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Top terms of polynomial traces in Kra’s plumbing
construction.

SARA MALONI

CAROLINE SERIES

Let Σ be a surface of negative Euler characteristic together with a pants decom-
position P . Kra’s plumbing construction endows Σ with a projective structure
as follows. Replace each pair of pants by a triply punctured sphere and glue, or
‘plumb’, adjacent pants by gluing punctured disk neighbourhoods of the punctures.
The gluing across the ith pants curve is defined by a complex parameter τi ∈ C . The
associated holonomy representation ρ : π1(Σ) −→ PSL(2, C) gives a projective
structure on Σ which depends holomorphically on the τi . In particular, the traces
of all elements ρ(γ), γ ∈ π1(Σ), are polynomials in the τi .

Generalising results proved in [5, 16] for the once and twice punctured torus
respectively, we prove a formula giving a simple linear relationship between the
coefficients of the top terms of ρ(γ), as polynomials in the τi , and the Dehn–
Thurston coordinates of γ relative to P .

This will be applied elsewhere to give a formula for the asymptotic directions of
pleating rays in the Maskit embedding of Σ as the bending measure tends to zero,
see [9].

57M50; 30F40

1 Introduction

Let Σ be a surface of negative Euler characteristic together with a pants decomposition
P . Kra’s plumbing construction endows Σ with a projective structure as follows.
Replace each pair of pants by a triply punctured sphere and glue, or ‘plumb’, adjacent
pants by gluing punctured disk neighbourhoods of the punctures. The gluing across
the ith pants curve is defined by a complex parameter τi ∈ C. More precisely, zw = τi

where z, w are standard holomophic coordinates on punctured disk neighbourhoods of
the two punctures. The associated holonomy representation ρ : π1(Σ) −→ PSL(2, C)
gives a projective structure on Σ which depends holomorphically on the τi , and in
which the pants curves themselves are automatically parabolic. In particular, the traces
of all elements ρ(γ), γ ∈ π1(Σ), are polynomials in the τi .
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The main result of this paper is a very simple relationship between the coefficients of
the top terms of ρ(γ), as polynomials in the τi , and the Dehn–Thurston coordinates of
γ relative to P . This generalises results of [5, 16] for the once and the twice punctured
torus respectively.

Our formula is as follows. Let S denote the set of homotopy classes of multiple
loops on Σ, and let the pants curves defining P be σi, i = 1, . . . , ξ . For brevity we
usually refer to elements of S as curves (even if they are not connected), see Section 2.
The Dehn–Thurston coordinates of γ ∈ S are i(γ) = (qi, pi), i = 1, . . . , ξ , where
qi = i(γ, σi) ∈ N ∪ {0} is the geometric intersection number between γ and σi and
pi ∈ Z is the twist of γ about σi . We prove:

Theorem A Let γ be a connected simple closed curve on Σ, not parallel to any of the
pants curves σi . Then Tr ρ(γ) is a polynomial in τ1, · · · , τξ whose top terms are given
by:

Tr ρ(γ) = ±iq2h
(
τ1 +

(p1 − q1)
q1

)q1
· · ·

(
τξ +

(pξ − qξ)
qξ

)qξ

+ R,

= ±iq2h

(
τ q1

1 · · · τ qξ

ξ +
ξ∑

i=1

(pi − qi)τ
q1
1 · · · τ qi−1

i · · · τ qξ

ξ

)
+ R

where

• q =
∑ξ

i=1 qi > 0;

• R represents terms with total degree in τ1 · · · τξ at most q− 2 and of degree at
most qi in the variable τi ;

• h = h(γ) is the total number of scc-arcs in the standard representation of γ
relative to P , see below.

If q = 0, then γ = σi for some i, ρ(γ) is parabolic, and Tr ρ(γ) = ±2.

The non-negative integer h = h(γ) is defined as follows. The curve γ is first arranged
to intersect each pants curve minimally. In this position, it intersects a pair of pants P
in a number of arcs joining boundary loops of P. We call one of these an scc-arc (short
for same-(boundary)-component-connector, called an archetype in Penner [14]) if it
joins one boundary component to itself, and denote by h the total number of scc-arcs,
taken over all pants in P .

The precise definition of the twist coordinates pi in Theorem A requires some care;
we use essentially the standard definition implied in [3] and explained in detail in [17]
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Top terms of trace polynomials 1003

(called here the DT-twist, see Section 3.1), although for the proof we find useful the
form given by Penner [14] (called here the P-twist and denoted p̂i , see Section 3.2).

We remark that the formula in Theorem A could of course be made neater by replacing
the parameter τ by τ − 1; we use τ to be in accordance with the conventions of [5, 16],
see also Section 4.2.

We believe the formula in Theorem A noteworthy in its own right. However the
main motivation for this work was the following. If the representation ρ constructed
in the above manner is free and discrete, then the resulting hyperbolic 3–manifold
M = H3/ρ(π1(Σ)) lies on the boundary of quasifuchsian space QF (Σ). One end of M
consists of a union of triply punctured spheres obtained by pinching in Σ the curves
σi defining P . Suppose that, in addition, ρ(π1(Σ)) is geometrically finite and that the
other end Ω+/ρ(π1(Σ)) of M is a Riemann surface homeomorphic to Σ. Since the
triply punctured spheres are rigid, it follows from Ahlfors-Bers’ measurable Riemann
mapping theorem that the Riemann surface structure of Ω+/ρ(π1(Σ)) runs over the
Teichmüller space T (Σ) of Σ. The image of the space of all such groups in the character
variety R of Σ is called the Maskit embedding of T (Σ).

In [5, 16], special cases of the trace formula were important in constructing a computa-
tional method of locating the image M of T (Σ) in R. In those papers we defined a
pleating ray to be a line in R along which the projective class of the bending measure
was kept constant. The trace formulae enabled us to find the asymptotic directions
of pleating rays in M as the bending measure tends to zero. Theorem A allows the
extension of these results to the general case, see [9].

The plan of this paper is as follows. After establishing preliminaries in Section 2, in
Section 3 we review the Dehn–Thurston coordinates and, in particular, the definition
of twists. In Section 4 we discuss the gluing construction which leads to the family
of projective structures and their holonomy representation. In Section 5 we explain
in detail the holonomy representation in various special cases, starting with arcs in a
single pair of pants and going on to the one holed torus and four holed sphere. Finally,
in Section 6, we make explicit the general combinatorial pattern of matrix products
obtained in the holonomy, and use this to give an inductive proof of Theorem A.

2 Background and Notation

Suppose Σ is a surface of finite type, let S0 = S0(Σ) denote the set of free homotopy
classes of connected closed simple non-boundary parallel curves on Σ, and let S = S(Σ)
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1004 S Maloni and C Series

be the set of curves on Σ, that is, the set of finite unions of non-homotopic curves in S0 .
For simplicity we usually refer to elements of S as ‘curves’ rather than ‘multi-curves’,
in other words, a curve is not required to be connected. In addition by the term ‘loop’ we
mean ‘connected curve’. The geometric intersection number i(α, β) between α, β ∈ S
is the least number of intersections between curves representing the two homotopy
classes, that is

i(α, β) = min
a∈α, b∈β

|a ∩ b|.

Now given a surface Σ = Σb
g of finite type and negative Euler characteristic, choose a

maximal set PC = {σ1, . . . ,σξ} of homotopically distinct and non-boundary parallel
loops in Σ called pants curves, where ξ = ξ(Σ) = 3g − 3 + b is the complexity of
the surface. These connected curves split the surface into k = 2g− 2 + b three-holed
spheres P1, . . . , Pk , called pairs of pants. (Note that the boundary of Pi may include
punctures of Σ.) We refer to both the set P = {P1, . . . , Pk}, and the set PC , as a pants
decomposition of Σ.

We take Pi to be a closed three-holed sphere whose interior Int(Pi) is embedded in Σ;
the closure of Int(Pi) fails to be embedded precisely in the case in which two of its
boundary curves are identified in Σ, forming an embedded one-holed torus Σ1,1 . Thus
each pants curve σ = σi is the common boundary of one or two pants whose union we
refer to as the modular surface associated to σ , denoted M(σ). If the closure of Int(Pi)
fails to be embedded then M(σ) is a one-holed torus Σ1,1 , otherwise it is a four-holed
sphere Σ0,4 .

Any hyperbolic pair of pants P is made by gluing two right angled hexagons along three
alternate edges which we call its seams. In much of what follows, it will be convenient
to designate one of these hexagons as ‘white’ and one as ‘black’. A properly embedded
arc in P, that is, an arc with its endpoints on ∂P, is called scc (same component
connector) if it has both its endpoints on the same component of ∂P and dcc (different
component connector) otherwise.

2.0.1 Convention on dual curves

We shall need to consider dual curves to σi ∈ PC , that is, curves which intersect σi

minimally and which are completely contained in M(σi), the union of the pants P, P′

adjacent to σi . The intersection number of such a connected curve with σi is 1 if M(σi)
a one-holed torus and 2 otherwise. In the first case, the curve is made by identifying
the endpoints of a single dcc-arc in the pair of pants adjacent to σi and, in the second,
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Top terms of trace polynomials 1005

it is the union of two scc-arcs, one in each of the two pants whose union is M(σi). We
adopt a useful convention introduced in [17] which simplifies the formulae in such a
way as to avoid the need to distinguish between these two cases. Namely, for those σi

for which M(σi) is Σ1,1 , we define the dual curve Di ∈ S to be two parallel copies of
the connected curve intersecting σi once, while if M(σi) is Σ0,4 we take a single copy.
In this way we always have, by definition, i(σi, Di) = 2, where i(α, β) is the geometric
intersection number as above.

A marking on Σ is the specification of a fixed base surface Σ0 , together with a
homeomorphism Ψ : Σ0 −→ Σ. Markings can be defined in various equivalent ways,
for example by specifying the choice of dual curves, see Section 3.1 below.

2.0.2 Convention on twists

Our convention will always be to measure twists to the right as positive. We denote by
Twσ(γ) the right Dehn twist of the curve γ about the curve σ .

3 Dehn–Thurston coordinates

Suppose we are given a surface Σ together with a pants decomposition P as above.
Let γ ∈ S and for i = 1, . . . , ξ , let qi = i(γ, σi) ∈ Z!0 . Notice that if σi1 ,σi2 ,σi3 are
pants curves which together bound a pair of pants whose interior is embedded in Σ,
then the sum qi1 + qi2 + qi3 of the corresponding intersection numbers is even. The
qi = qi(γ) are sometimes called the length parameters of γ .

To define the twist parameter twi = twi(γ) ∈ Z of γ about σi , we first have to fix a
marking on Σ, for example by fixing a specific choice of dual curve Di to each pants
curve σi , see Section 3.1 below. Then, after isotoping γ into a well-defined standard
position relative to P and to the marking, the twist twi is the signed number of times that
γ intersects a short arc transverse to σi . We make the convention that if i(γ, σi) = 0,
then twi(γ) ! 0 is the number of components in γ freely homotopic to σi .

There are various ways of defining the standard position of γ , leading to differing
definitions of the twist. The parameter twi(γ) = pi(γ) which occurs in the statement
of Theorem A is the one defined by Dylan Thurston [17], however in the proof of the
formula we will find it convenient to use a slightly different definition twi(γ) = p̂i(γ)
given by Penner [14]. Both of these definitions are explained in detail below, as is
the precise relationship between them. With either definition, a classical theorem of
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Dehn [2], see also [14] (p.12), asserts that the length and twist parameters uniquely
determine γ :

Theorem 3.1 (Dehn’s theorem)
The map Ψ : S(Σ) −→ Zξ

!0 × Zξ which sends γ ∈ S(Σ) to
(q1(γ), . . . , qξ(γ); tw1(γ), . . . , twξ(γ)) is an injection. The point
(q1, . . . , qξ, tw1, . . . , twξ) is in the image of Ψ (and hence corresponds to a curve) if
and only if:

(i) if qi = 0, then twi ! 0, for each i = 1, . . . , ξ .

(ii) if σi1 ,σi2 ,σi3 are pants curves which together bound a pair of pants whose interior
is embedded in Σ, then the sum qi1 + qi2 + qi3 of the corresponding intersection
numbers is even.

We remark that as a special case of (ii), the intersection number with a pants curve
which bounds an embedded once–punctured torus or twice–punctured disk in Σ is even.

One can think of this theorem in the following way. Suppose given a curve γ ∈ S ,
whose length parameters qi(γ) necessarily satisfy the parity condition (ii), then the qi(γ)
uniquely determine γ ∩ Pj for each pair of pants Pj , j = 1, . . . , k , in accordance with
the possible arrangements of arcs in a pair of pants, see for example [14]. Now given
two pants adjacent along the curve σi , we have qi(γ) points of intersection coming from
each side and we have only to decide how to match them together to recover γ . The
matching takes place in the cyclic cover of an annular neighbourhood of σi . The twist
parameter twi(γ) specifies which of the Z possible choices is used for the matching.

3.1 The DT-twist

In [17], Dylan Thurston gives a careful definition of the twist twi(γ) = pi(γ) of γ ∈ S
which is essentially the ‘folk’ definition and the same as that implied in [3]. He
observes that this definition has a nice intrinsic characterisation, see Section 3.1.4 below.
Furthermore, it turns out to be the correct definition for our formula in Theorem A.

3.1.1 The marking

Given the pants decomposition P of Σ, we note, following [17], that we can fix a
marking on Σ in three equivalent ways. These are:
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(a) a reversing map: an orientation–reversing map R : Σ −→ Σ so that for each
i = 1, . . . , ξ we have R(σi) = σi ;

(b) a hexagonal decomposition: this can be defined by a curve which meets each
pants curve twice, decomposing each pair of pants into two hexagons;

(c) dual curves: for each i, a curve Di so that i(Di,σj) = 2δij .

The characterisations (a) and (b) are most easily understood in connection with a
particular choice of hyperbolic metric on Σ. Recall that a pair of pants P is the union
of two right angle hexagons glued along its seams. There is an orientation reversing
symmetry of P which fixes the seams. The endpoints of exactly two seams meet each
component of the boundary ∂P. Now let Σ0 be a hyperbolic surface formed by gluing
pants P1, . . . , Pk in such a way that the seams are exactly matched on either side of
each common boundary curve σi . In this case the existence of the orientation reversing
map R as in (a) and the hexagonal decomposition as in (b) are clear and are clearly
equivalent.

If the modular surface associated to σi is made up of two distinct pants P, P′ , then, as
explained above, the dual curve Di to σi is obtained by gluing the two scc–arcs in P
and in P′ which run from σi to itself. Each arc meets σi orthogonally so that in the
metric Σ0 the two endpoints on each side of σi are exactly matched by the gluing. If
the modular surface is a single pair of pants P, then the dual curve is obtained by gluing
the single dcc–arc in P which runs from σi to itself. Once again both ends of this arc
meet σi orthogonally and in the metric Σ0 are exactly matched by the gluing. In this
case, following the convention explained in Section 2, we take the dual curve Di to be
two parallel copies of the loop just described. Thus in all cases i(Di,σj) = 2δij and
furthermore the curves Di are fixed by R.

A general surface Σ can be obtained from Σ0 by performing a Fenchel–Nielsen
twist about each σi . Namely, if Ai = σi × [0, 1] is an annulus around σi and if we
parameterise σi as s '→ σi(s) ∈ Σ for s ∈ [0, 1), then the distance t twist, denoted
FNt : Σ0 −→ Σ, maps Ai to itself by (σi(s), θ) '→ (σi(s + θt), θ) and is the identity
elsewhere. Clearly FNt induces a reversing map, a hexagonal decomposition, and dual
curves on the surface FNt(Σ), showing that each of (a), (b) and (c) equivalently define a
marking on an arbitrary surface Σ.

3.1.2 The twist

Having defined the marking, we can now define the twist pi(γ) for any γ ∈ S . Arrange,
as above, the dual curves Di to be fixed by R, so that, in particular, if σi is the boundary
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of a single pair of pants P, then the two parallel components of the curve Di are
contained one in each of the two hexagons making up P. For each i = 1, . . . , ξ ,
choose a small annular neighbourhood Ai of σi , in such a way that the complement
Σ \ ∪ξ

i=1Int(Ai) of the interiors of these annuli in Σ are pants P̂1, . . . , P̂k . Arrange γ
so that its intersection with each P̂i is fixed by R and so that it is transverse to Di . Also
push any component of γ parallel to any σi into Ai .

If qi = i(γ, σi) = 0, define pi ≥ 0 to be the number of components of γ parallel to
σi . Otherwise, qi = i(γ, σi) > 0. In this case, orient both γ ∩ Ai and Di ∩ Ai to run
consistently from one boundary component of Ai to the other. (If M(σi) is Σ0,4 , then
the two arcs of Di ∩ Ai will be oriented in opposite directions relative to the connected
curve Di .) Then define

pi = î(γ ∩ Ai, Di ∩ Ai),

where î(α, β) is the algebraic intersection number between the curves α and β , namely
the sum of the indices of the intersection points of α and β , where an intersection point
is of index +1 when the orientation of the intersection agrees with the orientation of Σ
and −1 otherwise.

Note that this definition is independent of both the choice of the orientations of γ ∩ Ai

and Di ∩ Ai , and of the choice of the arrangement of γ in the pants adjacent to σi . Also
note that, following the convention about dual curves in Section 2.0.1, pi is always even.
Two simple examples are illustrated in Figures 1 and 2.

3.1.3 An alternative definition

The twist pi can also be described in a slightly different way as follows. Lift Ai to its
Z–cover which is an infinite strip H . As shown in Figures 1 and 2, the lifts of Di ∩ Ai

are arcs joining the two boundaries ∂0H and ∂1H of H . They are equally spaced like
rungs of a ladder in such a way that there are exactly two lifts in any period of the
translation corresponding to σi . Any arc of γ enters H on one side and leaves on the
other. Fix such a rung D∗ say and number the strands of γ meeting ∂0H in order as
Xn, n ∈ Z, where X0 is the first arc to the right of D∗ and n increases moving to the
right along ∂0H , relative to the orientation of the incoming strand of γ . Label the
endpoints of γ on ∂1H by X′n, n ∈ Z correspondingly, as shown in Figure 1. Since γ is
simple, if X0 is matched to X′r , then Xn is matched to X′n+r for all n ∈ Z. Then it is not
hard to see that r = pi/2.
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D D′ D D′γ γ γ γ γ

X2 X1 X0 X−1 X−2

X ′
2 X ′

1 X ′
0 X ′

−1 X ′
−2

∂0H

∂1H

Figure 1: A curve γ with pi(γ) = 0. The arcs D, D′ together project to the dual curve Di .

D D′ D D′γ γ γ γ

X2 X1 X0 X−1 X−2

X ′
2 X ′

1 X ′
0 X ′

−1 X ′
−2

∂0H

∂1H

Figure 2: A curve γ with pi(γ) = −2.

3.1.4 Intrinsic characterisation

The intrinsic characterisation of the twist in [17] uses the Luo product α · β of curves
α, β ∈ S on an oriented surface Σ. This is defined as follows [8, 17]:

• If a ∩ b = ∅, then α · β = α ∪ β ∈ S .

• Otherwise, arrange α and β in minimal position, that is, such that i(α ∩ β) =
|α∩ β|. In a neighbourhood of each intersection point xj ∈ α∩ β , replace α∪ β
by the union of the two arcs which turn left from α to β relative to the orientation
of Σ, see Figure 3. (In [8] this is called the resolution of α ∪ β from α to β at
xj .) Then α · β is the curve made up from α ∪ β away from the points xj , and
the replacement arcs near each xj .

Proposition 3.2 ([17] Definition 15) The function pi : S(Σ) −→ Z is the unique
function such that for all γ ∈ S :

(i) pi(σj · γ) = pi(γ) + 2δij ;

(ii) pi depends only on the restriction of γ to the pants adjacent to σi ;
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α

β

xj

α

β

Figure 3: The Luo product: the resolution of α ∪ β at xj .

(iii) pi(R(γ)) = −pi(γ), where R is the orientation reversing involution of Σ defined
above.

We call pi(γ) the DT–twist parameter of γ about σi . Property (i) fixes our convention
noted above that the right twist is taken positive. Notice that pi(Di) = 0. We also
observe:

Proposition 3.3 Let γ ∈ S . Then

pi
(
Twσi(γ)

)
= pi(γ) + 2qi.

3.1.5 Relation to [3]

In [3], a curve γ ∈ S is parameterized by three non–negative integers (mi, si, ti). These
are defined as the intersection numbers of γ with the three curves Ki , K′i and K′′i ,
namely the pants curve σi , its dual curve Di , and Twσi(Di), the right Dehn twist of Di

about σi , see Figure 4 on p. 62 in [3]. In particular:

• mi(γ) = i(γ, Ki) = i(γ, σi) = qi(γ)

• si(γ) = i(γ, K′i ) = i(γ, Di) =
|pi(γ)|

2

• ti(γ) = i(γ, K′′i ) = i
(
γ, Twσi(Di)

)
= |pi(γ)

2
− qi(γ)|

As proved in [3], the three numbers mi, si and ti satisfy one of the three relations
mi = si + ti ; si = mi + ti ; ti = mi + si . As it is easily verified by a case–by–case
analysis, we have:
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Theorem 3.4 Each triple (mi, si, ti) uniquely determines and is determined by the
parameters qi and pi . In fact, qi = mi and pi = 2sign(pi)si where

sign(pi) =

{
+1 if mi = si + ti or si = mi + ti;
−1 if ti = mi + si.

Proof If sign(pi) = −1, then pi/2− qi ≤ 0. So

ti = |pi

2
− qi| = −(

pi

2
− qi) =

|pi|
2

+ qi = si + mi ;

If sign(pi) = +1, then:

(1) if
pi

2
" qi , then ti = |pi

2
− qi| = qi −

|pi|
2

= mi − si ;

(2) if qi " pi

2
, then ti = |pi

2
− qi| =

|pi|
2
− qi = si − mi ,

as we wanted to prove.

3.2 The P–Twist

We now summarise Penner’s definition of the twist parameter following [14] Section
1.2. Instead of arranging the arcs of γ transverse to σi symmetrically with respect to
the involution R, we now arrange them to cross σi through a short closed arc wi ⊂ σi .
There is some choice to be made in how we do this, which leads to the difference with
the definition of the previous section. It is convenient to think of wi as contained in the
two ‘front’ hexagons of the pants P and P′ glued along σi , which we will also refer to
as the ‘white’ hexagons.

Precisely, for each pants curve σi ∈ PC , fix a short closed arc wi ⊂ σi , which we
take to be symmetrically placed in the white hexagon of one of the adjacent pants P,
midway between the two seams which meet σi ⊂ ∂P. For each σi , fix an annular
neighbourhood Ai and extend wi into a ‘rectangle’ Ri ⊂ Ai with one edge on each
component of ∂Ai and ‘parallel’ to wi and two edges arcs from one component of ∂Ai

to the other. (See [14] for precise details.)

Now isotope γ ∈ S into Penner standard position as follows. Any component of γ
homotopic to σi is isotoped into Ai . Next, arrange γ so that it intersects each σi exactly
qi(γ) times and moreover so that all points in γ ∩ σi are contained in wi . We further
arrange that all the twisting of γ occurs in Ai . Precisely, isotope so that γ ∩ ∂Ai ⊂ ∂Ri ,
in other words, so that γ enters Ai across the edges of Ri parallel to wi . By pushing
all the twisting into Ai , we can also arrange that outside Ai , any dcc–arc of γ ∩ P
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σi = ∂0P

∂1P ∂∞P

wi

Figure 4: An scc–arc in Penner standard position.

does not cross any seam of P. The scc–arcs are slightly more complicated. Any such
arc has both endpoints on the same boundary component, let say ∂0P. Give the white
hexagon (the ‘front’ hexagon in Figure 4) the same orientation as the surface Σ. With
this orientation, the two other boundary components ∂1P and ∂∞P are arranged as
shown in the figure. We isotope the scc–arc so that outside Ai it loops round the right
hand component ∂1P, cutting the seam which is to the right of the seam contained in
∂0P exactly, see Figure 4.

Having put γ into Penner standard position, we define the Penner–twist or P–twist
p̂i(γ) as follows. Let di be a short arc transverse to wi with one endpoint on each of the
two components of ∂Ai .

• If qi(γ) = i(γ, σi) = 0, let p̂i(γ) ! 0 be the number of components of γ which
are freely homotopic to σi .

• If qi(γ) ,= 0, let |p̂i(γ)| be the minimum number of arcs of γ ∩Ai which intersect
di , where the minimum is over all families of arcs properly embedded in Ai ,
isotopic to γ ∩ Ai by isotopies fixing ∂A pointwise. Take p̂i(γ) ! 0 if some
components of γ twist to the right in Ai and p̂i(γ) " 0 otherwise. (There cannot
be components twisting in both directions since γ is embedded and, if there is
no twisting, then p̂i(γ) = 0.)

Algebraic & Geometric Topology XX (20XX)



Top terms of trace polynomials 1013

D̂σi

β

β′

P

P ′

σi
wi

di

X ′ = X Ŷ

Ŷ ′

Figure 5: The dual curve Di in Penner standard position. The endpoints of di are on the annulus
Ai (not shown) around σi .
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3.2.1 The dual curves in Penner position

As an example, we explain how to put the dual curves Di into Penner standard position.
This requires some care. For clarity, we denote one component of the dual curve Di

by D̂i , so that in the case in which M(σi) is Σ1,1 , we have 2D̂i = Di , while D̂i = Di

otherwise.

If M(σi) is Σ1,1 , there is only one arc to be glued whose endpoints we can arrange to
be in wi . We simply take two parallel copies of this loop D̂i so that Di = 2D̂i and
p̂i(Di) = 0.

If M(σi) is Σ0,4 then Di = D̂i . In this case we have to match the endpoints of two
scc–arcs β ⊂ P and β′ ⊂ P′ , both of which have endpoints on σi . The arc β has one
endpoint X in the front white hexagon of P, which we can arrange to be in wi , and the
other Y in the symmetrical position in the black hexagon. Label the endpoints of β′ in
a similar way. To get β ∪ β′ into standard Penner position, we have to move the back
endpoints Y and Y ′ round to the front so that they also lie in wi . Arrange P and P′ as
shown in Figure 5 with the white hexagons to the front. In Penner position, β has to
loop round the right hand boundary component of P so that Y has to move to a point Ŷ
to the right of X along wi in Figure 5. In P′ on the other hand, β′ has to loop round the
right hand boundary component of P′ , so that Y ′ gets moved to a point Ŷ ′ to the left of
X′ on wi . Since X is identified to X′ , to avoid self–intersections, Ŷ has to be joined to
Ŷ ′ by a curve which follows σi around the back of P ∪ P′ . By inspection, we see that
p̂i(D̂i) = −1.

3.3 Relationship between the different definitions of twist

Our proof of Theorem A in Section 6 uses the explicit relationship between the above
two definitions of the twist. The formula in Theorem 3.5 below appears without proof
in [17]; for completeness we supply a proof.

Suppose that two pairs of pants meet along σi ∈ PC . Label their respective boundary
curves (A, B, E) and (C, D, E) in clockwise order, where E = σi , see Figure 6. (Some
of these boundary curves may be identified in Σ.)

Theorem 3.5 ([17] Appendix B) As above, let γ ∈ S and let qi = qi(γ), p̂i = p̂i(γ)
and pi = pi(γ) respectively denote its length parameter, its P–twist and its DT–twist
around σi . Then

p̂i =
pi + l(A, E; B) + l(C, E; D)− qi

2
,
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Ai

γ

Di

A B

CD

Figure 6: Case n = 1 when γ goes from A to C . E is the core curve of the annulus Ai .

where l(X, Y; Z) denotes the number of strands of γ ∩ P running from the boundary
curve X to the boundary curve Y in the pair of pants P having boundary curves (X, Y, Z).

Proof Let γ ∈ S . We will use a case–by–case analysis to give a proof by induction on
n = qi(γ). We shall assume that the modular surface M(σi) is Σ0,4 , so that σi belongs
to the boundary of two distinct pants P = (A, B, E) and P′ = (C, D, E), and leave the
case in which M(σi) is Σ1,1 to the reader. We begin with the cases n = 1 and n = 2,
because n = 2 is useful for the inductive step.

When n = 1, the strand of γ which intersects σi must join one of the boundary
components of P different from E , to one of the two boundary components of P′

different from E . We have four cases corresponding to γ joining A or B to C or D.
Figure 6 shows the case in which γ joins A to C . One checks easily that l(A, E; B) = 1,
l(C, E; D) = 1 while p̂ = 0, p = −1 and q = 1, verifying the formula in this case. The
other cases are similar.

Now consider n = 2, so that γ ∩ M(σi) may have either one or two connected
components. If there are two components, then each one was already analysed in the
case k = 1, and the result follows by the additivity of the quantities involved.

If γ ∩ P is connected, we must have (in one of the pants P or P′ ) an scc–arc which has
both its endpoints on σi . Without loss of generality we may suppose that this arc is in P.
Choose an orientation on γ and call its initial and final points X1 and X2 respectively.
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Ai

γ

Di

X1

X2

A B

CD

Figure 7: Case n = 2 when X1 is joined to D and X2 is joined to C .

The endpoints of this arc must be joined to the boundary components C or D of P′ .
Figure 7 illustrates the case in which X1 is joined to D, while X2 is joined to C . Then
l(A, E; B) = 0, l(C, E; D) = 1 while p̂ = 0, p = 1 and q = 2, verifying the formula in
this case. The other cases are similar.

Suppose now that the statement is true for any n < qi . If γ ∩M(σi) is not connected,
then each connected component intersects σi less then n times and the result follows
from the inductive hypothesis and the additivity of the quantities involved.

If γ̂ = γ ∩M(σi) is connected, then there will be an arc which has both its endpoints
on σi . Choose an orientation on γ . Without loss of generality, we can suppose that the
first such arc is contained in P. Let X1 and X2 be its two ordered endpoints. Then X2
splits γ̂ into two oriented curves α and β , where α contains only one arc with both
endpoints in σi , while β has n − 1 arcs of this kind. Now we modify α and β , in
such a way that they will became properly embedded arcs in M(σi), that is, arcs with
endpoints on ∂(M(σi)) ⊂ Σ. We do this by adding a segment for each one of α and
β from X2 to one of the boundary components C or D of P′ . In order to respect the
orientation of α and β we add the segment twice, once with each orientation. This will
not change the quantities involved. For example, suppose we add two segments from
X2 to C . This creates two oriented curves α′ and β′ in M(σi) such that

ti(γ) = ti(α ∪ β) = ti(α′ ∪ β′) = ti(α′) + ti(β′)

and the conclusion now follows from the inductive hypothesis.

Algebraic & Geometric Topology XX (20XX)



Top terms of trace polynomials 1017

Remark 3.6 There is a nice formula for the number l(X, Y, Z) in the above theorem.
Given a, b ∈ R, let max (a, b) = a ∨ b and min (a, b) = a ∧ b. Suppose that a pair of
pants has boundary curves X, Y, Z and that γ ∈ SC . Let x = i(γ, X) and define y, z
similarly. As above let l(X, Y; Z) denote the number of strands of γ running from X to
Y . Then (see [17] p. 20)

l(X, Y; Z) = 0 ∨
(

x + y− z
2

∧ x ∧ y
)

.

4 The gluing construction

As explained in the introduction, the representations which we shall consider are
holonomy representations of projective structures on Σ, chosen so that the holonomies
of all the loops σj ∈ PC determining the pants decomposition P are parabolic. The
interior of the set of free, discrete, and geometrically finite representations of this form
is called the Maskit embedding of Σ, see Section 4.5 below.

The construction of the projective structure on Σ is based on Kra’s plumbing construc-
tion [7], see Section 4.4. However it will be convenient to describe it in a somewhat
different way. The idea is to manufacture Σ by gluing triply punctured spheres across
punctures. There is one triply punctured sphere for each pair of pants P ∈ P , and the
gluing across the pants curve σj is implemented by a specific projective map depending
on a parameter τj ∈ C. The τj will be the parameters of the resulting holonomy
representation ρ : π1(Σ) −→ PSL(2, C).

More precisely, we first fix an identification of the interior of each pair of pants Pi to a
standard triply punctured sphere P. We endow P with the projective structure coming
from the unique hyperbolic metric on a triply punctured sphere. The gluing is carried
out by deleting open punctured disk neighbourhoods of the two punctures in question
and gluing horocyclic annular collars round the resulting two boundary curves, see
Figure 8.

4.1 The gluing

To describe the gluing in detail, first recall (see eg [13] p. 207) that any triply punctured
sphere is isometric to the standard triply punctured sphere P = H/Γ, where

Γ =
〈(

1 2
0 1

)
,

(
1 0
2 1

)〉
.
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Figure 8: Deleting horocyclic neighbourhoods of the punctures and preparing to glue.

1−1 0

µ0
µ1

µ∞

Figure 9: The standard fundamental domain for Γ . The white triangle ∆0 is unshaded.

Fix a standard fundamental domain for Γ as shown in Figure 9, so that the three
punctures of P are naturally labelled 0, 1,∞. Let ∆0 be the ideal triangle with vertices
{0, 1,∞}, and ∆1 be its reflection in the imaginary axis. We sometimes refer to ∆0 as
the white triangle and ∆1 as the black.

With our usual pants decomposition P , fix homeomorphisms Φi from the interior of
each pair of pants Pi to P. This identification induces a labelling of the three boundary
components of Pi as 0, 1,∞ in some order, fixed from now on. We denote the boundary
labelled ε ∈ {0, 1,∞} by ∂εPi . The identification also induces a colouring of the
two right angled hexagons whose union is Pi , one being white and one being black.
Suppose that the pants P, P′ ∈ P are adjacent along the pants curve σ meeting along
boundaries ∂εP and ∂ε′P′ . (If P = P′ then clearly ε ,= ε′ .) The gluing across σ will be
described by a complex parameter τ with 0τ > 0, called the plumbing parameter of
the gluing. We first describe the gluing in the case ε = ε′ = ∞.

Arrange the pants with P on the left as shown in Figure 10. (Note that the illustration in
the figure describes the more general case ε = 1 and ε′ = 0.) Take two copies P, P′ of
P. Each of these is identified with H/Γ as described above. We refer to the copy of H
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Tτ

Φ−1 ◦ ξ (Φ′)−1 ◦ ξ′

Φ−1(A)

P

∂ε(P ) (Φ′)−1(A′)

P ′

∂ε′(P ′)

∂ε(P )

z

S

H

Ω′

J

∂ε′(P ′)

z′

S′

H ′

Ω

Ω(∂ε) = ∞Ω(z) Ω′(∂ε′) = ∞Ω′(z′)

J ◦ Ω(z)

Figure 10: The gluing construction when ε = 1 and ε′ = 0. The top two upwards pointing
arrows are the restrictions of Φ−1 ◦ ξ and (Φ′)−1 ◦ ξ′ to the fundamental region ∆0 ∪∆1 . The
strips H = H1, H′ = H′

0 project under ζ, ζ ′ to the annuli A ⊂ P, A′ ⊂ P′ whose core curves
are h0, h′1 ; these are identified with the corresponding annuli and curves on P, P′ by Φ−1,Φ′−1 .
Only the parts of H, H′ in ∆0 are shown.
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associated to P′ as H′ and denote the natural parameters in H, H′ by z, z′ respectively.
Let ζ and ζ ′ be the projections ζ : H −→ P and ζ ′ : H′ −→ P′ respectively.

Let h∞ = h∞(τ ) be the loop on P which lifts to the horocycle {z ∈ H|0z = &τ
2 } on

H. For η > 0, H∞ = H∞(τ, η) = {z ∈ H|&τ−η
2 " 0z " &τ+η

2 } ⊂ H is a horizontal
strip which projects to an annular neighbourhood A of h∞ ⊂ P. Let S ⊂ P be the
surface P with the projection of the open horocyclic neighbourhood 0z > &τ+η

2 of
∞ deleted. Define h′∞, S′ and A′ in a similar way. We are going to glue S to S′ by
matching A to A′ in such a way that h∞ is identified to h′∞ with orientation reversed,
see Figures 10. The resulting homotopy class of the loop h∞ on the glued up surface
(the quotient of the disjoint union of the surfaces Si by the attaching maps across the
Ai ) will be in the homotopy class of σ . To keep track of the marking on Σ, we will do
the gluing on the level of the Z–covers of S, S′ corresponding to h∞, h′∞ , that is, we
will actually glue the strips H∞ and H′

∞ .

As shown in Figure 10, the deleted punctured disks are on opposite sides of h∞ in
S and h′∞ in S′ . Thus we first need to reverse the direction in one of the two strips
H∞, H′

∞ . Set

(1) J =
(
−i 0
0 i

)
, Tτ =

(
1 τ
0 1

)
.

We reverse the direction in H∞ by applying the map J(z) = −z to H. We then glue H∞
to H′

∞ by identifying z ∈ H∞ to z′ = Tτ J(z) ∈ H′
∞ . Since both J and Tτ commute

with the holonomies z '→ z+2 and z′ '→ z′+2 of the curves h∞, h′∞ , this identification
descends to a well defined identification of A with A′ , in which the ‘outer’ boundary
ζ(0z) = (0τ + η)/2 of A is identified to the ‘inner’ boundary ζ ′(0z′) = (0τ − η)/2
of A′ . In particular, h∞ is glued to h′∞ reversing orientation.

Now we treat the general case in which P and P′ meet along punctures with arbitrary
labels ε, ε′ ∈ {0, 1,∞}. As above, let ∆0 ⊂ H be the ideal ‘white’ triangle with
vertices 0, 1,∞. Notice that there is a unique orientation preserving symmetry Ωα of
∆0 which sends the vertex α ∈ {0, 1,∞} to ∞:

(2) Ω0 =
(

1 −1
1 0

)
, Ω1 =

(
0 −1
1 −1

)
, Ω∞ = Id =

(
1 0
0 1

)
.

Let hε be the loop on P which lifts to the horocycle Ω−1
ε ({z ∈ H|0z = &τ

2 }) on
H, so that hε is a loop round ∂ε(P). Also let Hε be the region in H defined by
Ω−1

ε ({z ∈ H|&τ−η
2 " 0z " &τ+η

2 }). Define h′ε′ and H′
ε′ in a similar way.
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To do the gluing, first move ε, ε′ to ∞ using the maps Ωε,Ωε′ and then proceed as
before. Thus the gluing identifies z ∈ Hε to z′ ∈ H′

ε by the formula

(3) Ωε′(z′) = Tτ ◦ J (Ωε(z)) ,

see Figure 10.

Finally, we carry out the above construction for each pants curve σi ∈ PC . To do this,
we need to ensure that the annuli corresponding to the three different punctures of a
given Pi are disjoint. Note that the condition 0τi > 2, for all i = 1, . . . , ξ , ensures that
the three curves h0 , h1 and h∞ associated to the three punctures of Pi are disjoint in P.
Under this condition, we can clearly choose η > 0 so that their annular neighbourhoods
are disjoint, as required.

In what follows, we shall usually write h, H for hε, Hε provided the subscript is clear
from the context.

Remark 4.1 Note that in the above construction of Στ , we glued a curve exiting from
the white triangles ∆0(P) to one entering the white triangle ∆0(P′). Suppose that we
wanted instead to glue the two black triangles ∆1(P) and ∆1(P′). This can be achieved
by replacing the parameter τ with τ − 2. However, following our recipe, it is not
possible to glue a curve exiting a white triangle to a curve entering a black one, because
the black triangle is to the right of both the outgoing and incoming lines while the white
triangle is to the left.

4.1.1 Independence of the direction of the travel

The recipe for gluing two pants apparently depends on the direction of travel across
their common boundary. The following lemma shows that, in fact, the gluing in either
direction is implemented by the same recipe and uses the same parameter τ .

Lemma 4.2 Let pants P and P′ be glued across a common boundary σ , and suppose
the gluing used when travelling from P to P′ is implemented by (3) with the parameter
τ . Then the gluing when travelling in the opposite direction from P′ to P is also
implemented by (3) with the same parameter τ .

Proof Using the maps Ωε if necessary, we may, without loss of generality, suppose we
are gluing the boundary ∂∞P to ∂∞P′ . (Note that Ω∞ = Id.) By definition, to do this
we identify the horocyclic strip H ⊂ H to the strip H′ ⊂ H′ using the map Tτ ◦ J .
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Fix a point X ∈ h. The gluing sends X to Tτ J(X) ∈ h′ . The gluing in the other
direction from P′ to P reverses orientation of the strips to be glued and is done using a
translation Tτ ′ say. To give the same gluing we must have Tτ ′JTτ J(X) = X . This gives
τ ′ − (−X + τ ) = X which reduces to τ = τ ′ as claimed.

4.2 Marking and Dehn twists

Write τ = (τ1, . . . , τξ) ∈ Cξ , and denote by Σ(τ ) the surface obtained by the gluing
procedure described above with parameter τi along curve σi . To complete the description
of the projective structure, we have to specify a marking on Σ(τ ). To do this we have
to specify a base structure on a fixed surface Σ0 , together with a homeomorphism
Φτ : Σ0 −→ Σ(τ ).

We first fix the base structure on Σ0 , together with a marking given by a family of
dual curves Di to the pants curves σi . Let µε ⊂ H be the unique oriented geodesic
from ε + 1 to ε + 2, where ε is in the cyclically ordered set {0, 1,∞}, see Figure 9.
The lines µε project to the seams of P. We call µ0 (from 1 to ∞) and µ1 (from ∞
to 0) respectively the incoming and the outgoing strands (coming into and going out
from the puncture) at ∞, and refer to their images under the maps Ωε in a similar
way. For τ ∈ C, let X∞(τ ) = 1 + 0τ/2 be the point at which the incoming line
µ0 meets the horizontal horocycle 0z = 0τ/2 in H, and let Y∞(τ ) = 0τ/2 be the
point the outgoing line µ1 meets the same horocycle. Also define Xε(τ ) = Ωε(X∞)
and Yε(τ ) = Ωε(Y∞). Now pick a pants curve σ and, as usual, let P, P′ ∈ P be its
adjacent pants in Σ, to be glued across boundaries ∂εP and ∂e′P′ . Let Xε(P), Xε(P′)
be the points corresponding to Xε(τ ), Xε(τ ) under the identifications Φ,Φ′ of P, P′

with P, and similarly for Yε(P), Yε(P′). The base structure Σ0 will be one in which
the identification (3) matches the point Xε(P, τ ) on the incoming line across ∂εP to the
point Y ′ε′(P

′) on the outgoing line to ∂ε′P′ . Referring to the gluing equation (3), we see
that this condition is fulfilled precisely when 2τ = 1.

We define the structure on Σ0 by specifying 2τi = 1 for i = 1, . . . , ξ . The imaginary
part of τi is unimportant; for definiteness we can fix 0τi = 4. Now note that the
reflection z '→ −z̄ of H induces an orientation reversing isometry of P which fixes its
seams; with the gluing matching seams as above this extends, in an obvious way, to an
orientation reversing involution of Σ0 . Following (a) of Section 3.1.1, this specification
is equivalent to a specification of a marking on Σ0 .

Finally, we define a marking on the surface Σ(τ ). After applying a suitable stretching
to each pants to adjust the lengths of the boundary curves, we can map Σ0 −→ Σ(τ )
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using a map which is the Fenchel–Nielsen twist FN'τi on an annulus around σi ∈
PC, i = 1, . . . , ξ and the identity elsewhere, see Section 3.1.1. This gives a well defined
homotopy class of homeomorphisms Ψτ : Σ0 −→ Σ(τ ).

With this description, it is easy to see that 2τi corresponds to twisting about σi ; in
particular, τi '→ τi + 2 is a full right Dehn twist about σi . The imaginary part 0τi

corresponds to vertical translation and has the effect of scaling the lengths of the σi .

4.3 Projective structure and holonomy

The above construction gives a way to define the developing map from the universal
cover Σ̃ of Σ to C. To do this we have to describe the developing image of any path
γ on Σ. The path goes through a sequence of pants Pi1 , Pi1 , . . . , Pin such that each
adjacent pair Pij , Pij+1 is glued along an annular neighbourhood A(σij) of the pants
curve σij which forms the common boundary of Pij and Pij+1 . Since all the maps
involved in this gluing are in PSL(2, C), it is clear that if γ is a closed loop, then the
holonomy of γ is in PSL(2, C). Thus we get a representation π1(Σ) −→ PSL(2, C)
which can be checked to be independent of γ up to homotopy in the usual way.

Now we can justify our claim that our construction gives a projective structure on
Σ. Recall that a complex projective structure on Σ means an open covering of Σ
by simply connected sets Ui , such that Ui ∩ Uj is connected and simply connected,
together with homeomorphisms Φi : Ui −→ Vi ⊂ Ĉ, such that the overlap maps
Φi ◦ Φ−1

j : Φj(Ui ∩ Uj) −→ Φi(Ui ∩ Uj) are in PSL(2, C).

Given the developing map Ψ : Σ̃ −→ Ĉ from the universal covering space Σ̃ of Σ
into the Riemann sphere Ĉ, we can clearly cover Σ by open sets Ui such that each
component W of the lift of Ui to Σ̃ is homeomorphic to Ui and such that the restriction
Ψ|W is a homeomorphism to an open set V ⊂ Ĉ. For each Ui , pick one such component.
Since any two lifts differ by a covering map, and since Ui ∩ Uj ,= ∅ implies there are
lifts which intersect, the overlap maps will always be in the covering group which by
our construction is contained in PSL(2, C).

In terms of the projective structure, the holonomy representation ρ : π1(Σ) −→
PSL(2, C) is described as follows. A path γ in Σ passes through an ordered chain of
charts U0, . . . , Un such that Ui ∩ Ui+1 ,= ∅ for every i = 0, . . . , n − 1. This gives
us the overlap maps Ri = Φi ◦ Φ−1

i+1 for i = 0, . . . , n − 1. The sets Vi and Ri(Vi+1)
overlap in Ĉ and hence the developing image of γ̃ in Ĉ passes through in order
the sets V0, R0(V1), R0R1(V2) . . . , R0 · · ·Rn−1(Vn). If γ is closed, we have Un = U0
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so that V0 = Vn . Then, by definition, the holonomy of the homotopy class [γ] is
ρ([γ]) = R0 · · ·Rn−1 ∈ PSL(2, C).

Notice that our construction effectively takes the charts to be the maps Pi −→ H which
identify Pi with the standard fundamental domain ∆ ⊂ H via the map Φi : Pi −→ P.
Strictly speaking, we should divide each Pi into two simply connected sets by cutting
along its seams, so that each chart maps to one or other of the standard ideal triangles
∆0 or ∆1 . The details of how this works will be discussed in Section 5.

As a consequence of the construction we note the following fact which underlies the
connection with the Maskit embedding (Section 4.5), and which (together with the
definition of the twist in the case qi = 0) proves the final statement of Theorem A.

Lemma 4.3 Suppose that γ ∈ π1(Σ) is a loop homotopic to a pants curve σj . Then
ρ(γ) is parabolic and Tr ρ(γ) = ±2.

4.4 Relation to Kra’s plumbing construction

Kra in [7] uses essentially the above construction to manufacture surfaces by gluing triply
punctured spheres across punctures, a procedure which he calls plumbing. Plumbing is
based on so called ‘horocyclic coordinates’ in punctured disk neighbourhoods of the
punctures which have to be glued.

Given a puncture ε on a triply punctured sphere P, let ζ : H −→ P be the natural
projection, normalised so that ε lifts to ∞ ∈ H, and so that the holonomy of the
loop round ε is, as above, η '→ η + 2. Let D∗ denote the punctured unit disc
{z ∈ C : 0 < z < 1}. The function f : H −→ D∗ given by f (η) = eiπη is well defined
in a neighbourhood N of ∞ and is a homeomorphism from an open neighbourhood of
ε in P to an open neighbourhood of the puncture in D∗ . Choosing another puncture
ε′ of P, we can further normalise so that ε′ lifts to 0. Hence f maps the part of the
geodesic from ε′ to ε contained in N , to the interval (0, r) for suitable r > 0. These
normalisations (which depend only on the choices of ε and ε′ ), uniquely determine
f . Kra calls the natural parameter z = f (η) in D∗ , the horocyclic coordinate of the
puncture ε relative to ε′ .

Now suppose that ẑ and ẑ′ are horocyclic coordinates for distinct punctures in distinct
copies Pẑ and Pẑ′ of P. Denote the associated punctured discs by D∗(ẑ) and D∗(ẑ′).
To plumb across the two punctures, first delete punctured disks {0 < ẑ < r} and
{0 < ẑ′ < r′} from D∗(ẑ) and D∗(ẑ′) respectively. Then glue the remaining surfaces
along the annuli

A(ẑ) = {ẑ ∈ D∗ : r < ẑ < s} and A(ẑ′) = {ẑ′ ∈ D∗ : r′ < ẑ′ < s′}
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by the formula ẑẑ′ = tK . (To avoid confusion we have written tK for Kra’s parameter
t ∈ C.) It is easy to see that this is essentially identical to our construction; the difference
is simply that we implement the gluing in H and H′ without first mapping to D∗(ẑ) and
D∗(ẑ′). Our method has the advantage of having a slightly simpler formula and also of
respecting the twisting around the puncture, which is lost under the map f .

The precise relation between our coordinates z, z′ ∈ H in Section 4.1 and the horocyclic
coordinates ẑ, ẑ′ is

z = f−1(ẑ) = − i
π

log ẑ, z′ = f−1(ẑ′) = − i
π

log ẑ′.

The relation
ẑẑ′ = tK

translates to
log tK = log ẑ′ + log ẑ

which, modulo 2πiZ, is exactly our relation

−z + τ = z′.

Hence we deduce that
τ = − i

π
log tK .

4.5 Relation to the Maskit embedding of Σ

As usual let PC = {σ1, . . . ,σξ} be a pants decomposition of Σ. We have constructed a
family of projective structures on Σ, to each of which is associated a natural holonomy
representation ρτ : π1(Σ) −→ PSL(2, C). We want to prove that our construction, for
suitable values of the parameters, gives exactly the Maskit embedding of Σ. For the
definition of this embedding we follow [16], see also [11]. Let R(Σ) be the representation
variety of π1(Σ), that is, the set of representations ρ : π1(Σ) −→ PSL(2, C) modulo
conjugation in PSL(2, C). Let M ⊂ R be the subset of representations for which:

(i) the group G = ρ (π1(Σ)) is discrete (Kleinian) and ρ is an isomorphism,

(ii) the images of σi , i = 1, . . . , ξ , are parabolic,

(iii) all components of the regular set Ω(G) are simply connected and there is exactly
one invariant component Ω+(G),

(iv) the quotient Ω(G)/G has k+1 components (where k = 2g−2+n if Σ = Σ(g,n) ),
Ω+(G)/G is homeomorphic to Σ and the other components are triply punctured
spheres.
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In this situation, see for example [10] (Section 3.8), the corresponding 3–manifold
Mρ = H3/G is topologically Σ×(0, 1). Moreover G is a geometrically finite cusp group
on the boundary (in the algebraic topology) of the set of quasifuchsian representations
of π1(Σ). The ‘top’ component Ω+/G of the conformal boundary may be identified to
Σ× {1} and is homeomorphic to Σ. On the ‘bottom’ component Ω−/G, identified to
Σ× {0}, the pants curves σ1, . . . ,σξ have been pinched, making Ω−/G a union of k
triply punctured spheres glued across punctures corresponding to the curves σi . The
conformal structure on Ω+/G, together with the pinched curves σ1, . . . ,σξ , are the end
invariants of Mρ in the sense of Minsky’s ending lamination theorem. Since a triply
punctured sphere is rigid, the conformal structure on Ω−/G is fixed and independent of
ρ, while the structure on Ω+/G varies. It follows from standard Ahlfors–Bers theory,
using the measurable Riemann mapping theorem (see again [10] Section 3.8), that
there is a unique group corresponding to each possible conformal structure on Ω+/G.
Formally, the Maskit embedding of the Teichmüller space of Σ is the map T (Σ) −→ R
which sends a point X ∈ T (Σ) to the unique group G ∈M for which Ω+/G has the
marked conformal structure X .

Proposition 4.4 Suppose that τ ∈ Cξ is such that the associated developing map
Devτ : Σ̃ −→ Ĉ is an embedding. Then the holonomy representation ρτ is a group
isomorphism and G = ρτ (π1(Σ)) ∈M.

Proof Since the developing map Dev : Σ̃ −→ Ĉ is an embedding, G = ρτ (π1(Σ))
is Kleinian. By construction (see Lemma 4.3), the holonomy of each of the curves
σ1, . . . ,σξ is parabolic. This proves (i) and (ii).

The image of Dev is a simply connected G–invariant component Ω+ = Dev(Σ̃) of the
regular set Ω(G) of G. Since Ω+ is G–invariant, its boundary ∂Ω+ is the limit set
Λ(G).

Let P ∈ P , and let P̃ be a lift of P to the universal cover Σ̃. The boundary curves
σi1 ,σi2 ,σi3 of P lift, in particular, to three curves in ∂P̃ corresponding to elements
γi1 , γi2 , γi3 ∈ π1(Σ) such that γi1γi2γi3 = id and such that ρ(γij) is parabolic for
j = 1, 2, 3. These generate a subgroup Γ(P̃) of SL(2, R) conjugate to Γ , see Section 4.1.
Thus the limit set Λ(P̃) of Γ(P̃) is a round circle C(P̃).

Without loss of generality, fix the normalisation of G such that ∞ ∈ Ω+(G). Since
Ω+(G) is connected, it must be contained in the component of Ĉ \Λ(P̃) which contains
∞. Since Λ(G) = ∂Ω+(G), we deduce that Λ(G) is also contained in the closure of
the same component, and hence that the open disk D(P̃) bounded by C(P̃) and not
containing ∞, contains no limit points. (In the terminology of [5], Γ(P̃) is peripheral

Algebraic & Geometric Topology XX (20XX)



Top terms of trace polynomials 1027

with peripheral disk D(P̃).) It follows that D(P̃) is precisely invariant under Γ(P̃) and
hence that D(P̃)/G = D(P̃)/Γ(P̃) is a triply punctured sphere.

Thus Ω(G)/G contains the surface Σ(G) = Ω+(G)/G and the union of k triply punctured
spheres D(P̃)/Γ(P̃), one for each pair of pants in P . Thus the total hyperbolic area of
Ω(G)/G is at least 4πk . Now Bers’ area inequality [1], see also eg [12] Theorem 4.6,
states that

Area(Ω(G)/G) ≤ 4π(T− 1)

where T is the minimal number of generators of G, in our case 2g + b − 1. Since
k = 2g + b− 2 we have

4π(2g + b− 2) ≤ Area(Ω(G)/G) ≤ 4π(T − 1) = 4π(2g + b− 2).

We deduce that Ω(G) is the disjoint union of Ω+(G) and the disks D(P̃), P ∈ P . This
completes the proof of (iii) and (iv).

This gives an alternative viewpoint on our main result: we are finding a formula for the
leading terms in τi of the trace polynomials of simple curves on Σ under the Maskit
embedding of T (Σ). This was the context in which the result was presented in [5, 16],
see also Section 5.3.1.

5 Calculation of paths

In this section we discuss how to compute the holonomy of some simple paths. We first
specify a particular path joining one hexagon to the next, then we study paths contained
in one pair of pants, and finally we compute the holonomy representations of some
paths in the one holed torus and in the four times punctured sphere.

The gluing construction in Section 4 effectively takes the charts to be the maps which
identify Pi with the standard fundamental domain ∆ ⊂ H. Precisely, as explained
above, for each P = Pi ∈ P , we have a fixed homeomorphism Φi : P −→ P and hence a
map ζ−1◦Φi : P −→ H, where ζ is the projection of H to P. Let ∆0(P) = Φ−1

i ◦ζ(∆0)
be the white hexagon in P. Also let b(P) = Φ−1

i ◦ ζ(b0) where b0 = 1+i
√

3
2 ∈ ∆0 is

the barycentre of the white triangle. This will serve as a base point in ∆0(P).

Suppose that γ ∈ S . Although not logically necessary, we can greatly simplify our
description by arranging γ in standard Penner position, so that it always passes from
one pants to the next through the white hexagons ∆0(Pi). Suppose, as in Section 4.3,
that γ passes through a sequence of pants Pi1 , . . . , Pin . We may as well assume that γ
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starts at the base point b(Pi1 ) of Pi1 . Given our identification Φi1 of Pi1 with P, there
is a unique lift b̃(Pi1) ∈ ∆0 and hence there is a unique lift γ̃ of γ ∩ Pi1 to H starting
at b̃(Pi1). This path exits ∆0 either across one of its three sides, or across that part of
a horocycle which surrounds one of the three cusps 0, 1,∞ contained in ∆0 . In the
first case, the holonomy is given by the usual action of the group Γ on H, where Γ is
the triply punctured sphere group as in Section 4.1. (This will be explained in detail in
Section 5.2.) In the second case, we have a precise description of the gluing across the
boundary annuli, giving a unique way to continue γ̃ into a lift of Pi2 . In this case we
continue in a new chart in which the lift of Pi2 is identified with ∆ ⊂ H, as before.

The following result applies to an arbitrary connected loop on Σ.

Proposition 5.1 Let γ ∈ π1(Σ) and suppose that
∑

i i(γ, σi) = q. Then the trace
Tr ρ([γ]) is a polynomial in τ1, . . . , τξ of maximal total degree q and of maximal degree
qk(γ) = i(γ, σk) in the parameter τk .

Proof Suppose the boundary ∂εP of one pair of pants P is glued to the boundary ∂ε′P′

of another pair P′ along a pants curve σ . The map ΦP′Φ−1
P : HP −→ HP′ which glues

the horocycle labelled ε in ∆0(P) to the horocycle labelled ε′ in ∆0(P′) is Ω−1
ε′ Tτ JΩε ,

where as usual the maps Ωε and Ωε′ are the standard maps taking ε, ε′ to ∞. Thus
with the notation of Section 4.3, the overlap map R = ΦPΦ−1

P′ is

(4) Ω−1
ε J−1T−1

τ Ωε′ .

Any curve γ ∈ π1(Σ) which intersects the pants curves σi in total q times passes
through a sequence of pants Pi1 , . . . , Piq = Pi1 and can therefore be written as a product∏q

j=1 κjλj where κj ∈ π1(Pij ; bij) is a path in Pij with both its endpoints in the base
point bij = b(Pij) and λj = λ(Pij , Pij+1 ) is a path from bij to bij+1 across the boundary
σij between Pij and Pij+1 .

Let ρ : π1(Pij ; bij) −→ Γ be the map induced by the identification of Pij with ∆ ⊂ H,
where Γ is the triply punctured sphere group as in Section 4.1. It follows that the
holonomy of γ is a product

(5) ρ([γ]) =
q∏

j=1

ρ(κj)Ω−1
εj

J−1T−1
τij

Ω′εj+1

from which the result follows.

It is clear from this formula that Tr ρ([γ]) is an invariant of the free homotopy class
of γ , because changing the base point of the path γ changes the above product by
conjugation.
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We can also define the holonomy of paths with distinct endpoints in one pair of pants P,
see Section 5.2.

5.1 Paths between adjacent pants

Suppose that pants P and P′ are glued along σ ∈ PC . If ∂∞P is glued to ∂∞P′ ,
then there is an obvious path λ(P, P′;∞,∞; 0) on Σ0 from b(P) to b(P′), namely the
projection to Σ0 of the union of the path z = b(P) + it, t ∈ [0,0τ/2 + ε] in ∆0(P)
with the path z′ = b(P′) + it, t ∈ [0τ/2 + ε, 0] in ∆0(P′). More generally, if ∂εP is
glued to ∂ε′P′ , we define λ(P, P′; ε, ε′; 0) to be the path obtained by first applying the
maps Ωε,Ωε′ to the segments of λ(P, P′;∞,∞; 0) in P, P′ respectively. For a general
surface Σ(τ ) we define λ(P, P′; ε, ε′; τ ) = Φτ (λ(P, P′; ε, ε′; 0)). Note that λ(P, P′,σ; τ )
is entirely contained in the white triangles in P and P′ . Unless needed for clarity, we
refer to all these paths as λ(P, P′).

Referring to the gluing equation (3) we see that the holonomy of λ(P, P′) is given by

(6) ρ
(
λ(P, P′; ε, ε′; τ )

)
= Ω−1

ε J−1T−1
τ Ωε′ .

As already noted in Lemma 4.2, the gluing parameters τ are independent of the direction
of travel (from P to P′ or vice versa). From (6) we have

ρ
(
λ(P′, P; ε′, ε; τ )

)
= Ω−1

ε′ J−1T−1
τ Ωε

so that
ρ(λ(P′, P; ε′, ε; τ )−1) = Ω−1

ε Tτ JΩε′ .

Using the identities J−1 = −J , T−1
τ = T−τ and Tτ J = JT−τ this gives

(7) ρ
(
λ(P′, P; ε′, ε; τ )−1) = −ρ

(
λ(P′, P; ε′, ε; τ )

)−1
,

as one would expect. That fact will be particularly important for our proof in Section 6.

5.2 Paths in a pair of pants

We now calculate the holonomy of the three boundary loops in one pair of pants P. As
usual, we identify P with P so that the components of its boundary are labelled 0, 1,∞
in some order, and the base point is the barycentre b0 = 1+

√
3i

2 of ∆0 . Orient each of
the three boundary curves ∂ε(P), where ε ∈ {0, 1,∞}, consistently with the three lines
µε where, as above, µε ⊂ H is the unique oriented geodesic from ε + 1 to ε + 2, where
ε is in the cyclically ordered set {0, 1,∞}, see Figure 9. We denote by ηε ∈ π1(P; b0)
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0 1−1

b0 γ0γ1

γ∞

b∗0 F (b∗0)

G(b∗0)

Figure 11: Paths between b0 and b∗0 where F = ρ(γ0) and G = ρ(γ∞).

the loop based at b0 and freely homotopic to the oriented loop ∂ε(P). To calculate the
holonomy of ηε , we begin by noting the holonomies of the three homotopically distinct
paths γε , with ε ∈ {0, 1,∞}, joining b0 to b∗0 = −1+

√
3i

2 , the barycentre of ∆1 , see
Figure 11.

Each path γε is determined by the geodesic µε which it crosses. Thus γ0 connects b0
and b∗0 crossing µ0 , and so on. The holonomies of these three paths are:

(8) ρ(γ0) =
(

1 2
0 1

)
; ρ(γ1) = Id =

(
1 0
0 1

)
; ρ(γ∞) =

(
1 0
2 1

)
,

as is clear from Figure 11.

To calculate the holonomy of the loop η0 around the boundary ∂0P, we have to go from
b0 to b∗0 crossing µ∞ and then go from b∗0 to b0 crossing µ1 . Hence, as illustrated in
Figure 12, we have to go along the path γ∞ and then along the path γ−1

1 . Thus we find:

ρ(η0) = ρ(γ∞γ−1
1 ) =

(
1 0
2 1

)
.

Similarly to calculate the holonomy of η1 , we have to go from b0 and b∗0 crossing µ0
and then return from b∗0 to b0 crossing µ∞ . This means going along γ0 and then γ−1

∞ .
Thus the holonomy is:

ρ(η1) = ρ(γ0γ
−1
∞ ) =

(
1 2
0 1

) (
1 0
−2 1

)
=

(
−3 2
−2 1

)
.
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ε1 =∞ε3 = 1

ε2 = 0

Figure 12: The loop η0 homotopic to ∂0P .

Finally, to calculate the holonomy of η∞ , we have to go from b0 to b∗0 crossing µ1 and
return from b∗0 to b0 crossing µ0 . Hence we have to go along the path γ1 and then
along the path γ−1

0 , so the holonomy is:

ρ(η∞) = ρ(γ1γ
−1
0 ) =

(
1 −2
0 1

)
.

As a check, we verify that

ρ(η0)ρ(η∞)ρ(η1) =
(

1 0
2 1

) (
1 −2
0 1

) (
−3 2
−2 1

)
= Id

in accordance with the relation η0η∞η1 = id in π1(P; b0).

5.3 Examples

To conclude this section, we look at the special cases of the once punctured torus and
the four times punctured sphere.

5.3.1 The once punctured torus

The once punctured torus Σ1,1 is decomposed into one pair of pants by cutting along
a single pants curve σ . To determine the projective structure on Σ1,1 following our
construction, we take a pair of pants P and glue the boundaries ∂∞P and ∂0P, so that
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Dσ

σ

∂∞(P ) ∂0(P )

∂1(P )

Figure 13: Plumbing for the once punctured torus.
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the remaining boundary ∂1P becomes the puncture on Σ1,1 , see Figure 5.3.1. To find
ρ : π1(Σ1,1) −→ PSL(2, C), it is sufficient to compute the holonomy of σ and of its
dual curve Dσ .

To do the gluing, take two copies of P and, following the notation in Section 4, label
the copy on the left in the figure P, and that on the right, P′ . We identify P with the
standard triply punctured sphere P by the homeomorphism Φ : P −→ P so that the
universal covers P̃, P̃′ are identified with copies H, H′ of the upper half plane H with
coordinates z, z′ respectively. The cusps to be glued are labelled ε = ∞ and ε′ = 0.
We first apply the standard symmetries Ωε,Ωε′ which carry ε = ∞ and ε′ = 0 to ∞.
Referring to (2), we see that Ω∞(z) = z and Ω0(z′) = 1− 1

z′ .

According to the choices made in Section 3.1.1, the dual curve Dσ to σ is the curve
λ(P, P′,σ; τ ) joining b(P) ∈ P to b(P′) ∈ P′ . By (5) in Section 5 and by the formulae (2)
for the standard symmetries, we have:

ρ(Dσ) = Ω−1
∞ J−1T−1

τ Ω0

=
(

i 0
0 −i

) (
1 −τ
0 1

) (
1 −1
1 0

)
= −i

(
τ − 1 1

1 0

)
.

Since clearly ρ(σ) =
(

1 2
0 1

)
, this is enough to specify the representation ρ : π1(Σ) −→

PSL(2, C).

The original motivation for studying the representations in this paper came from studying
the Maskit embedding of the once punctured torus, see [5] and Section 4.5. The Maskit
embedding for Σ1,1 is described in [5] as the representation ρ′ : π1(Σ1,1) −→ PSL(2, C)
given by

ρ′(σ) =
(

1 2
0 1

)
and ρ′(Dσ) = −i

(
µ 1
1 0

)
.

This agrees with the above formula setting µ = τ − 1.

5.3.2 The four holed sphere Σ0,4

We decompose Σ0,4 into two pairs of pants P and P′ by cutting along the curve σ , and
label the boundary components as shown in Figure 14, so that the boundaries to be
glued are both labelled ∞. In the figure, P is the upper of the two pants and P′ the
lower. We shall calculate the holonomy of the dual Dσ to σ in two different ways, first
in the standard Penner position and secondly in the symmetrical DT–position. As it is
to be expected, the two calculations give the same result.
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The loop Dσ in Penner standard position. If we put the loop Dσ in Penner standard
position, as illustrated in Figure 5, and as described in Section 3.2, we see that it is the
concatenation of the paths:

(1) λ(P, P′;∞,∞; τ ) from b0(P) to b0(P′);

(2) η0(P′);

(3) η∞(P′);

(4) λ(P′, P;∞,∞; τ ) from b0(P′) to b0(P);

(5) η−1
0 (P).

Thus using the calculations in Sections 5.1 and 5.2, we have

ρ(Dσ) = ρ
(
λ(P, P′;∞,∞; τ ) · η0(P′) · η∞(P′) · λ(P′, P;∞,∞; τ ) · η−1

0 (P)
)

=
(

i −iτ
0 −i

)
·
(

1 0
2 1

)
·
(

1 −2
0 1

)
·
(
−i iτ
0 i

)
·
(

1 0
−2 1

)

=
(
−4τ 2 + 6τ − 3 2τ 2 − 4τ + 2
−4τ + 4 2τ − 3

)

giving
Tr ρ(Dσ) = −4τ 2 + 8τ − 6.

Now q(Dσ) = 2 and p(Dσ) = 0 (see Section 3.1), and the number h of scc–arcs in Dσ

is 2. Thus Theorem A predicts that

Tr ρ(Dσ) = ±i222(τ + (0− 2)/2)2 + R

where R represents terms of degree at most 0 in τ , in accordance with the computation
above.

The loop Dσ in symmetrical DT–position. As usual we take as base points the
barycenters b0(P) and b∗0(P) of the ‘white’ and the ‘black’ hexagons respectively in P
and the same base points b0(P′) and b∗0(P′) in P′ . Also denote λ∗(P, P′;∞,∞; τ ) the
path R(λ(P, P′;∞,∞; τ )) from b∗0(P) to b∗0(P′) through the black hexagons, where R
is the orientation reversing symmetry of Σ(τ ) as in Section 3.1.

From Figure 14, we see that Dσ is the concatenation of the paths:

(1) λ(P, P′;∞,∞; τ ) from b0(P) to b0(P′);

(2) γ∞(P′) in P′ from b0(P′) to b∗0(P′);

(3) λ∗(P′, P;∞,∞; τ ) from b∗0(P′) to b∗0(P);
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Dσσ

∂∞(P )

∂∞(P ′)

∂1(P ) ∂0(P )

∂1(P ′)∂0(P ′)

b0(P )b∗0(P )

b0(P ′)b∗0(P ′)

Figure 14: The loop Dσ in its symmetrical DT–position in the four holed sphere.

(4) γ−1
∞ (P) in P from b∗0(P) to b0(P).

Thus

ρ(Dσ) = ρ
(
λ(P, P′,σ; τ )

)
· ρ (γ∞(P)) · ρ

(
λ∗(P′, P,σ; τ )

)
· ρ

(
γ−1
∞ (P)

)
.

Following Remark 4.1 we have

λ∗(P′, P;∞,∞; τ ) = λ(P′, P;∞,∞; τ − 2) = λ(P, P′;∞,∞; τ − 2)−1

so that, from Section 5.1, we have ρ
(
λ∗(P′, P;∞,∞; τ )

)
=

(
−i i(τ − 2)
0 i

)
. Thus

referring also to Section 5.2 we see

ρ(Dσ) =
(

i −iτ
0 −i

)
·
(

1 0
2 1

)
·
(
−i i(τ − 2)
0 i

)
·
(

1 0
−2 1

)

=
(
−4τ 2 + 6τ − 3 2τ 2 − 4τ + 2
−4τ + 4 2τ − 3

)
.

Hence Tr (ρ(Dσ)) = −4τ 2 + 8τ − 6 as before.
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6 Proof of Theorem A

In this final section we prove Theorem A. Our method is to show that the product of
matrices forming the holonomy always takes a special form and then give an inductive
proof.

First consider the holonomy representation of a typical path. Let γ ∈ S0 be a simple
loop on Σ. We suppose γ is in Penner standard position, so that it always cuts σij in
the arc wij . Starting from the basepoint in some pants P, it crosses, in order, pants
curves σij , j = 1, . . . , q(γ). If the boundaries glued across σij are ∂εP, ∂ε′P′ , then, by
equation (4), the contribution to the holonomy product ρ(γ) is

Ω−1
ε J−1T−1

τij
Ω′ε′

where τij = τi whenever σij = σi ∈ PC .

A single positive twist around ∂εP immediately before this boundary component
contributes ρ(η−1

ε ) = Ω−1
ε ρ(η−1

∞ )Ωε (because ηε twists in the negative direction round
∂εP, see Figure 12), while a single positive twist around ∂ε′P′ after the crossing
contributes ρ(ηε) = Ω−1

ε′ ρ(η∞)Ωε′ . Thus if, in general, γ twists αj times around
∂εP = σij immediately before the crossing and βj times after, the total contribution to
the holonomy is

(9) Ω−1
ε ρ(η∞)−αj J−1T−1

τi ρ(η∞)βjΩ′ε′ ,

where σij = σi ∈ PC .

From Sections 4.1 and 5.2 we have

J−1T−1
τ =

(
i −iτ
0 −i

)
and ρ(η∞) =

(
1 −2
0 1

)
.

For variables X, Y , write AX =
(

1 X
0 −1

)
and BY =

(
1 Y
0 1

)
. We calculate

ρ(η∞)−αj J−1T−1
τi ρ(η∞)βj = iAXj

with Xj = −(τi + 2αj + 2βj), from which we note in particular that, as expected, which
side of the crossing the twists occur makes no difference to the final product.

Proposition 6.1

(i) Suppose that γ contains no scc–arcs. Then ρ(γ) is of the form ±iqΠq
i=1AXjΩij ,

where Ωij = Ω0 or Ω1 for all j. If the term AXj corresponds to the crossing
of a pants curve σij = σi , with αj twists before the crossing and βj after, then
Xj = −(τi + 2αj + 2βj).
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(ii) If γ contains scc–arcs, then ρ(γ) takes the same form as above, with an extra
term

AXjΩ1B±2Ω0AXj

inserted for each scc–arc which crosses σij twice in succession.

(iii) In all cases, the total P–twist of γ about σi ∈ PC is p̂i(γ) =
∑

σij=σi
(αj + βj).

Proof As computed above we have

ρ(η∞)−αJ−1T−1
τ ρ(η∞)β = i

(
1 −(τ + 2α + 2β)
0 −1

)
= iA−(τ+2α+2β).

It follows that the holonomy ρ(γ) is a concatenation of q terms of the form Ω−1
ε A−(τ+2α+2β)Ωε′ ,

one for each crossing of a pants curve σij . If γ contains no scc–arcs, then it enters
and leaves each pants P across distinct boundary components, say ∂ε1P and ∂ε2P
respectively. Then the corresponding adjacent terms in the concatenated product are
then

. . .Ωε1Ω
−1
ε2

. . .

where ε1 ,= ε2 , from which (i) easily follows.

We also note that regardless of how the twists are organised before or after the crossings,
the sum

∑qi(γ)
j=1 (αj + βj) of coefficients in terms corresponding to crossings of the pants

curve σi is equal to p̂i(γ), the ith P–twisting number of the curve γ with respect to the
pants decomposition PC . This proves (iii).

Now suppose that γ contains some scc–arcs. Suppose that γ cuts a curve σij twice
in succession entering and leaving a pants P across the boundary ∂∞P. Since γ is in
P–form, after crossing ∂∞P it goes once around ∂0P in either the positive or negative
direction and then returns to ∂∞P, see Figure 5. Since γ is simple, the twisting around
σij is the same on the inward and the outward journeys. The term in the holonomy is
therefore

AXjρ(η0)±1AXj = AXjΩ
−1
0 ρ(η∞)∓1Ω0AXj = AXjΩ

−1
0 B±2Ω0AXj

as claimed.

If more generally γ enters and leaves P across ∂εP, then this entire expression is
multiplied on the left by Ω−1

ε and on the right by Ωε . By the same discussion as in (i),
this leaves the form of the holonomy product unchanged. The contribution to the twist
about σij is calculated as before.
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We are now ready for our inductive proof of Theorem A. Suppose first that γ ∈ S0
contains no scc–arcs. If

ρ(γ) = Πq
i=1AXjΩij

define X∗j = Xj + h(Ωij) + k(Ωij−1 ) where Ωi0 := Ωiq and

h(Ωij) =

{
1 if ij = 0
0 otherwise

and k(Ωij) =

{
0 if ij = 0
1 otherwise.

Thus:

Ω0AXΩ0 → X∗ = X + 1
Ω0AXΩ1 → X∗ = X

Ω1AXΩ0 → X∗ = X + 2
Ω1AXΩ1 → X∗ = X + 1.

Remark 6.2 Replacing ρ(γ) by ρ(γ)−1 leaves the occurrences of the above blocks
unchanged. The entire matrix product is multiplied by (−1)q . This is because
A−1

X = −AX and, for example,

(Ω0AXΩ1)−1 = Ω−1
1 A−1

X Ω−1
0 = −Ω0AXΩ1.

Now given the path of some γ ∈ S0 , consider a crossing for which σij = σi . Let
Ωij−1AXjΩij be the corresponding terms in ρ(γ), (where Ωij−1 is associated to the crossing
of the previous pants curve σij−1 ). Let pj, p̂j be the respective contributions from this
jth crossing to the DT– and P–twist coordinates of γ , so that the total twists pi, p̂i about
σi are obtained by summing over all crossings for which σij = σi : pi =

∑
σij=σi

pj and
likewise p̂i =

∑
σij=σi

p̂j .

For any variable aj ∈ R which depends on the jth crossing, define a∗j according to the
same rule as X∗ above, in other words a∗j = aj + h(Ωij) + k(Ωij−1 ). We have:

Lemma 6.3 Suppose that γ contains no scc–arcs and as usual let pj, p̂j be the
contributions to the DT– and P–twists of γ corresponding to the jth crossing of a pants
curve σi ∈ PC . Then (−2p̂j)∗ = −pj + 1.

Proof This is verified using Theorem 3.5, together with the fact that γ is assumed to
be in P–standard form.
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Consider a crossing for which σij = σi with corresponding term Ωij−1AXjΩij in ρ(γ).
Suppose for example that the relevant term in the holonomy is Ω0AXjΩ0 , so that by
definition, a∗j = aj + 1 for any variable aj . Without loss of generality, we may suppose
that σij is the gluing of ∂∞P to ∂∞P′ as shown in Figure 6. The first Ω0 means that
there is an arc from D to E , and the second Ω0 means there is an arc from E to A. The
formula of Theorem 3.5 therefore gives a contribution 2p̂j = pj + 0 + 1− 1 = pj . Thus
(−2p̂j)∗ := −2p̂j + 1 = −pj + 1 as claimed.

Similarly, consider the sequence Ω1AXjΩ0 . In this case, (−2p̂j)∗ = −2p̂j + 2. From
Theorem 3.5 we find 2p̂j = pj + 1 + 1− 1 = pj + 1, so (−2p̂j)∗ = −2p̂j + 2 = −pj + 1.

The other two possible sequences are similar.

In the case of no scc-arcs, Theorem A is an immediate corollary of this lemma and the
following proposition:

Proposition 6.4 Suppose that γ contains no scc–arcs, then

Tr (ρ(γ)) = ±iq Tr
(
Πq

j=1AXjΩij

)
= ±iq

(
Πq

j=1X∗j
)

+ R

where R denotes terms of degree at most q− 2 in the Xj .

Proof of Theorem A (No scc–arcs case.) By Proposition 6.1, if σij = σi then
Xj = −(τi + 2αj + 2βj). There are qi(γ) such terms Xj . Thus the top order term of
Tr ρ(γ) is τ q1

1 . . . τ
qξ

ξ , with coefficient ±iq , in accordance with the result of Theorem A.

Now the contribution to the P–twist corresponding to the jth crossing is p̂j = αj + βj .
Thus

Πq
j=1X∗j = Πq

j=1[−(τi + 2αj + 2βj)]∗

= Πq
j=1[−(τi + 2p̂j)]∗

= Πq
j=1[−τi + (−2p̂j)∗]

= Πq
j=1[−τi − pj + 1]

= (−1)qΠq
j=1(τi + pj − 1),

where we used Lemma 6.3 to evaluate (−2pj)∗ . Hence the coefficient of τ q1
1 . . . τ qi−1

i . . . τ
qξ

ξ

is
±iq

∑

σij=σi

(pj − 1) = ±iq(pi − qi)

which is exactly the coefficient in Theorem A.
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Proof of Proposition 6.4. We prove this by induction on the length q of the product
Πq

j=1AXjΩij . If q = 1, with respect to the cyclic ordering we see either the block
Ω0AXΩ0 or Ω1AXΩ1 , so that X∗ = X + 1. In both cases we check directly that
Tr AXΩ0 = Tr AXΩ1 = X + 1.

The case q = 2 corresponds to a product AX1ΩεAX2Ωε′ . Hence there are four
possibilities corresponding to ε = ±1 and ε′ = ±1. These cases can be checked either
by multiplying out or by using the trace identity

(10) Tr(AB) = Tr(A) Tr(B)− Tr(AB−1).

For example, if ε = ε′ = 0, then

Tr AX1Ω0AX2Ω0 = Tr(AX1Ω0) Tr(AX2Ω0) + Tr AX1AX2

= (X1 + 1)(X2 + 1) + 2 = X∗1 X∗2 + 2,

where we used the relation A−1
X = −AX .

If ε = 0, ε′ = 1 then

Tr
(
AX1Ω0AX2Ω1

)
= Tr(AX1Ω0) Tr(AX2Ω1)− Tr

(
AX1Ω0Ω−1

1 A−1
X2

)
.

The first term on the right hand side is (X1 + 1)(X2 + 1) and the last term reduces to

−Tr A−1
X2

AX1Ω1 = −X2 + X1 − 1.

Hence

Tr AX1Ω0AX2Ω1 = X1X2 + 2X2 + 2 = (X1 + 2)X2 + 2 = X∗1 X∗2 + 2.

The other two cases with q = 2 are similar (or can be obtained from these by replacing
γ with γ−1 ).

Now we do the induction step. Suppose the result true for all products of length less
than q. We split into three cases.

Case (i): Ω0 appears 3 times consecutively.

After cyclic permutation the product is of the form

AX1Ω0AX2Ω0AX3Ω0 . . .Ωiq .

We will apply (10), splitting the product as

(AX2Ω0)× (AX3Ω0 . . .ΩiqAX1Ω0).

Considering the first term of this split product alone, AX2 is still preceded and followed
by Ω0 . Likewise, taking the second term alone, AX1 and AX3 are still preceded and
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followed by the same values of Ωi as they were before and nothing else has changed.
Thus the induction hypothesis gives

Tr AX2Ω0 = X∗2 and Tr AX3Ω0 . . .ΩiqAX1Ω0 = X∗3 . . . X∗q X∗1 .

Now consider the remaining term coming from (10):

Tr[AX2Ω0(AX3Ω0 . . .ΩiqAX1Ω0)−1] = Tr[AX2A−1
X1

Ω−1
iq . . . A−1

X3
].

Cyclically permuting, the three terms A−1
X3

, AX2 , A−1
X1

combine to give a single term
AX3+X2+X1 , so that the trace has degree at most q − 2 in the variables X3 + X2 +
X1, X4, . . . , Xq . Putting all this together proves the claim.

Case (ii): Ω0 appears at most 2 times consecutively.

Suppose first q ≥ 4. Thus after cyclic permutation the product is of the form:

AX1Ω0AX2Ω0AX3Ω1AX4 . . .Ω1.

We apply (10) splitting as

(AX1Ω0AX2Ω0AX3Ω1)× (AX4 . . . AXqΩ1).

Taking each of these subproducts separately, we see that again the terms Ωi preceding
and following each AX are unchanged. So the induction hypothesis gives

Tr(AX1Ω0AX2Ω0AX3Ω1) = X∗1 X∗2 X∗3

and
Tr(AX4 . . . AXqΩ1) = X∗4 . . . X∗q .

Moreover we note
AX1Ω0AX2Ω0AX3Ω1Ω−1

1 A−1
Xq

. . . A−1
X4

is of degree at most q − 2 in the variables X4 + X1, X2, X3 + Xq, X5, . . . , Xq−1 . The
result follows.

The case q = 3 is dealt with by splitting

AX1Ω0AX2Ω0AX3Ω1 as (AX3Ω1AX1Ω0)× AX2Ω0,

using the previously considered case q = 2, and noting that

AX3Ω1AX1Ω0Ω−1
0 A−1

X2

has degree 1 in the variable X1 + X2 + X3 . (Recall that A−1
X = −AX .)

Case (iii): Ω0 and Ω1 appear alternately.
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In this case we split

AX1Ω0AX2Ω1AX3Ω0AX4 . . .Ω1 as (AX1Ω0AX2Ω1)× (AX3Ω0AX4 . . .Ω1)

and the argument proceeds in a similar way to that before.

Now we add in the effect of having scc–arcs, that is we deal with the case h > 0.

Theorem 6.5 Suppose that a matrix product of the form in Theorem 6.4 is modified by
the insertion of h blocks AXjΩ

−1
0 BYrΩ0AXj , r = 1, . . . , h for variables Yr ∈ C. Then

its trace is
±

(
Πh

j=1Yk
) (

Πq
j=1X∗j

)
+ R

where R denotes terms of degree at most q− 2 in the Xj .

Proof We first check the case q = 1, h = 1 by hand. (Note that such a block cannot
be the holonomy matrix of a simple closed curve.) We have:

AXΩ1BYΩ0 =
(

X(1 + Y)− (X + 1) ∗
∗ 1

)
,

hence Tr AXΩ1BYΩ0 = XY . Since the term Ω0AXΩ1 contributes the factor X and the
term BY contributes Y , this fulfills our hypothesis.

Now work by induction on h. Suppose the result holds for products

ΩuAX1Ωi1AX2Ωi2 . . . AXs

containing at most h− 1 terms of the form BYr and consider a product

ΩuAX1Ωi1AX2Ωi2 . . .ΩvAXΩ1BYhΩ0AX.

There are four possible cases:

u = 1, v = 0; u = 1, v = 1; u = 0, v = 0; u = 0, v = 1.

Case u = 1, v = 0. Consider the extra contribution to the trace resulting from the
additional block AXΩ1BYhΩ0AX . The first occurrence of AX appears in a block Ω0AXΩ1
which, according to what we want to prove, should contribute a factor X . Likewise the
block Ω0AXΩ1 containing the second occurrence of AX should contribute X , and the
term BY should contribute Y . Thus it is sufficient to show that

Tr(Ω1AX1Ωi1AX2Ωi2 . . . AXsΩ0AXΩ1BYΩ0AX) =
±X2Y Tr(Ω1AX1Ωi1AX2Ωi2 . . . AXsΩ0AX) + R
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where R denotes terms of total degree at most 2 less then the first term in the Xj .

Splitting the product as

(Ω1AX1Ωi1AX2Ωi2 . . .Ω0AX)× (Ω1BYΩ0AX)

and using (10), we see that the second factor contributes XY and the first factor,
containing the sequence Ω0AXΩ1 , contributes X . The remaining term

(Ω1AX1Ωi1AX2Ωi2 . . .Ω0AX)× (Ω1BYΩ0AX)−1

coming from (10) has, as usual, degree in the Xj lower by 2. This proves the claim in
this case.

Case u = 1, v = 1. Again splitting the product as

(Ω1AX1Ωi1AX2Ωi2 . . .Ω1AX)× (Ω1BYΩ0AX),

the first split factor contains the block Ω1AXΩ1 which contributes a factor (X + 1) to
the trace. The second split factor contributes XY .

In the unsplit product we have from the first occurrence of AX the block Ω1AXΩ1 ,
which contributes a factor X + 1, and from the second AX the block Ω0AXΩ1 , which
contributes X , again proving our claim.

Case u = 0, v = 0. This can be done by inverting the previous case. Aletrnatively,
splitting again as

(Ω0AX1Ωi1AX2Ωi2 . . .Ω0AX)× (Ω1BYΩ0AX),

the first split factor contains the block Ω0AXΩ0 , which contributes a factor X + 1, while
the second split factor contributes, as usual, XY .

In the unsplit product we have from the first AX the block Ω0AXΩ1 which contributes
X , and from the second AX the block Ω0AXΩ0 which contributes X + 1, again proving
our claim.

Case u = 0, v = 1. Again split as

(Ω0AX1Ωi1AX2Ωi2 . . .Ω1AX)× (Ω1BYΩ0AX).

The first split factor, containing Ω1AXΩ0 , contributes X + 2 and the second split factor
contributes XY .

In the unsplit product we have from the first AX the term Ω1AXΩ1 , which contributes
X+1, and from the second AX the term Ω0AXΩ0 , which contributes X+1. The induction
still works because, up to terms of lower degree, X(X + 2)Y = (X + 1)(X + 1)Y .
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Remark 6.6 Not all the cases discussed above are realisable as the holonomy repre-
sentations of simple connected loops γ . For example, the cases

v = 1, u = 1, Y = +2 and v = 0, u = 0, Y = −2

produce non–simple curves.

Proof of Theorem A This follows from Proposition 6.1 on setting Yj = ±2 in
Theorem 6.5. (For the final statement see Lemma 4.3.)
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