3

1/3

2/1

3/2

3/1

P
P P

⇣
⇣ ⇣

⇣
⇣⇣

P
PP

E E⇠
⇠

XX
E E

1

B

ABB�1A

A

A2B

A2BAB

A3B

AB2

ABAB2

AB3

1

Figure 1. The Farey diagram, showing the arrangement of rational numbers

on the left with the corresponding primitive words on the right. The dual graph

shown on the left is the Farey tree T .

Since the rational points in Q̂ = Q∪∞ are precisely the images of∞ under SL(2,Z), they

correspond bijectively to the vertices of F . A pair p/q, r/s ∈ Q̂ are the endpoints of an edge

if and only if pr − qs = ±1; such pairs are called neighbours. A triple of points in Q̂ are the

vertices of a triangle precisely when they are the images of the vertices of the initial triangle

(1/0, 0/1, 1/1); such triples are always of the form (p/q, r/s, (p + r)/(q + s)) where p/q, r/s

are neighbours. In other words, if p/q, r/s are the endpoints of an edge, then the vertex of

the triangle on the side away from the centre of the disk is found by ‘Farey addition’ to be

(p+r)/(q+s). Starting from 1/0 = −1/0 =∞ and 0/1, all points in Q̂ are obtained recursively
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in this way. Note we need to start with −1/0 =∞ to get the negative fractions on the left side

of the left hand diagram in Figure 1.

As noted in the introduction, up to inverse and conjugation, the equivalence classes of

primitive elements in F2 are enumerated by Q̂. Formally, we set P to be the set of equivalence

classes of cyclically reduced primitive elements under the relation u ∼ v if and only if either

v = gug−1 or v = gu−1g−1, g ∈ F2. We call the equivalence classes, extended conjugacy classes

and denote the equivalence class of u ∈ P by u. In particular, the set of all cyclic permutations

of a given word are in the same extended class. A word is cyclically reduced if it, together

with all its cyclic permutations, is reduced, that is, contains no occurrences of x followed by

x−1, x ∈ {a±, b±}. Such a word is cyclically shortest, meaning that it together with all its cyclic

permutations is shortest.

The right hand picture in Figure 1 shows an enumeration of representative elements from

P , starting with initial triple (a, b, ab). Each vertex is labelled by a certain cyclically reduced

generator wp/q. Corresponding to the process of Farey addition, the words wp/q can be found

by juxtaposition as indicated on the diagram. Note that for this to work it is important to

preserve the order: if u, v are the endpoints of an edge with u before v in the anti-clockwise

order round the circle, the correct concatenation is uv, see Figure 3. Note also that the words

on the left side of the diagram involve b−1 and a, rather than b and a, corresponding to starting

with ∞ = −1/0. It is not hard to see that pairs of primitive elements form a generating pair if

and only if they are at the two endpoints of an edge of the Farey tessellation, while the words

at the vertices of a triangle correspond to a generator triple of the form (u, v, uv).

The word wp/q is a representative of the extended conjugacy class identified with p/q ∈ Q̂. It

is almost but not exactly the same as the Christoffel word as described [11]. We denote this class

by [p/q] and call wp/q the Farey representative of [p/q]. Likewise if p/q, r/s ∈ Q̂ are neighbours

and if p/q is before r/s in the anticlockwise order, we call (wp/q, wr/s) the Farey generator

pair corresponding to p/q, r/s. With this arrangement, note that wp/qwr/s = w(p+r)/(q+s) and

wp/qw
−1
r/s = w(p−r)/(q−s) so that ||wp/q||+ ||wr/s|| = ||w(p+r)/(q+s)|| and ||wp/qw−1r/s|| ≤ ||wp/qwr/s||

with equality if and only if p/q = 0/1, r/s = 1/0. It is also easy to see that eb(wp/q)/ea(wp/q) =

p/q, where ea(wp/q), eb(wp/q) are the sum of the exponents in wp/q of a, b respectively. All other

cyclically shortest words in [p/q] are cyclic permutations of wp/q or its inverse. For more details

on primitive words in F2, see for example [16] or [4].

Later it will be essential to distinguish between a primitive element and its inverse, while

for an arbitrary generator pair (u, v) we need to distinguish between uv (or its cyclic conjugate

vu), and uv−1 (or its cyclic conjugate v−1u).

Definition 2.1. The word w ∈ F2 =< a, b| > is positive if it is cyclically reduced and if all

exponents of a in w are positive. A generator pair (u, v) is proper if each of u, v is positive and

(u, v) is conjugate to some Farey generator pair (wp/q, wr/s).

Note that the definitions of positive and proper refer to words written in the generators

(a, b). In particular, the Farey word wp/q constructed as indicated in Figure 1 is positive, as is

the Farey generator pair (wp/q, wr/s), see also Figure 3. Also note that if (u, v) is proper then

||uv||a,b = ||u||a,b + ||v||a,b and ||uv−1||a,b ≤ ||uv||a,b with equality if and only if (u, v) = (a, b).
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2.1. Fibonacci growth. Since all words in an extended conjugacy class have the same length,

and since wp/q can found by concatenation starting from the initial generators (a, b), it follows

that ||w||(a,b) = p+ q for all w ∈ [p/q]. This leads to the following definition from [3]:

Definition 2.2. A representation ρ : F2 → SL(2,C) has Fibonacci growth if there exists

c > 0 such that for all cyclically reduced words w ∈ P we have log+ |Tr ρ(w)| < c||w||(a,b) and

log+ |Tr ρ(w)| > ||w||(a,b)/c for all but finitely many cyclically reduced w ∈ P where log+ x =

max{0, log |x|}.
Notice that although the definition is made relative to a fixed pair of generators for F2, it

is in fact independent of this choice.

The following result is fundamental. It is proved using the technology described in the next

section.

Proposition 2.3 ([3] Proof of Theorem 2, [18] Theorem 3.3). If ρ : F2 → SL(2,C) satisfies

the BQ-conditions then ρ has Fibonacci growth.

3. More on the Bowditch condition

In this section we explain some further background to the BQ-conditions. For more detail

see [3] and [18], and for a quick summary [17]. The Farey tree T is the trivalent dual tree to

the tessellation F , shown superimposed on the left in Figure 1. As above, P is identified Q̂
and hence with the set Ω of complementary regions of T . We label the region associated to a

generator u by u, thus u′ = u for all u′ ∼ u. If e is an edge of T we denote the adjacent regions

by u(e),v(e).

For a given representation ρ : F2 → SL(2,C), note that Tr[U, V ] and hence µ = Tr[A,B]+2

is independent of the choice of generators of F2, where as usual U = ρ(u) and so on. Since

TrU is constant on extended equivalence classes of generators, for u ∈ Ω we can define φ(u) =

φρ(u) = TrU for any u ∈ u. For notational convenience we will sometimes write û in place of

φ(u).

For matrices X, Y ∈ SL(2,C) set x = TrX, y = TrY, z = TrXY . Recall the trace relations:

(4) TrXY −1 = xy − z
and

(5) x2 + y2 + z2 = xyz + Tr [X, Y ] + 2.

Setting µ = Tr [X, Y ] + 2, this last equation takes the form

x2 + y2 + z2 − xyz = µ.

As is well known and can be proven by applying the above trace relations inductively, if

u,v,w is a triple of regions round a vertex of T , then û, v̂, ŵ satisfy (5) with x = û and so

on. Likewise if e is an edge of T with adjacent regions u,v and if w, z are the third regions at

either end of e, then û, v̂, ŵ, ẑ satisfy (4), that is, ẑ = ûv̂ − ŵ. (A map φ : Ω → C with this

property is called a Markoff map in [3].)

Given ρ : F2 → SL(2,C), let e be an edge of T and suppose that the regions meeting its

two end vertices are w, z. Following Bowditch [3], orient e by putting an arrow from z to w

whenever |ẑ| > |ŵ|. If both moduli are equal, make either choice; if the inequality is strict, say

that the edge is oriented decisively. We denote the oriented edge by ~e and refer to this oriented
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tree as the Bowditch tree, denoted Tρ. If ~e is a directed edge then its head and tail are its two

ends, chosen so that the arrow on ~e points towards its head.

We say a path of oriented edges ~er, 1 ≤ r ≤ m is descending to ~em if the head of ~er is the

tail of ~er+1 for r = 1, . . . ,m− 1. It is strictly descending if each arrow is oriented decisively. A

vertex at which all three arrows are incoming is called a sink.

For any m ≥ 0 and ρ : F2 → SL(2,C) define Ωρ(m) = {u ∈ Ω : |φρ(u)| ≤ m}. From the

definition, if ρ ∈ B then Ωρ(2) is finite and φ(u) /∈ [−2, 2] for u ∈ Ω.

The first two of the following lemmas show that starting from any directed edge ~e1, there

is a unique descending path to an edge ~em which is adjacent to a region in Ω(2).

Lemma 3.1 ([18, Lemma 3.7]). Suppose u,v,w ∈ Ω meet at a vertex q of Tρ with the arrows on

both the edges adjacent to u pointing away from q. Then either |φ(u)| ≤ 2 or φ(v) = φ(w) = 0.

In particular, if ρ ∈ B then |φ(u)| ≤ 2.

Lemma 3.2 ([18, Lemma 3.11] and following comment). Suppose β is an infinite ray consisting

of a sequence of edges of Tρ all of whose arrows point away from the initial vertex. Then β

meets at least one region u ∈ Ω with |φ(u)| < 2.

Lemma 3.3. For any m ≥ 2, the set Ωρ(m) is connected. Moreover if ρ ∈ B then |Ωρ(m)| <∞.

Proof. The first statement is [18] Theorem 3.1(2). That Ωρ(m) is finite follows from Proposi-

tion 2.3, see [18] P. 773. �

The result which we mainly use is the following:

Theorem 3.4. Suppose ρ ∈ B. Then there is a constant M0 ≥ 2 and a finite connected non-

empty subtree tree TF of Tρ so that for every edge ~e not in TF , there is a strictly descending

path from ~e to an edge of TF . Moreover if regions u,v are adjacent to an edge of T , then

|TrU |, |TrV | ≤ M0 implies e ∈ TF . For any M ≥ M0, the tree TF = TF (M0) can be enlarged

to a larger tree TF (M) with similar properties, and in addition TF can be enlarged to include

any finite set of edges.

Proof. Most of the assertions are proved on p. 782 of [18], see also Corollary 3.12 of [3]. To

see that TF can always be enlarged to a tree TF (M) with similar properties, see the proofs of

Theorem 3.2 of [18] and Theorem 3.16 of [3]. (In fact there is a precise condition to determine

which edges are in TF , see [18] Lemma 3.23.) Finally, let K be any finite subset of T and let

M = max{φ(u), φ(v) : u,v are adjacent to an edge in K}. Enlarging TF to TF (M) the result

is clear. �

Definition 3.5. Let ~e be a directed edge. The wake of ~e, denoted W(~e), is the set of regions

whose boundaries are contained in the component of T \{~e} which contains the tail of ~e, together

with the two regions adjacent to ~e.

We remark that the wake W(~e) is the subset of Ω denoted Ω0−(~e) in [3] and [18]. Also

denote by WE(~e) the set of edges which are adjacent to two regions in W(~e).

Theorem 3.4 says that if ~e /∈ TF then the arrow on ~e points towards TF . We note the

following slight variation:

Lemma 3.6. If ~e /∈ TF then every edge in WE(~e) is oriented towards ~e.
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Proof. This follows easily from the definitions. In detail, let ∂(TF ) be the boundary of TF ,

that is, the set of edges in TF whose tails meet the head of an edge not in TF . If ~e ∈ ∂(TF )

then by Theorem 3.4 the arrow on every edge in WE(~e) points towards ~e. Now suppose that

~e /∈ ∂(TF ) and that ~f ∈ WE(~e). Suppose that the descending path β(e) from ~e lands on

~g ∈ ∂(TF ) while the descending path β(f) from ~f lands on ~h ∈ ∂(TF ). Then β(e) ⊂ WE(~g) while
~f ∈ β(f) ⊂ WE(~h). Since WE(~g) and WE(~h) are disjoint unless g = h and ~f ∈ WE(~e) ⊂ WE(~g)

this gives the result. �

Finally, for the proof of Theorem 6.4 we need the following refinement of Proposition 2.3,

which is a minor variation of Lemmas 3.17 and Lemma 3.19 of [18]. For u ∈ W(~e) let d(u)

be the number of edges in the shortest path from u to the head of ~e. Following [18] P.777,

define the Fibonacci function F~e on W(~e) as follows: F~e(w) = 1 if w is adjacent to ~e and

F~e(u) = F~e(v) + F~e(w) otherwise, where v,w are the two regions meeting u and closer to ~e

than u, that is, with d(v) < d(u), d(w) < d(u).

Lemma 3.7. Suppose that ρ ∈ B and that ~e is a directed edge such at most one of the adjacent

regions is in Ω(2). Suppose also that no edge in WE(~e) is adjacent to regions in Ω(2) on

both sides. Then there exist c > 0, n0 ∈ N, independent of ~e (but depending on ρ), so that

log |φρ(u)| ≥ cF~e(u) for all but at most n0 regions u ∈ W(~e).

Proof. This essentially Lemmas 3.17 and 3.19 of [18], see also Corollary 3.6 of [3].

Since Ω(M) is finite for any M > 2, the set {log |φ(u)| : u /∈ Ω(2)} has a minimum

m > log 2. By Lemma 3.17, if neither adjacent region to ~e is in Ω(2), we can take c = m− log 2

and n0 = 0.

Suppose then that exactly one of the adjacent regions x0 to ~e is in Ω(2). To apply Lemma

3.19, we need to verify that W(~e) ∩ Ω(2) = {x0}. Note that no region which meets the

boundary ∂x0 of x0 can be in Ω(2) by hypothesis. Let ~εn, n ∈ N be the oriented edges whose

heads meet ∂x0 but which are not contained in ∂x0, numbered so that ~ε1 is the edge not

contained in ∂x0 whose head meets ~e. Then neither of the two adjacent regions to ~εn are in

Ω(2) for any n. It follows from Lemma 3.17 that W(~εn) ∩ Ω(2) = ∅ for n ∈ N. Since clearly

W(~e) = {x0} ∪
⋃
n∈NW(~εn) the claim follows.

Now Lemma 3.19 gives c > 0 and n0 ∈ N, depending only on x0, so that log |φρ(u)| ≥ cF~e(u)

for all but at most n0 regions u ∈ W(~e). Since Ω(2) is finite and x0 ∈ Ω(2), we can adjust the

constants so as to be uniform independent of ~e. �

3.1. The W-arrows. There is another way to orient the edges of T , this time in relation to

word length. For u ∈ Ω, define ||u|| = ||u||(a,b) for any cyclically reduced positive word u ∈ u;

clearly this is independent of the choice of u. Provided e is not the edge e0 separating the

regions (a,b), then if z,w are the regions at the two ends of e ∈ T , put an arrow pointing

from z to w whenever ||z||a,b > ||w||a,b. We call these arrows, W -arrows, while the previously

assigned arrows defined by the condition |φ(z)| ≥ |φ(w)| we refer to as T -arrows (for word

length and trace respectively). Clearly every edge is connected by a strictly descending path

of W -arrows to one of the two vertices at the ends of the edge e0. We retain the notation ~e

exclusively to refer to the orientation of the T -arrow, likewise the terms head and tail.

If e is an edge of T , as usual denote by u(e),v(e) the regions adjacent to e. Notice that if

u ∈ u(e), v ∈ v(e) are a proper generator pair, then, since e 6= e0, we have ||uv|| > ||uv−1|| so

that the W -arrow points from uv to uv−1.
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For N ∈ N let B((a, b), N) = {e ∈ T : max{||u(e)||a,b, ||v(e)||a,b} ≤ N}. The next

proposition shows that for all but finitely many arrows, the W - and T - arrows point in the

same direction.

Proposition 3.8. Suppose ρ ∈ B. Then there exists N0 > 0 such that if ~e /∈ B((a, b), N0) is

an oriented edge of Tρ with regions z,w at its tail and head respectively, then ||z|| > ||w||.
Proof. This is a general result about attracting trees. Enlarge the finite sink tree TF of Theo-

rem 3.4 if necessary so that e0 ∈ TF . Choose N0 large enough that TF (M0) ⊂ B = B((a, b), N0).

Then every edge not in B is connected by a path of decreasing T -arrows to an edge of TF .

If the result is false, there is an edge ~e not in B with regions z,w at its tail and head

respectively such that ||z||a,b < ||w||a,b for z ∈ z, w ∈ w. By Lemma 3.6, every edge in WE(~e)
is connected by a strictly descending path of T -arrows to the tail of ~e. On the other hand, ~e is

connected by a strictly descending path of W -arrows to one of the two vertices at the ends of

e0. But these W -arrows are contained in W(~e) and, following on from the initial edge e, must

all point in the opposite direction to the T -arrows. Thus one of the two vertices at the ends of

e0 is outside B, which is impossible. �

Corollary 3.9. If ρ ∈ B, there exists N0 ∈ N such that if ~e is an edge outside B(N0), then

every edge ~f ∈ W(~e) has head uv−1 and tail uv whenever u ∈ u(f), v ∈ v(f) are a proper

generator pair associated to ~f .

4. Results from [11]

In this section we collect the main results from [11] needed to prove Theorem 5.3.

4.1. The double cone lemma. Suppose that H is a hyperbolic hyperplane and let Ĥ be one

of the two closed half spaces defined by H. By an inward (resp. outward) pointing normal to

Ĥ we mean a normal to H which points into (resp. out of) Ĥ. If Ĥ ′ is another half space such

that Ĥ ⊃ Ĥ ′ and d(H,H ′) > 0 we say that Ĥ, Ĥ ′ are properly nested.

Lemma 4.1. Suppose 0 < α < π/2. Then there exists L0 > 0 with the following property.

Suppose that H,H ′ are hyperbolic hyperplanes defining half spaces Ĥ, Ĥ ′. Let M be a line

segment joining points O ∈ H,P ∈ H ′ such that IntM is inside Ĥ and outside Ĥ ′. Suppose

also that M is orthogonal to Ĥ ′, and makes an angle 0 ≤ θ < α with the inward pointing

normal to Ĥ. Then Ĥ ⊃ Ĥ ′ are properly nested whenever d(O,P ) > L0.

Proof. Since by assumption IntM is inside Ĥ and outside Ĥ ′, the only possible nesting between

the two half spaces is Ĥ ⊃ Ĥ ′.

Let L0 be the length of the finite side of a triangle with angles π/2− α, π/2, 0 and assume

d(O,P ) > L0. Then if L′ is a line through O making an angle ψ > π/2− α with OP , while L
is a line through P and perpendicular to OP , then L,L′ do not meet.

On the other hand, if Ĥ ⊃ Ĥ ′ are not properly nested then they meet in some point

Q ∈ H3∪ ∂H3. Since the line PQ is perpendicular to OP , while the line OQ makes an angle at

least ψ = π/2−θ > π/2−α with OP , this is a contradiction. We conclude that if d(O,P ) > L0

then Ĥ ⊃ Ĥ ′ are properly nested as claimed. �

Corollary 4.2. ([11] Lemma 3.5) Suppose that H,H ′ are hyperbolic hyperplanes with corre-

sponding half spaces Ĥ, Ĥ ′ and let M be a line joining points O ∈ H,P ∈ H ′ which makes
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angles 0 ≤ θ, θ′ ≤ α with the inward pointing normal to Ĥ and the outward pointing normal to

Ĥ ′ respectively. Then Ĥ ⊃ Ĥ ′ are properly nested provided d(O,P ) > 2L0.

Proof. Let H ′′ be the plane perpendicular to M through its mid-point and apply Lemma 4.1

to H,H ′′ and H ′′, H ′. �

4.2. Generators and the amplitudes of a right angled hexagon. Let H be a right angled

hexagon with consistently oriented sides s1, . . . , s6 and let σi be the complex distance between

sides si−1, si+1. The amplitude Am(σi−2, σi, σi+2) introduced in [5] VI.5, is, up to sign, an

invariant of the triple of alternate sides si−2, si, si+2. Its importance is that if H is constructed

as described below from a generator pair (u, v), then the amplitude relative to the three sides

AxU,AxV,AxU−1V −1 is closely related to the trace of the commutator and hence independent

of the choice of generators, see Proposition 4.4 below or [11] Equation (3.13). This point was

used crucially in [11].

Definition 4.3. Let H be a consistently oriented right angled hexagon with oriented sides

s1, . . . , s6 and let σi be the complex distance between sides si−1, si+1. Define the amplitude

Am(σ1, σ3, σ5) = −i sinhσ2 sinhσ3 sinhσ4.

See for example [5] or [14] for a discussion of complex length and hyperbolic right-angled

hexagons.

Let σ14 be the complex distance between the oriented lines s1 and s4. Using the cosine

formula in the oriented right angled pentagon with the sides s1, s2, s3, s4, s14 (where s14 is the

common perpendicular of s1 and s4, oriented from s1 to s4), we find coshσ14 = − sinhσ2 sinhσ3.

Thus we can alternatively write the amplitude as Am(σ1, σ3, σ5) = i coshσ14 sinhσ4.

We now fix a choice of lift R ∈ SL(2,C) of the order two rotation about an oriented line

using line matrices as described in [5] V.2. Denote the oriented line with endpoints ζ, ζ ′ ∈ Ĉ,

oriented from ζ to ζ ′, by [ζ, ζ ′]. The line matrix R([ζ, ζ ′]) ∈ SL(2,C) is a choice of matrix

representing the π-rotation about [ζ, ζ ′]. If ζ, ζ ′ ∈ C then

R([ζ, ζ ′]) =
i

ζ ′ − ζ

(
ζ + ζ ′ −2ζζ ′

2 −ζ − ζ ′
)
,

while

R([ζ,∞]) = i

(
1 −2ζ

0 −1

)
, R([∞, ζ ′]) = −i

(
1 −2ζ

0 −1

)
.

As shown in [5], this definition respects the orientation of lines and is invariant under conjuga-

tion in SL(2,C).

If Ri is the line matrix associated to the oriented side si of H as above, then R2
i = −id and

RiRi+1 = −Ri+1Ri . Moreover Ri−1Ri+1 is a loxodromic which translates by complex distance

2σi along an axis which extends si, moreover TrRi−1Ri+1 = −2 coshσi and TrRi−1RiRi+1 =

−2i sinhσi, see [5] V.3. These formulae can be easily checked by letting ζ = eσi and arranging

si−1, si and si+1 to be the oriented lines joining [−1, 1], [0,∞], [−ζ, ζ] respectively so that

Ri−1 =

(
0 i

i 0

)
, Ri =

(
i 0

0 −i

)
, Ri+1 =

(
0 iζ

i/ζ 0

)
.

Note in particular that if X =

(
ξ 0

0 1/ξ

)
is translation along [0,∞] then Ri−1Ri+1 = −X.
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It follows from the above formulae, that we can alternatively define Am(σ1, σ3, σ5) =

−1

2
Tr(R5R3R1). Moreover this expression is unchanged under even cyclic permutations and

changes sign under odd ones.

We now explain the invariance of the amplitude under change of generator. Suppose that

(u, v) is a generator pair. Construct an oriented right angled hexagon H = H(u, v) with the

axes of (U, V, U−1V −1) oriented in their natural directions, i.e. pointing in their respective

translation directions, forming three alternate sides. The orientations of the three remaining

sides then follow. We call this the standard hexagon associated to (u, v).

Proposition 4.4. Let H = H(u, v) be the standard hexagon associated to the image of a

generator pair (u, v). Let s2 = AxU, s4 = AxV, s6 = AxU−1V −1 and label the other sides

accordingly. Then up to sign, Am(σ1, σ3, σ5) is independent of the choice of (u, v).

Proof. With H = H(u, v) as defined in the statement, we have R3R1 = −U and R5R3 = −V so

that R1R5 = −R1R3R3R5 = −U−1V −1. (It will be important for the proof of Proposition 4.9

below that we are working in SL(2,C) not PSL(2,C).) Hence

UV U−1V −1 = R3R1R5R3R1R3R3R5 = −(R3R1R5)
2.

On the other hand,

Tr(R5R4R3) Tr(R4R1) = Tr(R5R4R3R4R1) + Tr(R5R4R3R1R4) = −2 Tr(R5R3R1).

By the above, Tr(R5R4R3) Tr(R4R1) = −4i sinhσ4 coshσ14 = 4Am(σ1, σ3, σ5).

From this we check easily that Am2(σ1, σ3, σ5) = (2 − Tr[U, V ])/4. Since as we have seen

the trace of the commutator is an invariant of generator triples, it follows that, up to sign, so

is Am(σ1, σ3, σ5). �

Definition 4.5. For a loxodromic element X ∈ SL(2,C) let λ(X) = (`(X) + iθ(X))/2 be half

the complex length, oriented in the direction of positive translation. If U, V are two loxodromics,

each oriented in the direction of positive translation, let δUV be the complex distance between

their axes, oriented in the direction of from U to V .

With this notation, we have

(6) Am(σ1, σ3, σ5) = −i sinh δUV sinhλ(U) sinhλ(V ).

We refer to this as the amplitude of H(u, v).

4.3. Some simple observations. We need a few more simple observations.

Lemma 4.6. (See [3] P. 707.) Suppose that u,v ∈ Ω are adjacent to an oriented edge ~e of T
with w, z being the regions at the head and tail of ~e respectively. Then <

( ẑ

ûv̂

)
≥ 1/2, where

ẑ = φρ(z) and so on as in Section 3.

Proof. It is easy to check that if ξ, η ∈ C and ξ + η = 1, |η| ≤ |ξ|, then <ξ ≥ 1/2. With

u,v,w, z as in the statement we have ẑ + ŵ = ûv̂ and |ẑ| ≥ |ŵ|. Now apply the above with

ξ =
ẑ

ûv̂
, η =

ŵ

ûv̂
. �

Lemma 4.7. If ξ ∈ C, then <ξ ≥ 0 if and only if <(tanh ξ) ≥ 0.
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Proof. If ξ = x+ iy then <(tanh ξ) =
sinhx coshx

| coshx cos y + i sinhx sin y|2 . �

We will also need a comparison of hyperbolic translation lengths and traces.

For a loxodromic element X ∈ SL(2,C) let `(X) > 0 denote the (real) translation length

and as in Definition 4.5 let λ(X) = (`(X) + iθ(X))/2 be half the complex length, so that

TrX = ±2 coshλ(X).

Lemma 4.8. There exists L0 > 0 so that if ξ+iη ∈ C with ξ > L0 then ξ−log 3 ≤ log | cosh(ξ+

iη)| ≤ ξ and | sinh(ξ + iη)| ≥ eξ/3. In particular, for X ∈ SL(2,C) we have e`(X)/2/3 ≤
|TrX|/2 ≤ e`(X)/2 and | sinhλ(X)| ≥ e`(X)/2/3 whenever `(X) > L0.

Proof. For the right hand of the first inequality involving cosh, since | cosh(ξ + iη)| = eξ|(1 +

e−2ξ−2iη)|/2 we have

log | cosh(ξ + iη)| = ξ + log |(1 + e−2ξ−2iη)|/2 ≤ ξ

since |(1 + e−2ξ−2iη)|/2 ≤ 1.

For the left hand inequality, since ξ > L0 we have, choosing L0 large enough, |(1 +

e−2ξ−2iη)|/2 ≥ 1/3 so that log(|(1 + e−2ξ−2iη)|/2) ≥ − log 3 and hence log | cosh(ξ + iη)| ≥
ξ− log 3. The estimate on TrX follows setting λ(X) = ξ+iη and the estimates on | sinh(ξ+iη)|
follows similarly. �

4.4. The key step. We now come to the key steps from [11] used to prove Theorem 5.3.

Proposition 4.9. ([11] Lemma 5.1) Suppose that ρ ∈ B and that 0 < α < π/2 is given. Suppose

also that as in Lemma 4.6, u,v ∈ Ω are adjacent to an oriented edge ~e of T . With N0 as in

Corollary 3.9, suppose u ∈ u, v ∈ v are a proper generator pair and that max{||u||, ||v||} > N0.

As in Definition 4.5, let δUV be the complex distance between the axes of U = ρ(u), V = ρ(v),

oriented in the direction of positive translation. Then there exists L1 > 0 depending only on α

and ρ such that |=δUV | ≤ α whenever max{`(U), `(V )} > L1.

Proof. Without loss of generality, suppose that `(U) ≥ `(V ). Let δUV = d+ iθ. By Lemma 3.3,

Ω(m) is finite for any m ≥ 2, moreover Tr ρ(g) 6= ±2 for all g ∈ P . Hence there exists c > 0 such

that |Tr ρ(g) ± 2| > c for all g ∈ P . Hence | sinhλ(G)| is uniformly bounded away from 0 for

all g ∈ P , where G = ρ(g). By Proposition 4.4 the absolute value of the amplitude of H(u, v),

that is, | sinh δUV sinhλ(U) sinhλ(V )|, is independent of (u, v). Combined with Lemma 4.8, it

follows that provided that `(U) > L0 we have

(7) | sinh δUV | = k′| sinhλ(V )|−1| sinhλ(U)|−1 ≤ ke−`(U)/2

for constants k′, k which depends only on the representation ρ. Since | sinh δUV |2 = cosh2 d sin2 θ+

sinh2 d cos2 θ we deduce that d→ 0 and either θ → 0 or θ → π as `(U)→∞.

In the rest of the proof we show that in fact, θ → 0.

The cosine formula in H(u, v) (see for example [5] VI.2 (6)) gives

cosh δUV =
coshλ(U−1V −1)− coshλ(U) coshλ(V )

sinhλ(U) sinhλ(V )

and hence

(8) cosh δUV tanhλ(U) tanhλ(V ) =
coshλ(U−1V −1)

coshλ(U) coshλ(V )
− 1,
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where we take a consistently oriented hexagon with sides of complex length σi as in the discus-

sion on line matrices following Definition 4.3.

By Corollary 3.9 the T -and W -arrows on ~e agree. Hence by Lemma 4.6, uv represents the

region at the tail of ~e and uv−1 the one at its head, so that <
( Trλ(V U)

Trλ(U) Trλ(V )

)
≥ 1/2. We

want to apply this result to <
( coshλ(U−1V −1)

coshλ(U) coshλ(V )

)
, so we need to take care with signs.

As noted in the discussion following Definition 4.3, the signs of the traces in the hexagon

H(u, v) are determined by the formula TrRi−1Ri+1 = − coshσi, moreover as elements in

SL(2,C) we have R3R1 = −U,R5R3 = −V and R1R5 = −U−1V −1. Hence TrU = 2 coshλ(U),

TrV = 2 coshλ(U) and TrV U = TrU−1V −1 = 2 coshλ(U−1V −1) so by Lemma 4.6, with the

same choice of signs as in (8), <
( coshλ(U−1V −1)

coshλ(U) coshλ(V )

)
≥ 1.

On the other hand, `(U) → ∞ so that tanhλ(U) → 1. By Lemma 4.7, < tanhλ(V ) ≥
0. Moreover, since ρ ∈ B, < tanhλ(V ) 6= 0 and hence, since Ω(m) is finite, < tanhλ(V ) is

uniformly bounded away from 0. Now if d → 0 and θ → π then cosh δUV → −1 so that

<(cosh δUV tanhλ(U) tanhλ(V )) < c < 0 as `(U) → ∞. Taking real parts in (8) gives a

contradiction. We deduce that θ → 0 and the result follows. �

Proposition 4.10. ([11] Theorem 5.4) Suppose that u,v ∈ Ω are adjacent to an edge e of

T with associated proper generator pair (u, v), u ∈ u, v ∈ v. Then there is a half space Ĥ

and L2 > 0 so that if max{`(U), `(V )} ≥ L2, then for any X, Y ∈ {U, V }, the half spaces

X−1Ĥ ⊃ Ĥ ⊃ Y Ĥ are properly nested.

Proof. Suppose for definiteness that `(U) ≥ `(V ). Let H be the hyperplane orthogonal to AxV

and containing the common perpendicular D to AxU,AxV . Let Ĥ be the half space cut off by

H and containing the forward pointing unit tangent vector tV to AxV at P = AxV ∩D. Note

that V −1Ĥ ⊃ Ĥ ⊃ V Ĥ are properly nested since V is loxodromic and translates H disjointly

from itself.

Now suppose Y = U . Note that for L sufficiently large, by Proposition 2.3, `(U) > L

implies that ||u||a,b > N0 with N0 as in Proposition 4.9. Hence by Proposition 4.9 we can

choose L = L1(π/4) so that |=δUV | ≤ π/4 whenever `(U) ≥ L. Let Q be the intersection point

of AxU with D and let tU be the forward pointing unit tangent vector along AxU at Q. Then

tV is translated by distance <δUV and rotated by angle =δUV along D to coincide with tU at Q.

Thus tU makes an angle at most π/4 with the inward pointing normal nQ to Ĥ at Q. Likewise

U(tU) makes an angle at most π/4 with the inward pointing normal U(nQ) to U(Ĥ). It follows

by Corollary 4.2 that for `(U) sufficiently large, the half planes Ĥ ⊃ U(Ĥ) are properly nested

and hence so are U−1(Ĥ) ⊃ Ĥ. This completes the proof. �

Proposition 4.11. ([11, Theorem 5.4]) Suppose that (u, v) is a proper generator pair such that

that max{`(U), `(V )} > L2 with L2 as in Proposition 4.10. Let C(u, v) denote the set of all

cyclically reduced words which are products of positive powers of u’s and v’s. Then the collection

of broken geodesics {brρ(w; (u, v)), w ∈ C(u, v)} is uniformly quasigeodesic.

Proof. With the notation of Proposition 4.10, pick a basepoint O in the hyperplane H and let

d be the minimum distance between any pair of the planes H,U(H), V (H). Label the vertices

of brρ(w; (u, v)) in order as Pn, n ∈ Z with O = P0 and denote the image of H containing Pn
by Hn.
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Any three successive vertices Pn, Pn+1, Pn+2 are of the form ZX−1O,ZO,ZY O for some

X, Y ∈ {U = ρ(u), V = ρ(v)}, Z ∈ ρ(F2). Therefore by Proposition 4.10 the corresponding

half spaces Ĥn, Ĥn+1, Ĥn+2 are properly nested. It follows that each consecutive pair of half

spaces in the sequence . . . , Ĥn, Ĥn+1, Ĥn+2, . . . are properly nested and hence that d(Pn, Pm) ≥
d(Ĥn, Ĥm) = |n−m|d which proves the result. �

5. The Bowditch condition implies primitive stable

In this section we prove Theorem A, that a representation ρ : F2 → SL(2,C) satisfies the

BQ-conditions if and only if ρ is primitive stable.

The result in one direction is not hard, see for example [12].

Proposition 5.1. The condition PS implies the Bowditch BQ-conditions.

Proof. Let u ∈ P . If the broken geodesic br(u; (a, b)) is quasigeodesic then it is neither elliptic

nor parabolic, so the first condition TrU /∈ [−2, 2] holds.

If the collection of broken geodesics br(u; (a, b)), u ∈ P is uniformly quasigeodesic then

br(u; (a, b)) is at a uniformly bounded distance from AxU for each u ∈ P , see Remark 1.2. We

deduce that

c′||u||a,b − ε ≤ dH(O,UO) ≤ c+ `(U)

for uniform constants c, c′, ε > 0. Since only finitely many words have word length less than a

given bound, this implies that only finitely many elements have hyperbolic translation lengths

and therefore, by Lemma 4.8, traces, less than a give bound. �

It remains to prove the converse. The following lemma is well known.

Lemma 5.2. Let w be a cyclically reduced word in a generator pair (u, v) and let ρ : F2 →
SL(2,C). Suppose that the image W = ρ(w) is loxodromic. Then the broken geodesic brρ(w; (u, v))

is quasigeodesic with constants depending only on ρ, w, and (u, v).

Proof. Suppose that ||w||(u,v) = k and number the vertices P = ρ(x)O, x ∈ F2 of brρ(w; (u, v))

in order as Pr, r ∈ Z with P0 = O. We have to show that there exist constants K, ε > 0 so that

if n < m then

(m− n)/K − ε ≤ d(Pn, Pm) ≤ K(m− n) + ε.

Pick c > 0 so that d(O, ρ(h)O) ≤ c for h ∈ {u, v}. Clearly d(Pn, Pm) ≤ c(m− n). For the

lower bound, write m−n = rk+ k1 for r ≥ 0, 0 ≤ k1 < k. Then for some cyclic permutation of

w, say w′, setting W ′ = ρ(w′) we have W ′r(Pn) = Pn+rk so that d(Pn, Pn+rk) ≥ r`(W ). Thus

d(Pn, Pm) ≥ d(Pn, Pn+rk)− d(Pn+rk, Pm) ≥ (m− n)`(W )/k − kc− `(W )/k.

�

Theorem 5.3. The Bowditch BQ-conditions implies PS.

Proof. Choose a finite sink tree TF = TF (M0) as in Theorem 3.4. Use Proposition 3.8 to

enlarge TF = TF (M0) if necessary so that the W - and T -arrows coincide for every edge outside

TF . By further increasing M0 if necessary we can assume that |Tr ρ(u)| > M0 implies `(U) >

max{L0, L2} with L0, L2 as in Lemma 4.8 and Proposition 4.11 respectively.

Suppose now that e /∈ TF . Then at least one of the regions u adjacent to e has `(U) >

max{L0, L2} and moreover the W - and T -arrows on e coincide. Let v be the other region
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adjacent to e and suppose that u ∈ u, v ∈ v are chosen to be a proper generator pair, so that

||uv|| > ||uv−1||. Since the W -arrow on e points the same direction as the T -arrow it follows

that |TrUV | ≥ |TrUV −1|. For the same reason, every region in W(~e) corresponds to a word

which is a product of positive powers of u’s and v’s. Thus by Proposition 4.11 the collection of

all broken geodesics corresponding to regions in W(~e) is uniformly quasigeodesic.

Since TF is finite, there are finitely many edges {~ei, i = 1, . . . , k} whose heads meet TF .

Moreover every region not adjacent to an edge in TF is in W(~ei) for some i.

There are only finitely many regions w adjacent to some edge of TF . By Lemma 5.2, for

each such w and w ∈ w, the broken geodesic brρ(w; (a, b)) is quasigeodesic with constants

depending on w.

It follows that there is a finite set of generator pairs S, such that any w ∈ F2 can be

expressed as a word in some (s, s′) ∈ S in such a way that brρ(w; (s, s′)) is quasigeodesic

with constants depending only on (s, s′). For fixed (s, s′) each quasigeodesic brρ(w; (s, s′)) can

be replaced by a broken geodesic brρ(w; (a, b)) which is also quasigeodesic with a change of

constants depending only on (s, s′) and not on w. The total number of replacements required

involves only finitely many constants and the result follows. �

6. Palindromicity and the Bounded Intersection Property

It is easy to prove Theorem B, that ρ ∈ B implies that ρ has the bounded intersection

property, using Theorem 5.3.

Proposition 6.1. If a representation ρ : F2 → SL(2,C) is primitive stable then it satisfies

BIP .

Proof. The broken geodesic corresponding to any primitive element by definition passes through

the basepoint O. The broken geodesics {brρ(u; (a, b))}, u ∈ P are by definition uniformly

quasigeodesic, so, as explained in Remark 1.2, each is at uniformly bounded distance to its

corresponding axis. Hence all the axes are at uniformly bounded distance to O and so in

particular axes corresponding to primitive palindromic elements cut the three corresponding

special hyperelliptic axes in bounded intervals. �

This result is of course much more interesting once we know that all primitive elements have

palindromic representatives. We make a precise statement in Proposition 6.2. In Theorem 6.4

we then give a direct proof that ρ ∈ B implies that ρ has the bounded intersection property.

6.1. Generators and palindromicity. Let E = {0/1, 1/0, 1/1} and define a map β : Q̂→ E
by ψ(p/q) = p̄/q̄, where p̄, q̄ are the mod 2 representatives of p, q in {0, 1}. We refer to ψ(p/q) as

the mod 2 equivalence class of p/q. Say p/q ∈ Q̂ is of type η ∈ E if ψ(p/q) = η. Say a generator

u ∈ F2 is of type η if u ∈ [p/q] and p/q is of type η; likewise a generator pair (u, v) is of type

(η, η′) if u, v are of types η, η′ respectively. As in Section 1.3, we fix once and for all a generator

pair (a, b) and identify a with 0/1, b with 1/0 and ab with 1/1. The basic generator pairs are

the three generator pairs (a, b), (a, ab) and (ab, b) corresponding to (0/1, 1/0), (0/1, 1/1) and

(1/0, 1/1) respectively. For η, η′ ∈ E we say u is palindromic with respect to (η, η′), η 6= η′

if it is palindromic when rewritten in terms of the basic pair of generators corresponding to

(η, η′); equally we say that a generator pair (u, v) is cyclically reduced (respectively palindromic

with respect to the pair (η, η′)) if each of u, v have the same property. We refer to a generator
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pair (u, v) which is palindromic with respect to some pair of generators, as a palindromic pair.

Finally, say a generator pair (u, v) is conjugate to a pair (u′, v′) if there exists g ∈ F2 such that

gug−1 = u′ and gvg−1 = v′.

As previously, we use the term ‘Farey word’ and ‘Farey generator pair’ to denote the special

words obtained by concatentation from the basic generator pair (a, b) in the anticlockwise order

from the Farey diagram as in Figure 2. Notice that the notion of a ‘positive’ word, which was

introduced to distinguish between a generator and its inverse, refers to words written in the

generators (a, b), that is, as they appear in their natural arrangement in Figure 2. When

describing a word as ‘palindromic’ in one of the other basic generator pairs, it has to be first

rewritten in terms of the new generators and the term ‘positive’ is not directly applicable.

Proposition 6.2. If u ∈ P is a cyclically reduced positive word of type η ∈ E, then, for each

η′ 6= η, then there is exactly one cyclically reduced generator u′ which is conjugate to u and

which is palindromic with respect to (η, η′). If (u, v) is a proper generator pair of type (η, η′),

then there is exactly one proper generator pair (u′, v′) conjugate to (u, v) and palindromic with

respect to (η, η′).

Proof. We begin by proving the existence part of the second statement. Observe that the edges

of the Farey tree T may be divided into three classes, depending on the mod two equivalence

classes of the generators labelling the neighbouring regions. In this way we may assign colours

r, g, b to the pairs (0/1, 1/0); (0/1, 1/1); (1/0, 1/1) respectively and extend to a map col from

edges to {r, g, b}, see Figure 2. Note that no two edges of the same colour are adjacent, and

that the colours round the boundary of each complementary region alternate. For simplicity in

what follows, we label each complementary region by the corresponding Farey word.

Figure 2. The coloured Farey tree. The colours round the boundary of each

complementary region alternate. The picture is a conjugated version of the one in

Figure 1, arranged so as to highlight the three-fold symmetry between (a, b, ab).

Image courtesy of Roice Nelson.

As usual let e0 be the edge of T with adjacent regions labelled by (a, b) and let q+(e0) and

q−(e0) denote the vertices at the two ends of e0, chosen so that the neighbouring regions are
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labelled (a, b, ab) and (a, b, ab−1) respectively. Removing either of these two vertices disconnects

T . We deal first with the subtree T + consisting of the connected component of T \ {q−(e0)}
which contains q+(e0). Note that the regions adjacent to edges of T + correspond to non-negative

fractions.

Let e be a given edge of T + and let q+(e) denote the vertex of e furthest from q−(e0). Let

γ = γ(e) be the unique shortest edge path joining q+(e) to q−(e0), hence including both e and

e0. The coloured level of e, denoted col.lev(e), is the number of edges e′ including e itself in

γ(e) with col(e′) = col(e). Note that γ(e) necessarily includes e0, and, provided e 6= e0, one or

other of the two edges emanating from q+(e0) other than e0.

Suppose that e is the edge of T +. The proof will be by induction on col.lev(e).

Suppose first col.lev(e) = 1. If e = e0 the result is clearly true, since the pair (a, b)

is palindromic with respect to itself. The other two edges emanating from q+(e0) also have

col.lev(e) = 1 and have neighbouring regions corresponding to the base pairs (a, ab) and (ab, b),

each of which pair is palindromic with respect to itself.

If any other edge has col.lev(e) = 1, then it is connected to q−(e0) by a path γ(e) which,

after the initial edge e, must alternate between the two other colours, because there cannot be

two adjacent edges of the same colour. From Figure 3 with labels a, b in place of u, v, one sees

that the only such paths must be contained in the boundary of either the region labelled a or

that labelled b. Starting from the vertex q+(e) the corresponding path γ(e) goes either in the

clockwise direction around the region labelled a or in the anticlockwise direction around the

region labelled b. (Note that since every path has to include the initial edge e0, the only edge

with col.lev(e) = col.lev(e0) = 1 is e0 itself.)

Consider first the edges pointing inwards to the boundary of the region labelled b, around

which the edges are alternately solid (red) and dashed (blue). Starting from the vertex labelled

by the three regions (ab, ab2, b), the inward pointing dotted (green) edges have labels (ab, ab2),

(ab2, ab3) and so ons, see Figure 3. Rewriting in terms of the basic generators (a, ab) which

label the initial dotted edge we have (abn, abn+1) = ((ab · a−1)n−1 · ab, (ab · a−1)n · ab) which is

palindromic in the pair (a, ab) proving the claim.

Likewise the edges round the region labelled a are alternately solid (red) and dotted (green).

Reading in clockwise order starting from the vertex labelled (a, a2b, ab), the inward pointing

dashed (blue) arrows have adjacent labels (a2b, ab), (a3b, a2b) and more generally (an+1b, anb).

Rewriting in terms of the generator pair (ab, b) associated to the initial dashed edge, this

becomes ((ab·b−1)nab, (ab·b−1)n−1ab) which is palindromic in (ab, b) as required. This completes

the first step of the induction.

Suppose now the result is proved for all edges of coloured level k ≥ 1. Let e be an edge of

type (η, η′). Suppose that col(e) = c and let e′ be the next edge of γ with col(e′) = c along the

path γ(e) from q+(e) to q−(e0). By the induction hypothesis the Farey generator pair (u, v)

adjacent to e′ is conjugate to a proper positive pair (u′, v′) which is palindromic of the same

type (η, η′).

Let q+(e′) be the vertex of e′ closest to e, so that the subpath path γ′ of γ from q+(e′) to

q−(e) contains no other edges of colour c, where q−(e) is the vertex of e other than q+(e). As

above, the edges of γ′ must alternate between the two other colours. This implies (see Figure 2)

that γ′ forms part of the boundary of a complementary region R of T +. Moreover the third

edge at each vertex along ∂R (that is, the one which is not contained in ∂R), is coloured c.
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e′

e′

u

v

uv R

uv2

u2v

uvuv2

u2vuv

(uv)2uv2

u2v(uv)2

Figure 3. Labels of regions round ∂R showing the W -arrows. Note that labels

are concatenated in anticlockwise order round the boundary circle; thus for ex-

ample u is before v and concatenates to uv. ‘Red’ edges are shown solid, ‘green’

edges are dashed and ‘blue’ edges are dotted. In the initial configuration, u = a

and v = b.

Without loss of generality, suppose that u is before v in the anti-clockwise order round ∂D.

Then the generator associated to R is uv. Since (u, v) is a Farey pair, moving in anticlockwise

order around ∂R starting from v, successive regions have labels

v, u, u2v, u2vuv, . . . , u2v(uv)n, . . . ,

see Figure 3. Any successive pair, in particular the pair adjacent to e, can be simultaneously con-

jugated to the form (uv(uv)ku, (uv(uv)k+1u) for some k ≥ 0. Since by hypothesis the pair (u, v)

is conjugate to a pair (u′, v′) palindromic with respect to (η, η′), so is (uv(uv)ku, (uv(uv)k+1u).

Similarly, the regions moving clockwise around ∂R starting from u have labels

u, v, uv2, uvuv2, . . . , (uv)nuv2, . . . .

Thus any successive pair can be simultaneously conjugated into the form (v(uv)kuv, v(uv)k+1uv)

for some k ≥ 0 which is likewise conjugate to a pair palindromic with respect to (η, η′).

By the same argument for the tree T − consisting of the connected component of T \{q+(e0)}
which contains q−(e0) we arrive at the statement that the generators associated to each edge

of T − can be written in a form which is palindromic with respect to one of the three generator

pairs associated to the edges emanating from q−(e0), that is, (a, b−1), (a, b−1a) or (b−1a, b−1).

The first pair is obviously palindromic with respect to (a, b−1). Noting that b−1a = (b−1a−1)a2

which is conjugate to the word a(b−1a−1)a palindromic with respect to (a, ab), and that b−1a =

b−1(ab)b−1 which is palindromic with respect to (b, ab), the result follows.

Now we prove the existence part of the first claim. Suppose that u ∈ P is of type η ∈ E and

that η′ 6= η. Choose a generator v of type η′ so that (u, v) is a proper generator pair. By the
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above there is a conjugate pair (u′, v′) palindromic with respect to (η, η′) and u′ is a generator

as required.

To see that u′ is unique, suppose that cyclically reduced positive primitive elements u and

u′ are in the same conjugacy class and are both palindromic with respect to the same pair of

generators, which we may as well take to be {0/1, 1/0}. Notice that u necessarily has odd

length, for otherwise the exponents of a and b are both even.

Let u = er . . . e1fe1 . . . er and suppose that f ′ = ek is the centre point about which u′ is

palindromic for some 1 ≤ k ≤ r. Then . . . uu . . . is periodic with minimal period of length

2r + 1 and contains the subword

er . . . e1fe1 . . . ek−1f
′ek−1 . . . e1fe1 . . . er

so after fe1 . . . ek−1f
′ek−1 . . . e1 the sequence repeats. Since this subword has length 2k < 2r+1

this contradiction proves the result.

The claimed uniqueness of generator pairs follows immediately. �

As a corollary to this result we obtain the independence of BIP property from the generators

(a, b), see also [11] Propsition 6.11.

Proposition 6.3. The definition of the bounded intersection property is independent of the

choice of generating set.

Proof. Denote the hyperellipitic axis corresponding to (η, η′) by E(η, η′), so that E(η, η′) is one

of E(A,B), E(A,AB), E(B,AB). Suppose ρ satisfies BIP with respect to the generator pair

(a, b). Then by definition every primitive axes palindromic with respect to (η, η′) intersects

E(η, η′) orthogonally within a bounded interval J(η, η′).

Now suppose (u, v) is a proper generator pair of type (η, η′). It is enough to show that

every primitive element palindromic with respect to the generators (u, v) intersects the common

perpendicular E(U, V ) of U = ρ(u), V = ρ(v) in a bounded interval J(U, V ).

By Proposition 6.2 there is a conjugate generator pair (u′, v′) = (gug−1, gvg−1) which is

palindromic with respect to (η, η′), indeed gug−1, gvg−1 are cyclic permutations of u, v. Hence

the axes of both U ′ = ρ(u′) and V ′ = ρ(v′) both intersect E(η, η′) orthogonally, so that the

common perpendicular E(U ′, V ′) of U ′ and V ′ coincides with E(η, η′). Moreover any pair palin-

dromic with respect to (u′, v′) is also palindromic with respect to (η, η′), and by Proposition 6.2

applied to the initial pair (u′, v′) and writing the generators (η, η′) in terms of (u′, v′), one sees

that conversely every pair palindromic with respect to (η, η′) is also palindromic with respect

to (u′, v′). Hence the bounded intervals J(U, V ) and J(η, η′) coincide.

Now since (u′, v′) = (gug−1, gvg−1), if w is a primitive element palindromic with respect to

(u′, v′) then g−1wg is primitive and palindromic with respect to (u, v) and conversely. In this

case Axw cuts E(U ′, V ′) orthogonally and g−1(Axw) = Ax gwg−1 cuts E(U, V ) orthogonally,

and g−1 carries J(η, η′) to a bounded interval on E(U, V ). The result follows. �

6.2. Direct proof of Theorem B. It may also be of interest to give a direct proof that

ρ ∈ B implies that ρ has the bounded intersection property. Theorem 6.4 below is a simplified

version of the proof of this result from [15]. It is based on estimating the distance between

pairs of palindromic axes along their common perpendicular. We use the estimate (7) derived

from the invariance of the amplitude (up to sign) under change of generators to improve the

corresponding estimate in Proposition 4.6 in [15].



PRIMITIVE STABILITY AND THE BOWDITCH CONDITIONS REVISITED 21

Theorem 6.4. (Direct proof of Theorem B.) If ρ ∈ B then ρ has the bounded intersection

property.

Proof. Assume that ρ ∈ B and choose M0 ≥ 2 and a finite connected non-empty subtree tree

TF of T as in Theorem 3.4. Let Ω(TF ) be the set of regions u ∈ Ω such that u is adjacent to an

edge of TF . By enlarging TF if necessary, we can ensure that every region in Ω(2) is adjacent

to some edge of TF . In addition, since there are only finitely many possible pairs of elements

of Ω(2), we may yet further enlarge TF so that no edge outside TF is adjacent to a region in

Ω(2) on both sides.

Suppose the generator u = u1 is palindromic with respect (η, η′) and that η′ 6= η. With-

out loss of generality, we may take u positive. Let E = Eη,η′ be the corresponding special

hyperelliptic axis. Let Ξ denote the set of axes corresponding to palindromic representatives

of v ∈ Ω(TF ) which are of types either η or η′. It is sufficient to see that AxU meets E at a

uniformly bounded distance to one of the finitely many axes in Ξ.

If u1 ∈ Ω(TF ) there is nothing to prove, so suppose that u1 /∈ Ω(TF ). Choose an oriented

edge ~e1 in ∂u1. Then there is a strictly descending path β of T -arrows ~e1, . . . , ~en so that the

head of ~en meets an edge in TF , and this is the first edge in β with this properly. We claim

that there is a sequence of positive cyclically reduced generators u1 = u, u2, . . . , uk ∈ P such

that for i = 1, . . . , k − 1:

(1) (ui,ui+1) are neighbours adjacent to an edge of β.

(2) ui ∈ ui, ui+1 ∈ ui+1 and (ui, ui+1) is a proper generator pair palindromic with respect

to (η, η′).

(3) uk ∈ Ω(TF ) but ui /∈ Ω(TF ), 1 ≤ i < k.

Suppose that u1, . . . , ui have been constructed with properties (1) and (2) with i ≥ 1 and

that ui /∈ Ω(TF ). The path β travels round ∂ui, eventually leaving it along an arrow ~e which

points out of ∂ui. If ui is of type η (respectively η′) then of the two regions adjacent to ~e, one,

u′ say, is of type η′ (respectively η). Set ui+1 = u′ and choose ui+1 ∈ ui+1 so that (ui, ui+1) is

positive and palindromic with respect to (η, η′). (Notice that we are using the uniqueness of the

palindromic form for ui, in other words if (ui−1, ui) is the positive palindromic pair associated

to the regions (ui−1,ui) then (ui, ui+1) is the positive palindromic pair associated to the regions

(ui,ui+1).) If ui+1 ∈ Ω(TF ) we are done, otherwise continue as before. Since β eventually lands

on an edge of TF , the process terminates. This proves the claim.

Since (ui, ui+1) are palindromic with respect to (η, η′), the axes AxUi,AxUi+1 are or-

thogonal to the hyperelliptic axis Eη,η′ and hence Inequality (7) gives d(AxUi,AxUi+1) ≤
O(e−`(Ui)), 1 ≤ i < k.

Now let ~e be the oriented edge between uk−1,uk and let W(~e) be its wake. Then since the

edge between ui,ui+1 is always oriented towards ~e, we see that ui ∈ W(~e), 0 ≤ i ≤ k. Let

F~e be the Fibonacci function on W(~e) defined immediately above Lemma 3.7. It is not hard

to see that for 0 ≤ i ≤ k we have F~e(ui) ≥ k − i. By construction, uk−1 /∈ Ω(TF ) so that,

by our assumption on TF , we have uk−1 /∈ Ω(2). Moreover by connectivity of TF , no edge in

WE(~e) is in TF and hence none of these edges is adjacent on both sides to regions in Ω(2).

Thus by Lemma 3.7, there exist c > 0, n0 ∈ N depending only on ρ and not on ~e such that

log+ |TrUi| ≥ c(k − i) for all but at most n0 of the regions ui.

Hence for all except some uniformly bounded number of the regions ui, `(Ui) ≥ c(k −
i) − log 2. Since all axes AxUi intersect E orthogonally in points Pi say, it follows that
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d(AxU1,AxUk) is bounded above by the sum
∑k−1

1 d(AxUi,AxUi+1) of the distances between

the points Pi, Pi+1. Since d(AxUi,AxUi+1) ≤ O(e−`(Ui)), 1 ≤ i < k, the distance from AxU1 to

one of the finitely many axes in Ξ is uniformly bounded above, and we are done. �
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2009.

[10] L. Keen and C. Series. The Riley slice of Schottky space. Proc. London Math. Soc., 69, 72 – 90, 1994.

[11] J. Lee and B. Xu. Bowditch’s Q-conditions and Minsky’s primitive stability. Trans. AMS, 373, 1265 –

1305, 2020.

[12] D. Lupi. Primitive stability and Bowditch conditions for rank 2 free group representations. Thesis, Uni-

versity of Warwick, 2016.

[13] Y. Minsky. On dynamics of Out(Fn) on PSL(2,C) characters. Israel Journal of Mathematics, 193, 47 –

70, 2013.

[14] C. Series. An extension of Wolpert’s derivative formula. Pacific J. Math., 197, 223 – 239, 2001.

[15] C. Series. Primitive stability and Bowditch’s BQ-conditions are equivalent. arXiv:1901.01396 [math.GT],

2019.

[16] C. Series. The Geometry of Markoff Numbers. Math. Intelligencer, 7, 20 – 29, 1985.

[17] C. Series, S.P. Tan, Y. Yamashita. The diagonal slice of Schottky space. Algebraic and Geometric Topology,

17, 2239 – 2282, 2017.

[18] S.P. Tan, Y. L. Wong and Y. Zhang. Generalized Markoff maps and McShane’s identity. Adv. Math. 217,

761–813, 2008.

C.M.Series@warwick.ac.uk

http://www.maths.warwick.ac.uk/∼masbb/
Mathematics Institute, University of Warwick

Coventry CV4 7AL, UK


