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Abstract

These notes formed part of the ICTP summer school on Geometry and Topology of 3-

manifolds in June 2006. Assuming only a minimal knowledge of hyperbolic geometry,

the aim was to provide a rapid introduction to the modern picture of Kleinian groups.

The subject has recently made dramatic progress with spectacular proofs of the Den-

sity Conjecture, the Ending Lamination Conjecture and the Tameness Conjecture.

Between them, these three new theorems make possible a complete geometric classi-

fication of all hyperbolic 3-manifolds. The goal is to explain the background needed

to appreciate the statements and significance of these remarkable results.

Introduction

A Kleinian group is a discrete group of isometries of hyperbolic 3-space H3. Any

hyperbolic 3-manifold is the quotient of H3 by a Kleinian group. In the 1960s, the

school of Ahlfors and Bers studied Kleinian groups mainly analytically, in terms of

their action on the Riemann sphere. Thurston revolutionised the subject in the 1970s

by taking a more topological viewpoint and showing that in a certain sense ‘many’

3-manifolds, perhaps one could say ‘most’, are hyperbolic. He also introduced many

wonderful new concepts, some of which we shall meet here.

In the last five years, our understanding of Kleinian groups has advanced by leaps

and bounds with the proofs of three great conjectures: the Density Conjecture, the

Ending Lamination Conjecture and the Tameness Conjecture. Combined, they give

a remarkably complete picture of Kleinian groups.

The aim of these notes is to give a rapid introduction to this vast subject. Our

goal is to reach a point from which we can appreciate the statements and significance

of the three conjectures. The first two chapters contain general background on the

algebra, geometry and topology of Kleinian groups. Chapter 3 presents the classical

and well understood picture of geometrically finite groups. In the last chapter, we

describe spaces of groups and the Thurston-Bonahon picture of geometrically infinite
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ends.

There are only a few books which systematically take the modern viewpoint,

notably [MT, Kap]. A new book by Marden [Mar], of which I was fortunate to

have a preview, is due to appear shortly. It contains state of the art references and

I am sure will become an essential handbook for anyone wanting to work on this

subject seriously. These notes are essentially the same as those presented during the

summer school with only minor editorial changes. I hope the informal style will prove

user friendly. In particular, rather than referring to the original papers, I mainly

give general references to books in which more detailed information can be found.

A few topics, notably the Margulis lemma and the Mostow rigidity were covered in

detail by other lecturers. I have added brief explanations to make these notes more

self-contained. Time and space prevented the inclusion of other topics, in particular

I should have liked to have a chapter on surfaces, Teichmüller theory and geodesic

laminations. Fortunately this material is fairly easily available from various sources.

My title for these notes is not original. In 1974, Bers and Kra edited “A Crash

Course on Kleinian groups” [BK] which is still well worth consulting. Besides filling

in much background omitted here, it is very striking that the recent progress has

precisely resolved many questions already raised there.

I would like to thank the organisers of the meeting ICTP Summer School on

Geometry and Topology of 3-manifolds for giving me the opportunity to present this

beautiful material both by lecturing in the summer school and here in print.

Chapter 1: Kleinian group basics

A Kleinian group is a discrete group of orientation preserving isometries of hyperbolic

3-space H3. There are many reasons to study such groups. One important motivation

is that they arise as the holonomy representation of a hyperbolic structure on a 3-

manifold M . More precisely:

Theorem 1.1 Let M be a complete hyperbolic 3-manifold. Then M = H3/G where

G is a Kleinian group.

Here complete means that every geodesic can be extended indefinitely.

Since M looks locally like hyperbolic space, G contains no elements of finite order.

So we will often find it convenient to simplify by assuming that G is torsion free, in

other words that there is no g ∈ G with gk = id.

In this chapter we look at some basic properties of Kleinian groups. General

references are [Bea, Mar, MT, Thu] and the much older but still useful book [F].
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Modelling hyperbolic space We shall work with the upper half space and Poincaré

ball models of hyperbolic 3-space H3. This allows us to identify the orientation pre-

serving isometry group Isom+H3 with the group PSL(2, C).

The upper half space H consists of points {(z, t) : z ∈ C, t > 0}. The metric is

ds2 = |dz|2+dt2

t2 . In the unit ball B3 = {(x1, x2, x3) ∈ R3 : r2 = x2
1 + x2

2 + x2
3 < 1} the

metric is ds2 = 4|dr2|
(1−r2)2 . Using stereographic projection (or rather its inverse) we can

easily map H to B3 so usually we consider these two models to be equivalent.

The model is conformal, that is, angles are correctly seen as Euclidean angles. In

H, hyperbolic planes are either vertical Euclidean planes or hemispheres centred on

C. Geodesics are vertical Euclidean lines or arcs of great circles on these hemispheres.

The hyperbolic distance dH3(P, Q) between P = (z1, t1) and Q = (z2, t2) in H is

given by

cosh dH3(P, Q) = 1 +
|z1 − z2|2 + |t1 − t2|2

2t1t2
.

In particular, we find

dH3((0, t1), (0, t2)) = | log
t1
t2
|.

If P ∈ H is fixed, then dH3(P, Q) →∞ as t2 → 0. This justifies calling the Riemann

sphere Ĉ = C∪∞ the boundary at infinity. When the specific model is not important,

we write this boundary as ∂H3.

Representation of isometries using SL(2, C). As in Euclidean geometry, isome-

tries of H3 are generated by reflections in (hyperbolic) planes. Orientation preserving

isometries correspond to even numbers of reflections. Hyperbolic planes meet Ĉ in

circles and hyperbolic reflection in a plane extends to inversion in a circle. (Inver-

sion in the circle |z − c| = r is given by the formula z &→ c + r2

z−c
.) Thus Isom+H3

is generated by products of even numbers of inversions. These are just the Möbius

maps z &→ az+b
cz+d . We briefly recall some basic facts on Möbius maps. There are many

sources for details, for example [F, MSW].

• Möbius maps compose by matrix multiplication. Multiplying all coefficients in

A =

(
a b

c d

)
by a non-zero λ ∈ C does not affect the action. Hence dividing all

coefficients by ±
√

det A, we may assume A is normalised so that det A = 1. The

ambiguity ±1 means that the group of Möbius maps Mob Ĉ can be identified

with PSL(2, C).

• Mob Ĉ acts transitively on triples of distinct points in Ĉ.
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• Transforming Ĉ by S ∈ Mob Ĉ induces the action of conjugation on A ∈ Ĉ. For

example, if A has a fixed point z0 then SAS−1 has a fixed point S(z0).

• Tr A = a + d is invariant under conjugation in SL(2, C). Because of the ambi-

guity of sign, strictly speaking only Tr2 A is defined on PSL(2, C).

• A Möbius map has one or two fixed points. If there are two fixed points, one

is attracting and one repelling. The classification up to conjugation is given

below.

Types of isometries

One fixed point, Parabolic: Tr A = ±2. Canonical form: z &→ z + c, c ∈ C.

Two fixed points Tr A (= ±2. Canonical form: z &→ κz, κ ∈ C. From the canonical

form, Tr A = κ1/2 + κ−1/2. This subdivides into:

(Purely) hyperbolic: κ > 0. Tr A ∈ R, Tr2 A > 4.

Elliptic: |κ| = 1. Tr A ∈ R, Tr2 A < 4.

Loxodromic: Tr A /∈ R.

In H3, a parabolic z &→ z+c extends to the Euclidean translation (z, t) &→ (z+c, t).

All the other types z &→ κz extend to a homothety (z, t) &→ (κz, κt).

If A ∈ Mob Ĉ has two fixed points, then the line in H3 joining them is called its

axis. By moving to the standard position with fixed points at 0,∞, it is easy to check

that A moves points along the axis by a distance lA and rotates around the axis by

an angle θA given by

Tr A = 2 cosh((lA + iθA)/2).

(The ambiguity in sign caused by the fact that θA and θA + 2πi represent the same

rotation, corresponds to the ambiguity in sign of Tr A.) The positive real number lA is

called the translation length of A and λA := lA + iθA is called the complex translation

length.

The map A is purely hyperbolic iff θA = 0 and elliptic iff lA = 0. Note that

an elliptic is just rotation about the axis, so has finite order iff θA ∈ 2πQ. If A is

parabolic then by convention we set lA = θA = 0.
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Elementary groups The above discussion gives our first examples of Kleinian

groups:

1. 〈gn, n ∈ Z〉, g parabolic.

2. 〈gnhm, n, m ∈ Z〉, g, h parabolic with same fixed point but different translation

directions.

3. 〈gn, n ∈ Z〉, g loxodromic.

4. 〈gn, 0 ≤ n < k〉, g elliptic, gk = id.

Actually these examples are not so special as they seem.

Lemma 1.2 Let G be Kleinian and let g, h ∈ G. Then g, h have either both fixed

points in common or neither.

Proof. Normalise so that one common fixed point is at ∞ and then study g−nhgn.

For example, if h(z) = z + 1 and g(z) = κz with κ > 1 then g−nhgn(z) = z + κ−n. It

follows easily that G is not discrete. !

(For a more detailed discussion of discreteness, see §1.1 below.) From this we

deduce that if g, h are loxodromics with a common fixed point, then they have the

same axis.

Lemma 1.3 Let G be Kleinian and let g, h ∈ G be purely hyperbolic with the same

axis. Then G is cyclic.

Proof. Normalise such that g(z) = κz, h(z) = µz, κ, µ > 0. The set of powers κnµm

is discrete in R if and only if there exists a > 0 such that κ = ar and µ = as; moreover

using the Euclidean algorithm we can assume that a = κpµq for suitable p, q ∈ Z. !

These and other similar results lead to:

Definition 1.4 A Kleinian group is elementary if it is virtually abelian; that is, it

has an abelian subgroup of finite index.

Proposition 1.5 A Kleinian group is elementary iff there is a finite G-orbit for its

action on Ĉ.

Theorem 1.6 The list (1)-(3) above contains all the torsion free elementary Kleinian

groups.
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If a Kleinian group is not elementary, then it is quite complicated:

Proposition 1.7 If a Kleinian group is not elementary then it contains infinitely

many loxodromic elements with pairwise distinct axes.

In fact a group is non-elementary iff it contains a free subgroup on two generators,

see Proposition 2.30 below.

There are very few explicit tests to check if a group is discrete. Essentially the

best we have is:

Theorem 1.8 (Jørgensen’s inequality) Let A, B ∈ SL(2, C). If 〈A, B〉 is Kleinian

and non-elementary, then

|Tr2A− 4|+ |Tr ABA−1B−1 − 2| ≥ 1.

As we shall see, this has many important implications.

Details of the above results can be found in many texts on Kleinian groups, for

example [Bea, F, Mas, Mar].

1.1 More on discreteness

Recall our definition: A subgroup G ⊂ Isom+H3 is Kleinian if it is discrete. With our

identification of Isom+H3 with SL(2, C), this is equivalent to: G is Kleinian iff there

exists ε > 0 such that ||g± I|| > ε, where ||.|| is any suitable norm on SL(2, C). This

condition is enough to ensure that G has no accumulation points, since gn → g ∈ G

is equivalent to g−1gn → I.

You may be worried about the PSL(2, C) versus SL(2, C). Here is a rather deep

theorem:

Theorem 1.9 ([Cul]) Let Γ be an abstract group. Suppose given a representation

ρ : Γ → PSL(2, C) such that ρ(Γ) is Kleinian and non-elementary. Then ρ lifts to

ρ̂ : Γ → SL(2, C) iff Γ contains no elements of order 2.

If G acts on a topological space X, then in order to have a ‘decent’ quotient space

X/G we need to know that G acts in a ‘reasonable’ way, such that, for example, the

orbits form a Hausdorff space. This leads to

Definition 1.10 Suppose that G acts by homeomorphisms on a topological space X.

Then H acts properly discontinuously if for all compact subsets K ⊂ X, {g ∈ G :

gK ∩K (= ∅} is finite.
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Lemma 1.11 If G ⊂ PSL(2, C) acts properly discontinuously on a topological space

X, then G is discrete.

Proof. If the result is false, then there exist gn ∈ G, gn → I. Take K to be a ball

with compact closure. Then gnK ∩K (= ∅ for infinitely many gn. !

In general, the converse is false. For example, let G = SL(2, Z[i]), the subgroup

of SL(2, C) whose entries are Gaussian integers m + in, m, n ∈ Z. This is clearly

discrete. However the G-orbits on Ĉ ‘pile up’, as one can see by looking at the orbit

of 0 under the subgroup SL(2, Z). It is easy to see this consists of the extended

rational numbers Q ∪∞.1 Nevertheless, we have the following crucial theorem:

Theorem 1.12 G ⊂ PSL(2, C) is Kleinian iff it acts properly discontinuously on

H3.

Proof. The main idea is that for any r > 0, and P = (0, 1) ∈ H3, {γ ∈ SL(2, C) :

dH3(P, γP ) < r} is compact in SL(2, C). For details see for example [Bea, Thu]. !

Corollary 1.13 If G ⊂ PSL(2, C) is Kleinian and torsion free then H3/G is a

hyperbolic 3-manifold.

There are lots of possible variations of the definition of proper discontinuity. There

is an excellent discussion in [Thu] §3.5.

Action on Ĉ What about the action of a Kleinian group on Ĉ? The above example

of SL(2, Z[i]) shows it may not be properly discontinuous.

Definition 1.14 The ordinary set Ω = Ω(G) ⊂ Ĉ of a Kleinian group G is the

maximal open subset of Ĉ on which G acts properly discontinuously. The limit set

Λ = Λ(G) is Ĉ \ Ω.

The set Ω is also called the regular set and the domain of discontinuity. It is the

maximal set on which the elements of G form a normal family in the sense of complex

analysis. McMullen calls Λ, ‘the chaotic set’. It is the analogue of the Julia set for

a rational map. Typically, Λ is very complicated. For a wide variety of pictures of

limit sets and instructions on how to generate them, see [MSW].

1Groups with entries in number fields form a large and important class of Kleinian groups which
we shall not have time to touch on in these notes, see [MR].
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If G consists entirely of elliptic elements (and hence is finite), Λ is empty. Oth-

erwise, Λ is non-empty, because Ĉ is compact and the (infinite) G-orbits have to

accumulate somewhere. The regular set Ω may or may not be empty. In some rather

old fashioned terminology, G is called ‘of the first kind’ if Ω = ∅ and ‘of the second

kind’ otherwise. The group SL(2, Z[i]) is a good example of a group of the first kind.

The elementary groups are all of the second kind; in fact:

Lemma 1.15 Λ is finite iff G is elementary. In this case, Λ contains either 0, 1 or

2 points.

Suppose G is non-elementary. Then:

1. Λ is uncountably infinite, closed and minimal, that is, the G-orbit of any point

in Λ is dense in Λ.

2. Λ is the closure of the loxodromic fixed points (and equally of the parabolic

fixed points, if G contains any parabolic).

3. Λ is the set of accumulation points of the G-orbit of any point in Ĉ ∪H3.

4. Suppose that H is a subgroup of G. If either H is of finite index, or H is normal

in G, then Λ(H) = Λ(G).

5. If Λ(G) (= Ĉ, then its interior is empty.

The last item suggest Ahlfors’ conjecture:

Conjecture 1.16 If Λ(G) (= Ĉ, then it has Lebsgue measure 0.

A consequence of the three new theorems mentioned in the introduction, is that

Ahlfors’ conjecture is now proved [BBES]. More precisely, Ahlfors proved his conjec-

ture for geometrically finite groups (see Chapter 3). Following on work of Thurston

and Bonahon about geometrically infinite groups (see Chapter 4), Canary proved it

for tame groups [Can]. Thus the Ahlfors conjecture now follows from the tameness

theorem 4.53.

Here are some properties of Ω. Assume that G is finitely generated, non-elementary

and that Ω (= ∅. Then:

1. Ω has either 1, 2 or infinitely many connected components.

2. Each connected component of Ω is either simply connected or infinitely con-

nected.
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3. If there are (at least) two G-invariant components Ω1 and Ω2, then each is

simply connected and Ω = Ω1 ∪ Ω2.

4. If there is one G-invariant component Ω0, then all other components are simply

connected.

Property (1) is easy, (2) is not hard using the Ahlfors finiteness theorem below,

while (3,4) are most easily proved using 3-dimensional topology, see [Mar74, Mar].

The groups in (3) are exactly the quasifuchsian groups we shall meet in the next chap-

ter. In the older literature, groups with an invariant component are called function

groups. Groups with a simply connected invariant component are called B-groups.

The Ahlfors finiteness theorem. We end this chapter with two deep theorems.

Recall that a Riemann surface is a surface with local charts to C such that the overlap

maps are complex analytic. This is called a conformal structure on the surface. A

puncture is a neighbourhood of a boundary component for which we have a chart to

a punctured disk. If a surface carries a hyperbolic structure, it automatically carries

a conformal structure by ‘forgetting’ the metric and remembering only the angles. A

Riemann surface is said to have finite type if it has finite genus and finitely many

punctures. One version of the famous uniformisation theorem states that:

Theorem 1.17 (Uniformisation theorem) Suppose that S is a Riemann surface,

possibly with punctures, which has negative Euler characteristic. Then there is a

unique hyperbolic structure on S inducing the given conformal structure.

Theorem 1.18 (Ahlfors’ finiteness theorem) Suppose that the Kleinian group G

is non-elementary and finitely generated. Then Ω/G is a finite union of Riemann sur-

faces of finite type. Moreover each of these surfaces has negative Euler characteristic

and so is hyperbolisable.

The surfaces in Ω/G are together called the conformal boundary of H3/G at

infinity. There are (at least) two modern proofs of the Ahlfors finiteness theorem

which are much easier than Ahlfors’ original version, see [Kap] and [Mar05].

Chapter 2: Geometry of hyperbolic 3-manifolds

In this chapter we look at some basic features of a hyperbolic 3-manifold M = H3/G.

As we shall see, what we learnt in the last chapter about the action of G on Ĉ gets

us quite a long way.
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First, consider loops in M = H3/G. We can identify G with π1(M). Take any

homotopically non-trivial loop γ ⊂ M . Let L([γ]) = inf{l(γ′) : γ′ ∈ [γ]}, where [γ]

is the free homotopy class of γ. Then either

• L([γ]) > 0, in which case the infimum is attained by a unique closed geodesic

in the homotopy class and L([γ]) is the translation length of the associated isometry

g ∈ G, or

• L([γ]) = 0, in which case γ is represented by a parabolic element in G.

From Theorem 1.6 and Proposition 1.7 in the last chapter we obtain:

Corollary 2.19 Suppose that G is a non-elementary Kleinian group. Then:

1. H3/G contains infinitely many distinct closed geodesics.

2. Rank 2 abelian subgroups correspond bijectively to pairs of parabolics with a

common fixed point.

As we shall see, (2) implies that M is atoroidal.

Incompressible and compressible boundary If G is a Kleinian group, it is of-

ten convenient to add on the conformal boundary at infinity to obtain the Kleinian

manifold MG = (H3 ∪ Ω)/G. In the last chapter we saw that each connected com-

ponent Ωi of Ω is either simply connected or multiply connected. This has a nice

interpretation in terms of the topology of MG.

Let Ωi be a connected component of Ω. There is a natural inclusion map from

the surface Ωi/G into MG which induces a map ι : π1(Ωi/G) → π1(M) = G.

Lemma 2.20 ι is injective iff Ωi is simply connected.

Proof. First suppose that Ωi is not simply connected. Then it contains a closed

loop γ which is not trivial in Ωi and hence not trivial in π1(Ωi/G). However the ‘roof’

sitting over γ in H3 provides a null homotopy of γ in H3 ∪ Ω and hence in MG. So ι

is not injective.

Now suppose that ι is not injective. This means there is a loop on Ωi/G which

is non-trivial in π1(Ωi/G) but trivial in G. By the loop theorem2, there is a loop on

Ωi/G which bounds a disk in MG. This disk lifts to a disk in H3 whose boundary

meets Ωi in a closed non-trivial loop in Ωi. !

If ι is injective, the corresponding boundary component is called incompressible,

otherwise it is compressible. Usually the incompressible case is easier to handle.

2Dehn’s lemma and its consequence the loop theorem are fundamental results in 3-dimensional
topology. For a detailed statement, see for example [Kap, Mar].
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Thick-thin decomposition and the Margulis lemma It turns out that the

parts of a hyperbolic manifold which are ‘thin’, in the sense that there are short closed

homotopically non-trival loops, have especially simple structure. More precisely, the

injectivity radius of a Riemannian manifold M at a point x is the supremum of r > 0

such that the r-ball with centre x is embedded. The ε-thin part of M is the set of

those points at which the injectivity radius is at most ε. The celebrated Margulis

lemma, applied in the context hyperbolic 2- or 3-manifolds, states that there is a

universal ε0 > 0 such that whenever ε < ε0, the ε-thin parts of M are all either

toroidal collars about short geodesics or horoball neighbourhoods of cusps, see below.

This is known as the thick-thin decomposition of M , see [MT, Thu, Mar]. We will be

especially interested in the case of cusps.

Geometry of Cusps Suppose that G contains a parabolic element. We want to see

what M looks like in a neighbourhood of the parabolic fixed point, which necessarily

lies on the boundary ∂H3. Since the parabolic is represented by arbitrarily short

loops in M , we know that this neighbourhood is in the thin part of the manifold and

hence, by the Margulis lemma, is either a cusp cylinder or a cusp torus.

We can get a more explicit picture of cusp neighbourhoods as follows. In the

upper half space model, a ball tangent to ∂H3 = Ĉ at ξ ∈ Ĉ is called a horoball based

at ξ. In particular, if ξ = ∞, a horoball based at ∞ in H is a set Hs = {(z, t) : t ≥ s}
for some s > 0. We sometimes call s the height of the horoball. Conjugating, we see

that a parabolic with fixed point at ξ maps horoballs based at ξ to themselves.

Let P be a Kleinian group all of whose elements are parabolic with a common

fixed point. As we saw in Chapter 1, P is isomorphic either to Z (rank 1) or Z2 (rank

2). Working in H, we can conjugate so that the fixed point is at ∞ and scale so that

P has generators A(z) = z + 1, and additionally, in the rank 2 case, B(z) = z + b

where Im b (= 0. With this normalisation it is not hard to see that, in the rank 1 case,

Hs/P is a solid infinite cylinder with missing core (a cusp cylinder) and, in the rank

2 case, a solid torus with missing core (a cusp torus). The hyperbolic distance from

∂Hs to the core of the cusp cylinder or cusp torus is infinite. The cusp cylinder is

also infinite in the direction parallel to the core curve. Travelling along ∂Hs in either

direction parallel to the core curve we limit on the boundary at infinity Ĉ.

Now suppose that P is a subgroup in a larger Kleinian group G. We want to see

that this is also the correct picture in H3/G. For this, we need to show that for some

choice of s, Hs/P = Hs/G. This will be the case if we can find s such that Hs is

precisely invariant under (P, G), meaning that:

• g(Hs) = Hs for all g ∈ P and
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• g(Hs) ∩Hs = ∅ for all g ∈ G \ P .

That we can do this is the content of the Margulis lemma in the cusp case.

Jørgensen’s inequality 1.8 allows us to quantify s explicity.

Theorem 2.21 Suppose that the Kleinian group G contains a parabolic A(z) = z+1.

Then the interior of H1 is precisely invariant under the parablic subgroup P which

fixes ∞.

The proof uses isometric circles. Suppose that g ∈ SL(2, C) does not fix ∞. The

isometric circle Ig of g is the circle in Ĉ on which |g′(z)| = 1. If g = (az + b)/(cz + d)

we compute that g′(z) = (cz + d)−2 and hence that Ig is the circle centre −d/c and

radius 1/|c|.

Lemma 2.22 (Shimizu’s lemma) Suppose that the non-elementary group G con-

tains the parabolic A =

(
1 1

0 1

)
. Then if B =

(
a b

c d

)
∈ G, we have |c| ≥ 1.

Proof. Jørgensen’s inequality says that

|Tr2A− 4|+ |Tr ABA−1B−1 − 2| ≥ 1.

We compute Tr ABA−1B−1 = 2 + c2 so |c| ≥ 1. !

Proof of Theorem 2.21. Shimizu’s lemma implies that if A =

(
1 1

0 1

)
∈ G then

for any g =

(
a b

c d

)
∈ G not fixing ∞, the isometric circle Ig has radius at most 1.

Let Îg be the hemisphere in H sitting above Ig. It is easy to check that g maps the

region in H outside Îg to the region in H inside Îg−1 . This implies that the interior

of the closed horoball H1 is precisely invariant under (P, G). !

Cusps on Ω/G How does a parabolic in H3/G relate to a puncture on the conformal

boundary Ω/G? Recall from the uniformisation theorem 1.17 that each surface in Ω/G

carries a hyperbolic metric inducing its Riemann surface structure. A more general

question is, how does the hyperbolic metric on Ω/G relate to the hyperbolic metric

on H3/G?

Theorem 2.23 (Ahlfors’ lemma) Suppose that Ω0 is a simply connected compo-

nent of Ω. Let γ be a geodesic on Ω0/G, represented by an element g ∈ G whose

hyperbolic length in the unique hyperbolic structure on Ω0/G is lΩ0/G(γ). Then

lH3/G(g) ≤ 2lΩ0/G(γ).
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In particular, if γ is parabolic on Ω0/G (so that lΩ0/G(g) = 0), then g is parabolic in

G.

By the two dimensional analogue of the discussion above, the neighbourhood of a

puncture on a hyperbolic surface looks like the quotient of a horoball neighbourhood

of ∞ by a translation; in other words, a cusp annulus. (Notice that on a hyperbolic

surface, there are no rank 2 parabolic subgroups, because no such a subgroup has

an invariant disk in Ĉ.) Such a neighbourhood projects to a topological disk in Ω0

tangent to the parabolic fixed point. The hemisphere above this disk is also precisely

invariant under P . This means that on the end of the cusp cylinder we can glue in

a punctured annulus, a neighbourhood of the puncture on Ω0/G. If this can be done

on both ends of the cylinder, we call the quotient a pairing tube. This happens, for

example, if G is Fuchsian or quasifuchsian.

Notice that the inequality in Ahlfors’ lemma only goes one way. This means that

we could have a loop in Ω0/G which was not parabolic (so not a loop round a puncture)

which was nevertheless repesented by a parabolic element in G. Such curves are called

accidental parabolics on Ω0/G. Typically, a curve which is accidentally parabolic on

one component of Ω/G will represent a cusp on another.

The Kleinian manifold Recall we defined the Kleinian manifold associated to G

as MG = (H3 ∪ Ω)/G. If G has cusps, MG is not compact. It is usually easier to

deal with a compact manifold, so it is often convenient to remove (open) solid cusp

annuli and tori round the cusps to create a compact manifold M0
G. Corollary 2.19

shows that M0
G is always atoroidal, that is, all the Z2 subgroups come from boundary

tori. Because of the hyperbolic structure it is also irreducible, that is, every 2 sphere

bounds a ball. Compare a version of Thurston’s celebrated hyperbolisation theorem:

Theorem 2.24 (Thurston, see [Kap]) Suppose that a compact 3-manifold V is irre-

ducible and atoroidal and that ∂V (= ∅. Then V has a hyperbolic structure, that is, V

is homeomorphic to M0
G for some Kleinian group G.

In a more elaborate version of this theorem, one can also specify the parabolic

locus, which we can think of as the toral boundary components and in addition a

collection of annuli in the non-toral boundary components which are to be made

parabolic. The only condition is that the boundary of any essential annulus in V

should not be contained in the parabolic locus. Such a specification is called a pared

manifold, see [Kap] for a precise statement.
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Fundamental domains Hyperbolic manifolds can be made by gluing the faces

of a polyhedron (or polygon in the surface case) using hyperbolic isometries. The

topological condition for the resulting object to be a manifold is that the link of

each vertex be a 2-sphere, see [Thu]. Thurston’s book also gives many examples

of interesting gluings. Poincaré’s theorem, see [Kap, Bea, Mar], tells us that the

resulting manifold will be H3/G for some Kleinian group G iff

• The sum of angles around each edge is 2π, and

• The resulting manifold with a suitable induced metric is complete.

The construction in H2 is simpler: we glue the sides of a polygon ensuring that

the angle sum around each vertex is 2π. In this case, if the polygon is finite sided

there is a simple condition for completeness: Any cycle (that is, sequence of vertices

which glue together round the vertex) corresponding to an ideal vertex of the polygon

(that is, a vertex where two sides meet on ∂H2) is parabolic.

Suppose that conversely we are given a 2- or 3-dimensional hyperbolic manifold.

Can we find a corresponding polyhedron? The answer is provided by the Dirichlet

domain. The following nice description comes from [Mar]. Pick a point a ∈ M and

start blowing up a balloon centred at a. Eventually one side of the balloon will touch

another. If you keep blowing, the parts of the balloon near these touching points will

flatten out forming the beginnings of a planar face. As you keep blowing, other points

will touch starting further faces. Eventually different faces will meet at vertices. Keep

going until you have filled up all of M , lift to H3, and you have the Dirichlet domain

Da(G) centred on a. More formally:

Da(G) = {q ∈ H3 : d(q, a) ≤ d(q, g(a)) for all g ∈ G \ I}.

One can show that D = Da(G) is a convex fundamental polyhedron for the action

of G on H3. This means that the images g(D), g ∈ G, tesselate H3, in other words,

g(Int D)∩h(Int D) = ∅ unless g = h, and that the images of D cover H3. (Here Int D

means the interior of D.)

The polyhedron D is locally finite, more precisely only finitely many faces meet

any compact set in H3. The faces of D are pieces of the hyperplanes which bisect the

distance between a and any of its neighbouring orbit points. They come naturally in

pairs: if D meets g(D) along a common face F , then g−1(D) meets D = g−1(g(D))

along the common face g−1(F ). We say that g−1 ‘pairs’ the face F to the face g−1(F ),

and g−1 is called a side pairing of D. It is easy to see that if g−1 is a side pairing,

then so is g.

Proposition 2.25 For any a ∈ H3, a Kleinian group G is generated by the side

pairings of Da(G).
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Proof. Take h ∈ G and join a to h(a) by a path α which avoids all vertices of D =

Da(G) and its images under G. Notice that if g(D) meets g′(D) in a common face,

then g′−1g(D) meets D in a common face so that g′−1g is a side pairing. Suppose that

the polyhedra crossed by α in order along its path are D, g1(D), . . . , gk−1(D), h(D).

Then h = (I−1g1)(g
−1
1 g2) . . . (g−1

k−1h) expresses h as a product of side pairings. !

Corollary 2.26 If for some a ∈ H3 the Dirichlet domain Da(G) has finitely many

faces, then G is finitely generated.

The converse is true in dimension 2 but not in dimension 3. Groups for which Da(G)

has finitely many faces are called geometrically finite and are the subject of the next

chapter.

It is high time to have some examples.

Fuchsian groups By definition, a Fuchsian group is a discrete group of isometries

of H2. Embedding H2 as a plane in H3, we see that any isometry of the plane extends

to an isometry of H3. So a Fuchsian group G can be considered as a special case of

Kleinian group. The quotient H2/G is a hyperbolic surface Σ.

Think of H2 as the equatorial plane in the ball B3. Let G be a Fuchsian group

and take a fundamental polygon DG for G acting in H2. Now extend each of its

sides into a plane in H3. This extends DG to a ‘chimney’ which forms a fundamental

polyhedron for G acting in H3. From this picture, we see that H3/G is homeomorphic

to S × (0, 1), where S is a topological surface homeomorphic to the hyperbolic surface

Σ.

Let us assume that Σ is closed or possibly has finitely many punctures, so that

G is of the first kind as a Fuchsian group, in other words, its limit set is the whole of

∂H2. Then thinking of G as a Kleinian group acting on H3∪Ĉ, its limit set Λ(G) ⊂ Ĉ
is the equatorial circle in which H2 meets Ĉ. The regular set Ω has two connected

components Ω± each of which is simply connected and G-invariant. The quotients

Ω±/G each have conformal structures whose corresponding hyperbolic structures are

identical with that of Σ.

Isometries of H2 are exactly the Möbius map which map H2 to itself. An element

in SL(2, C) maps H2 to itself iff all its matrix coefficients are real. Thus Isom+H2 is

naturally identified with SL(2, R) ⊂ SL(2, C). Conjugating by a Möbius map sends

H2 to another disk in Ĉ. Even though the matrix entries in the conjugated group

are no longer real, all the traces remain real. This gives another characterization of

a Fuchsian group:
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Definition 2.27 A Fuchsian group is a Kleinian group which leaves invariant a disk

in Ĉ. A Kleinian group is Fuchsian iff the traces of all its elements are real.

We can construct lots of examples of Fuchsian groups by starting with a finite

sided hyperbolic polygon, pairing sides in some specified way, and checking the con-

ditions of the Poincaré theorem. For example, identifying opposite sides of a regular

4g-gon with interior angle π/2g, we obtain a hyperbolic structure on a closed surface

of genus g whose associated Fuchsian group is generated by the isometries which pair

the opposite sides.

Quasifuchsian groups By definition, a quasifuchsian group is a quasi-isometric or

quasiconformal deformation of a Fuchsian group. We shall see in more detail what

this means in the next chapter. For the moment, let’s just assume we have a Fuchsian

group Γ, a Kleinian group G, a group isomorphism χ : Γ → G and a homeomorphism

ψ : Ĉ → Ĉ such that ψ(gz) = χ(g)ψ(z) for all z ∈ Ĉ and g ∈ Γ. It is a deep result of

Marden [Mar74] that ψ can always be taken to be quasiconformal, see Definition 3.39.

From the construction, the limit set of a quasifuchsian group is always a topolog-

ical circle and the regular set has two simply connected G-invariant components Ω±.

The 3-manifold H3/G, being homeomorphic to H3/Γ, is homeomorphic to S × (0, 1).

However the hyperbolic or conformal structures on the two components Ω±/G are

now different. The following is a famous result of Bers [Ber]:

Theorem 2.28 (Simultaneous uniformisation) Given any two conformal struc-

tures ω± on Σ, there exists a unique quasifuchsian group for which Ω±/G have the

structures ω±. (Here ‘unique’ means ‘unique up to conjugation in SL(2, C)’.)

The limit set of a quasifuchsian group is a fractal:

Theorem 2.29 (Bowen) Suppose that G is quasifuchsian but not Fuchsian. Then

the Hausdorff dimension of Λ(G) is strictly greater than 1.

You can find many pictures of limit sets of quasifuchsian groups in [MSW].

Schottky groups Take 2k pairwise disjoint round disks Ei, E ′
i, i = 1, . . . , k in Ĉ

and choose ei ∈ SL(2, C) such that ei maps the inside of Ei to the outside of E ′
i. The

group G generated by e1, . . . , ek is called a (classical) Schottky group. If we place

a hemisphere over each disk, then we can view the region D in H3 outside all the

hemispheres as a polyhedron in H3. The ei match the sides of D in pairs and D is a

fundamental domain for G acting in H3. It follows from Poincaré’s theorem that G
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is free and discrete. Klein gave a nice direct proof of this fact, the simplest case of

Klein’s combination theorem, often called the ping-pong theorem, see [F] or [BH]. It

is good exercise to convince oneself that the 3-manifold obtained by gluing the faces

of D using the side pairings is a genus k handlebody.

As explained in great detail in [MSW], each ‘infinite reduced word’ in the gener-

ators in G corresponds to a nested sequence of images of the disks Ei, E ′
i. Each limit

point is the infinite intersection of such a nested sequence. It follows that the limit

set Λ(G) is a Cantor set and the ordinary set Ω has a single G-invariant component

which is not simply connected. It is another good exercise to find which curves in Ω

correspond to compressing disks in H3/G.

Any Kleinian group has lots of Schottky subgroups. This is based on the fact that

sufficiently high powers of loxodromics have disjoint isometric circles which serve as

the disks from which to construct the group. Based on this we find:

Proposition 2.30 (See [MT] Theorem 2.9) G is non-elementary iff it contains a

free subgroup on 2 generators.

Just like Fuchsian groups, Schottky groups can be deformed using homeomor-

phisms of Ĉ. This does not change the topology of the 3-manifold. Such groups are

also known as (non-classical) Schottky groups. In fact we have:

Theorem 2.31 (Maskit, see [MT] Theorem 4.23) The following are equivalent:

1. MG is a handlebody.

2. G is Schottky.

3. G is free and purely loxodromic.

Combination theorems These are important theorems which enable one to build

up complicated groups from simple ones by gluing along surfaces in the boundary.

The fundamental principal is the same as that in the ping-pong theorem. We don’t

have time to go into this here; good accounts can be found in [Mar, MT, Kap] and

for full details see [Mas].

Chapter 3: Geometrically finite groups

In two dimensions, there are many possible hyperbolic structures on a closed surface

of genus g ≥ 2. The space of possible such structures on a given topological surface

is known as Teichmüller space. By contrast, in dimension 3 or higher the Mostow
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rigidity theorem says that a closed hyperbolic 3-manifold is rigid, more precisely that

for n ≥ 3, any two finite volume hyperbolic n-manifolds with isomorphic fundamental

groups are isometric. In dimension 3 this means that any isomorphism between

holonomy groups is actually a conjugacy in PSL(2, C).

In these notes we are mainly interested in hyperbolic 3-manifolds with infinite

volume. In general such manifolds are not rigid. In this chapter we study an im-

portant class of such hyperbolic manifolds, the geometrically finite manifolds, whose

deformation theory is central to the general case. As a result of the work of Ahlfors,

Bers and Marden in the 1960’s and 70’s, we understand that their deformations can

be completly described in terms of the deformations of the conformal boundary at

infinity.

Geometrically finite groups

Definition 3.32 A Kleinian group is geometrically finite if it has a finite sided fun-

damental domain.

As we saw in Corollary 2.26, the side pairings generate the group, so a geometri-

cally finite group is always finitely generated.

Theorem 3.33 A Fuchsian group is finitely generated iff it is geometrically finite.

For the proof, see [Bea]. As was pointed out by Greenberg, Theorem 3.33 fails in

dimension 3, see Theorem 4.56. Marden systematically investigated geometrically

finite groups in [Mar74]. The first point is to understand the cusps, for which we

need the idea of pairing tubes as discussed following Theorem 2.23.

Proposition 3.34 (Marden) If G is geometrically finite then there are only finitely

many cusps. The rank 1 cusps come in pairs; each pair corresponds to a pairing tube

which matches two punctures on Ω/G.

This leads easily to

Theorem 3.35 (Marden) G is geometrically finite iff M0
G is compact.

Here M0
G is the Kleinian manifold MG = (H3 ∪ Ω)/G with cusp neighbourhoods

removed, as explained in Chapter 2. Proofs can also be found in [MT].

Definition 3.36 G is (topologically) tame iff H3/G is homeomorphic to the interior

of a compact 3-manifold.

Theorem 3.37 (Marden) A geometrically finite group G is tame.

Marden conjectured that if G is finitely generated, then G is tame, see Conjec-

ture 4.53.
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Ahlfors-Bers deformation theory Let us examine in more detail the assertion

that the deformations of geometrically finite groups are completely described in terms

of the deformations of the conformal boundary Ω/G. General references for this

discussion are as usual [MT, Kap, Mar].

Definition 3.38 Let (X1, d1) and (X2, d2) be metric spaces. A homeomorphism f :

X1 → X2 is a quasi-isometry if there exists k > 0 such that

d1(p, q)/k ≤ d2(f(p), f(q)) ≤ kd1(p, q)

for all p, q ∈ X1.

Definition 3.39 Let U ⊂ Ĉ be an open set. A homeomorphism f : U → f(U) ⊂ Ĉ
is quasiconformal if

K(z) = lim
r→0

maxθ |f(z + reiθ)− f(z)|
minθ |f(z + reiθ)− f(z)|

is bounded on U . It is called K-quasiconformal if K(z) ≤ K for almost all z ∈ U .

The dilatation Kf of f is the infimum of K for which f is K-quasiconformal.

Proposition 3.40 Every quasi-isometry H3 → H3 extends to a quasiconformal home-

omorphism of Ĉ.

Suppose that G1, G2 are Kleinian groups and that χ : G1 → G2 is an isomorphism.

A quasiconformal map ψ : Ω(G1) → Ω(G2) is said to induce χ if ψ(gz) = χ(g)ψ(z) for

all g ∈ G1 and z ∈ Ĉ. The isomorphism χ is called type preserving if χ(g) is parabolic

in G2 if and only if g is parabolic in G1. It is possible to have a quasiconformal

map ψ : Ω(G1) → Ω(G2) which induces an isomorphism χ : G1 → G2 but for which

there is no corresponding quasi-isometry H3/G1 → H3/G2. (Examples are provided

by groups on the boundary of Schottky space, see [MT] page 120.) However we have:

Theorem 3.41 (Marden’s isomorphism theorem [Mar74]) Let G1 be a geomet-

rically finite group with ∂M0
G (= ∅. Suppose that χ : G1 → G2 is a type preserving

isomorphism induced by an orientation preserving quasiconformal map ψ : Ω(G1) →
Ω(G2). Then:

1. G2 is geometrically finite.

2. ψ extends to a quasi-isometry H3/G1 → H3/G2.

3. ψ extends to a quasiconformal homeomorphism of Ĉ.
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4. If ψ is conformal on Ω(G1) then it is Möbius, so that H3/G1 is isometric to

H3/G2.

Notice that (4) is closely related to the Mostow rigidity theorem, in the proof of

which quasi-isometries play a central role.

This result reduces the problem of understanding deformations of hyperbolic

structures on a geometrically finite manifolds to that of understanding the structures

on Ω/G. The following extension of Bers’ simultaneous uniformisation theorem 2.28

describes the deformation theory of geometrically finite groups.

Theorem 3.42 (See [MT, Kap]) Let M = H3/G be a geometrically finite hyperbolic

3-manifold with incompressible boundary. Then the quasi-isometric deformation space

QI(M) of M is ΠiTeich(Si), where the product runs over the surfaces Si making up

Ω/G.

If S0 is a topological surface, the Teichmüller space Teich(S0) describes the possi-

ble conformal structures on the marked surface S0. More precisely, a point in Teich(S0)

is a pair (S, φ) such that S is Riemann surface and φ : S0 → S is a homeomorphism.

Pairs (S, φ), (S ′, φ′) are equivalent if there is a conformal map f : S → S ′ homo-

topic to φ′φ−1. One of Teichmüller’s main theorems states that for any two points

(S1, φ1), (S2, φ2) ∈ Teich(S0), there is a unique quasiconformal map S1 → S2 homo-

topic to φ1φ
−1
2 which minimises the dilatation, called the extremal map. The log of

the dilatation provides a metric on Teich(S0). Teichmüller also showed that if S0 has

genus g with b punctures, then Teich(S0) is homeomorphic to R6g−6+2b. There are

many books on Teichmüller theory. Brief summaries suitable to our viewpoint can

be found in [O, Kap].

The quasi-isometric deformation space QI(M) of a 3-manifold M can be defined

in a similar way, see [MT]. We always need the base manifold M (or base surface S0)

to keep track of the marking on M ; otherwise, we might be seeing the same structure

on a surface which differed from the original one by a diffeomorphism which was not

homotopic to the identity. (This is why we restricted to incompressible boundary in

the statement of Theorem 3.42.)

Triply punctured spheres Note that if S0 is a sphere with 3 punctures (so g = 0

and b = 3) then 6g − 6 + 2b = 0. This means that S0 is rigid. In other words, it

carries a unique hyperbolic structure which cannot be deformed. In fact it is not hard

to prove the following lemma, see [MSW] Note 7.1:
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Lemma 3.43 Suppose that A, B ∈ SL(2, C) are parabolic and that AB is also parabolic.

Suppose their fixed points are all distinct. Then there exists C ∈ SL(2, C) such that

CAC−1 =

(
1 2

0 1

)
and CBC−1 =

(
1 0

−2 1

)
.

Convince yourself that this implies that S0 is rigid!

Convergence of Kleinian groups There are several different ways in which one

might say that Kleinian groups are close. The topology implied in Theorem 3.42 is

essentially that of Gromov-Hausdorff convergence. It is important to specify base-

points. Roughly, hyperbolic manifolds M, M ′ with basepoints x ∈ M, x′ ∈ M ′ are

close if for large r, the r-balls in M, M ′ centred on x, x′ look ‘almost’ the same. A

more formal definition is that of polyhedral convergence3:

Definition 3.44 Let Gn be a sequence of Kleinian groups. Then Gn converges poly-

hedrally to the Kleinian group H if the Dirichlet domains Da(Gn) with base point

a ∈ H3 converge to the Dirichlet domain Da(H), uniformly on compact sets in H3,

and if in addition the side pairing transformations of Da(Gn) converge to those of

Da(H) in the following sense:

(i) Each face pairing of Da(H) is the limit of face pairings of Da(Gn) and

(ii) The limit of any convergent subsequence of face pairings of Da(Gn) is a face

pairing of Da(H).

This leads to:

Definition 3.45 Let Gn be a sequence of Kleinian groups. Then Gn converges geo-

metrically to the Kleinian group H if:

(i) For each h ∈ H, there is a sequence gn ∈ Gn which converges to h and

(ii) If a subsequence gnr ∈ Gnr converges to γ ∈ SL(2, C), then γ ∈ H.

Polyhedral and geometric convergence turn out to be the same and, modulo a

discussion about base points and conjugation in SL(2, C), are the same as Gromov-

Hausdorff convergence of the corresponding manifolds. It is also the same as conver-

gence of the limit sets:

Theorem 3.46 (Kerckhoff-Thurston, see [MT, Mar]) Suppose the groups Gn are ge-

ometrically finite and boundary incompressible, and suppose that Gn converge geomet-

rically to H. Then Λ(Gn) converges to Λ(H) in the sense of Hausdorff convergence

of closed subsets of Ĉ.

3General references for this section are [MT, Kap, Mar, Thu80].

21



There is also a formulation in terms of convergence of regular sets, see for exam-

ple [MT, Mar].

There is another definition of convergence which is more natural if we are thinking

in terms of groups of matrices:

Definition 3.47 Let Γ be a fixed abstract group (think Γ = π1(M)). Suppose we

have a sequence of homomorphisms ρn : Γ → Gn where Gn is Kleinian. Suppose

that for each γ ∈ Γ, the sequence ρn(γ) converges to a Möbius map ρ∞(γ). Then Gn

converges algebraically to the group G∞ = {ρ∞(γ) : γ ∈ Γ}. The group G∞ is called

the algebraic limit of the Gn.

It is an important and non-obvious fact that the algebraic limit of discrete groups

is discrete. More precisely:

Theorem 3.48 (Chuckrow) Suppose that Γ is a non-elementary Kleinian group and

that each ρn is an isomorphism to a Kleinian group Gn. Suppose that Gn converges

algebraically to G∞. Then G∞ is Kleinian and non-elementary and ρ∞ is an isomor-

phism.

Proof. This follows from several applications of Jørgensen’s inequality Theorem 1.8.

For example, if ρ∞ is not injective, there exists g ∈ Γ with ρ∞(g) = I. Pick a

loxodromic h ∈ Γ such that g, h have distinct fixed points. Then 〈ρn(g), ρn(h)〉 is

non-elementary and ρn(g) → I. So

|Tr2ρn(g)− 4|+ |Tr ρn(g)ρn(h)ρn(g)−1ρn(h)−1 − 2| → 0

which is impossible. !

The relationship between algebraic and geometric convergence is rather subtle.

Theorem 3.49 (Jørgensen-Marden) Suppose that Gn converges to G∞ algebraically.

Then there exists a subsequence Gnr which converges geometrically to a Kleinian group

H. Moreover any geometric limit of any subsequence of the groups Gn contains G∞.

If G∞ and H are finitely generated, then there is a sequence of surjective homo-

morphisms ψn : H → Gn such that lim ψn(h) = h for all h ∈ H.

The best situation is that in which Gn converges both algebraically and geomet-

rically to the same limit. In this case the convergence is called strong. In general the

algebraic and geometric limits may not agree. What happens is that ‘extra’ parabolics

appear in the limit. Roughly, one can have a sequence of loxodromics hn converging
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to a parabolic h such that certain powers hmn
n also converge to a parabolic h′ with

the same fixed point but with a different translation direction. This mechanism is

described in various places, for example [MT]. There is an explicit example, with

pictures, in [MSW] P. 340 ff. Kerckhoff and Thurston produced a famous example

in which the algebraic and geometric limits differ, on which much subsequent work is

based.

It seems likely that the apperance of extra parabolics is the only reason the limit

may not be strong:

Theorem 3.50 Suppose that ρn(Γ) converges to G∞ = ρ∞(Γ) algebraically. The

convergence is strong if either:

(i) ρn(Γ) is geometrically finite for each n and there are no new parabolics (ie

g ∈ G∞ is parabolic iff ρn(g)ρ−1
∞ (g) is parabolic for each n) or

(ii) There are no new parabolics and Ω(G∞) (= ∅.

A lot of effort has gone into proving that various properties persist in the algebraic

limit. The following result is the outcome of many years’ work by Thurston, Brock,

Bromberg, Canary, Evans, Ohshika, Souto and others:

Theorem 3.51 ([BS]) The algebraic limit of geometrically finite groups is tame.

Cusp groups Here is a much easier result which we shall need in the next chapter.

It is a simple consequence of Theorem 3.41.

Theorem 3.52 Suppose that Gn = ρn(G0) is a sequence in QI(M) for some geo-

metrically finite manifold M = H3/G0. Suppose also that the algebraic limit ρ∞(G0)

is geometrically finite but not in QI(M). Then there is an element g ∈ G0 such that

ρn(g) is loxodromic but ρ∞(g) is parabolic.

Such groups are called cusp groups, because a geodesic loop which had some def-

inite length in H3/G0 has been ‘pinched’ to become parabolic. These new parabolics

all correspond to rank 1 cusps. The existence of cusp groups was first proved by

Bers and Maskit using sequences of quasiconformal deformations. Any ‘reasonable’

collection of curves on the boundary of a hyperbolic 3-manifold can be pinched in this

way. If there are no more loops which can be pinched, the group is called maximally

parabolic. Each component of the boundary of such a group is either a cusp torus

or a triply punctured sphere. The convex core of such a group (see Chapter 4 for a

definition) has totally geodesic boundary. Such groups are rigid: to see this, double

across the triply punctured spheres in the boundary and apply Mostow rigidity. The
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limit set of each triply punctured sphere group is a circle and every component of Ω

is a round disk.

If G is quasifuchsian, then H3/G is homeomorphic to S×(0, 1) for some topological

surface S. Choose a maximal set of pairwise disjoint non-homotopic curves on S

(a pants decomposition). All these curves can be made parabolic by pinching the

corresponding loops on Ω−/G. The other boundary surface Ω+/G remains unpinched

and homeomorphic to S. By Theorem 3.42, the deformation space of this family

of groups is exactly TeichS. One can parameterise it as a (3g − 3 + 2b) complex

dimensional subspace of the space of all representations π1(S) → SL(2, C). This is

called the Maskit embedding of Teichmüller space. If S is a torus with one puncture,

the Maskit embedding has complex dimension one. This is examined in great detail

in [MSW].

Chapter 4: Geometrically infinite groups

What can one say about groups which are not geometrically finite? For many years

their full classification was a mystery, but as a result of remarkable work over the last

few years, we now have an essentially complete picture. At the time of writing, many

of the results are very new and not all are fully published. Notwithstanding, [Mar] is

an excellent source.

Recall from the last chapter that a group is called tame if H3/G is homeomorphic

to the interior of a compact 3-manifold. As we saw, any geometrically finite group is

tame.

Conjecture 4.53 (Marden’s tameness conjecture/theorem) Every finitely gen-

erated group is tame.

Conjecture 4.54 (Bers’ density conjecture/theorem) Every Kleinian group is

an algebraic limit of geometrically finite groups.

Conjecture 4.55 (Ending lamination conjecture/theorem) Every tame group

is determined up to isometry by its ‘end invariants’.

The meaning of ‘end invariants’ will be explained below.

These conjectures are now all essentially proved. The tameness conjecture was

done independently by Agol [A] and Calegari and Gabai [CG]. The ending lamina-

tion conjecture was proved in many special cases by Minsky and finally completed

by Brock, Canary and Minsky [BCM]. More or less simultaneously, Bromberg intro-

duced some beautiful ideas to prove Conjecture 4.54 in special cases and under the
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hypothesis of tameness. This was extended to the general incompressible boundary

case in [BB]. A completely different proof follows by combining Conjectures 4.53

and 4.55, see [BS].

Our starting point is a geometrically finite group G with corresponding manifold

M = H3/G. What are all the groups which can be obtained as algebraic limits of

groups in the quasi-isometric deformation space QI(M)? We think of QI(M) as

embedded in the larger space of representations π1(M) → SL(2, C).4 The space of

representations, taken up to conjugacy in SL(2, C), turns out to be a smooth complex

variety R(M) of the ‘expected’ dimension, namely the sum of the dimensions of

the Teichmüller spaces associated to the components of ∂MG. It follows from the

simultaneous uniformisation theorem 3.42 that QI(M) is an open subset of R(M).

Theorem 3.52 asserts that the geometrically finite groups on ∂QI(M) are the

cusp groups formed by pinching one or more loxodromic elements until they become

parabolic. This leads to:

Theorem 4.56 (Greenberg) There exist Kleinian groups which are not geometrically

finite.

Proof. A cusp group in which the element g is parabolic lies in the subvariety of

R(M) on which Tr2 g = 4. Since there are only countably many possible loops which

can be pinched to make cusps, and since each subvariety has complex codimension 1,

the union of these sets cannot be all of ∂R(M). !

Here is a famous recent result, conjectured by Bers and orginally proved in a

special case by McMullen.

Theorem 4.57 ([CCHS, CH]) Cusp groups are dense on ∂QI(M).

The boundary ∂QI(M) is a fascinating object which sadly we do not have time for

here. It appears to have complicated fractal structure. For pictures and an account of

the boundary of the Maskit embedding of Teichmüller space for the once punctured

torus, see [MSW].

Given that the geometrically finite groups on ∂QI(M) are produced by pinching

simple closed curves, what about the rest? Thurston had the wonderful idea that

the remaining groups on ∂QI(M) could be produced by ‘pinching’ some other ob-

jects which in a certain sense ‘complete’ the space of simple closed curves on ∂MG.

The objects in question are projective measured laminations, which Thurston used to

compactify Teichmüller space. We digress to explain very briefly what these are.

4We have to be careful to specify whether or not the representations should be type preserving,
see for example [Kap] for details.
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Geodesic laminations A standard reference for this section is [FLP], see also [EM,

Thu80]. There is a good brief summary in the appendix of [O].

Let S be a hyperbolic surface. A geodesic (not necessarily closed) on S is simple

if it does not intersect itself. A geodesic lamination on S is a closed set which is

the disjoint union of simple geodesics called its leaves. Such a lamination forms a

partial foliation of the surface. For example, it might consist of finitely many pairwise

disjoint simple closed geodesics. More typically, however, a transversal to a lamination

intersects the lamination in a Cantor set and the components of the complement are

ideal polygons. A lamination is arational if all complementary components are ideal

triangles or punctured bigons. A result of Birman and Series says that any lamination

has Hausdorff dimension 1.

A measured geodesic lamination is a geodesic lamination together with a tran-

verse invariant measure. That means, an assignment of a (finite Borel) measure to

each transversal, which is invariant under the ‘push forward’ map along leaves. For

example, a closed simple geodesic γ has an associated transverse measure δγ which

assigns to a transversal T the measure i(T, γ), ie the number of times T intersects γ.

More generally, we shall call a lamination rational 5 if it is a sum
∑

i aiδγi where γi are

pairwise disjoint closed geodesics and ai > 0. Any transverse measure can be scaled

by multiplying by positive scalar. This defines an equivalence relation on measured

laminations. The equivalence classes are called projective measured laminations.

Let ML denote the space of measured laminations on S with the weak topology.

That is, a sequence νn ∈ ML converges to ν ∈ ML iff νn(T ) converges to ν(T ) for

every transversal T . The space ML turns out to be the completion of the rational

laminations in this topology. Thurston showed that ML(S) is a ball of (real) dimen-

sion 6g − 6 + 2b. This dimension is no coincidence! The following remarkable result

of Thurston shows that Teichmüller space can be compactified by adjoining the space

of projective laminations PML(S), see [FLP, O].

Theorem 4.58 Suppose that ωn ∈ Teich(S). Then either:

(i) A subsequence ωnr converges to a point ω∞ ∈ Teich(S) or

(ii) There exist cn > 0 with cn → 0 and ξ ∈ML such that

cnlωn(γ) → i(γ, ξ)

for every simple curve γ on S.

Here lω(γ) is the hyperbolic length of γ in the hyperbolic surface whose associated

conformal structure is ω, and i(γ, ξ) denotes intersection number; it is the continuous

5This is not universally accepted terminology. It is not the opposite of arational.
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linear extension of the geometric intersection number between geodesics toML. Since

the second condition is unchanged if we scale everything by a > 0, the limit ξ really

only depends on its projective class [ξ]. We say that ωn converges to [ξ].

As a special case, suppose that ωn → [ξ] in such a way that along the sequence

ωn, the length lωn(γ) of a curve γ stays bounded. Then, since cn → 0, we have

cnlωn(γ) → 0. This means that i(γ, ξ) = 0, which means that either γ is disjoint from

ξ or that ξ contains γ as a closed leaf. This suggests that if we degenerated S by

pinching γ, the structures on S would converge to [δγ] ∈ PML. (To make a correct

formal statement we also have to control the degeneration of S \ γ.)

Recall that a quasifuchsian group is uniquely specified by the structures ω± on

the two components Ω±/G. Denote this group G(ω+, ω−).

Theorem 4.59 (Thurston’s double limit theorem) Suppose that ρn : π1(S) →
SL(2, C) is a sequence of representations so that ρn(π1(S)) is the quasifuchsian group

G(ω+
n , ω−n ), and suppose that ω±

n converge to points [ξ]± ∈ PML . Suppose also that

ξ± are arational and that i(ξ+, ξ−) (= 0. Then ρn has a subsequence which converges

algebraically to a geometrically infinite group. The limit group is doubly degenerate

and has ending laminations ξ+, ξ−.

We will explain the meaning of the last statement below.

The convex core Before getting to geometrically infinite groups, it is also useful

to look at the convex core of H3/G. By definition, this is the smallest closed convex

subset of H3/G containing all closed geodesics. Alternatively, let C(G) be the convex

hull in H3 of the limit set Λ(G), sometimes called the Nielsen region of G. The

convex core of H3/G is just C(G)/G. The Nielsen region is H3 iff Λ(G) = Ĉ. Various

people have made nice pictures of convex cores; one such picture, made by Minsky,

is reproduced as Figure 12.6 in [MSW].

Geometrically finite groups can be neatly characterised in terms of their convex

core, see for example [MT]:

Proposition 4.60 A non-Fuchsian group Kleinian group G is geometrically finite iff

its convex core has finite volume.

The restriction to non-Fuchsian groups is because the convex core of a Fuchsian group

is contained in a single hyperbolic plane, so always has zero volume even if the group

is infinitely generated. A Fuchsian group is geometrically finite iff its Nielsen region

has finite 2-dimensional area. The Nielsen region equals H2 unless the group is of
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the second kind, that is, Λ(G) is a proper subset of the circle ∂H2. In this case,

and assuming that G is finitely generated, the Nielsen region is bounded by axes of

hyperbolic elements which project to closed geodesics which cut off the infinite ends

or funnels on the quotient surface H2/G.

In 3-dimensions, the boundary of the convex core is a union of surfaces. There

is a nice retraction map r : H3 ∪ Ω → C. If x ∈ C, then r(x) = x. To define r(x)

for a point x ∈ H3 ∪ Ω outside C, blow out expanding balloons (spheres if x ∈ H3

and horoballs if x ∈ Ω). Then r(x) is the point at which you first hit C. Since C is

convex, r(x) is well defined. It is pretty obviously continuous and G-invariant. In

fact, r can be modified to a homeomorphism between each component of Ω/G and

the component of ∂C/G which it ‘faces’.

Thurston showed that ∂C/G has much more structure. It is an example of a

pleated surface:

Definition 4.61 A pleated surface in a hyperbolic 3 manifold M consists of a hyper-

bolic surface Σ, a geodesic lamination λ on Σ, and a map f : Σ → M such that:

(i) f is an isometry between the given metric on Σ and the induced metric on

f(M).

(ii) The restriction of f to each leaf of λ is an isometry to a geodesic in H3.

(iii) Each component of Σ \ λ maps isometrically to a piece of totally geodesic

plane in M .

The images of the leaves of λ are called the bending lines of the pleated surface.

Roughly speaking, you can think of a pleated surface as a bent surface in H3/G whose

lift to H3 rolls out onto H2 to give the hyperbolic metric on Σ. Pleated surfaces are

explained in detail in [EM]. They play a key role in the proof of the ending lamination

conjecture.

Theorem 4.62 (Sullivan, see [EM]) If ∂M is incompressible, then there is a univer-

sal bound on the Teichmüller distance between the hyperbolic metrics on ∂C/G and

on the corresponding components of Ω/G.

Geometrically infinite ends The formal definition of an end of a general open

3-manifold M is a bit messy. It is simplified when M has a compact core: this is a

compact submanifold Mc such that the inclusion Mc → M is a homotopy equivalence.

It is a deep result of Scott, that any 3-manifold with finitely generated fundamental

group has a compact core. This was refined by McCullough to show that if M is

hyperbolic, one can choose the core to have a ‘standard’ shaped boundary in the
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neighbourhood of cusps. This is called a relative compact core, see for example [Kap]

for details.

We can now define an end of M to be a component of M \Mc. The ends are in

bijective correspondence with the components of ∂Mc. An end is topologically tame

if it has a neighbourhood U which is homeomorphic to S × [0, 1) for some surface

S; it is incompressible if S is incompressible. The manifold M is called boundary

incompressible if every component of ∂Mc is incompressible.

Recall that M is tame if it is homeomorphic to the interior of a compact 3-

manifold. We have:

Lemma 4.63 M is tame iff each of its ends are tame.

If M is geometrically finite without cusps, then the retraction r provides a homo-

topy equivalence between H3/G and the compact manifold C/G. This can easily be

modified in case of cusps to a retraction to the compact manifold (C∩M0
G)/G. Thus we

can take (C∩M0
G)/G to be the core, so the ends correspond bijectively to components

of ∂C/G. In general, an end is called geometrically finite if it contains a neighbour-

hood which is disjoint from C/G and geometrically infinite otherwise. Thurston and

Bonahon described the structure of geometrically infinite incompressible ends.

Definition 4.64 A sequence of closed geodesics γn exits the end E if γn ⊂ E and if

only finitely many γn intersect any compact set K ⊂ M .

Here is the key theorem:

Theorem 4.65 (Bonahon [B]) Let M be a boundary incompressible hyperbolic 3-

manifold. Let E be a geometrically infinite end corresponding to a component of

∂Mc homeomorphic to a surface S. Then there exists a sequence of closed geodesics

γn which exit E. The γn can be taken to be homotopic to simple closed curves on S.

Moreover the projective measured laminations [δγn ] converge to a measured lamination

[λ] ∈ PML(S). The underlying support of λ is arational and independent of the

choice of sequence γn.

The ‘unmeasured’ lamination λE whose support is the leaves of [λ] is called the ending

lamination of E. If ξ is any other measured lamination whose support is different

from that of λ, then i(λ, ξ) > 0. We can choose the γn to be of bounded hyperbolic

length.

Bonahon used the existence of this ending lamination to prove that such an end E

is topologically tame. The idea is to construct pleated surfaces Σn in E for which the
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γn are contained in the bending lamination. Being hyperbolic surfaces, these pleated

surfaces have bounded diameter6 and also exit the end. They allow one to give E the

required product struture S × [0, 1).

Suppose that M is a boundary incompressible hyperbolic 3-manifold. Its end

invariants consist of:

(i) The conformal structures on the components of Ω/G (one for each geometri-

cally finite end) and

(ii) The ending laminations of the geometrically infinite ends.

Theorem 4.66 (Ending lamination theorem [Min03, BCM]) Suppose that

M = H3/G is a boundary incompressible hyperbolic 3-manifold. Then M is

uniquely determined up to isometry by its end invariants.

Marden rightly calls this a ‘blockbuster theorem’. Expositions of parts can also

be found in [Min01, Min02]. The tameness theorem allows one to get rid of the

assumption that M is boundary incompressible. Here is a closely related consequence.

Theorem 4.67 Suppose that G1 and G2 are finitely generated Kleinian groups, and

that there is a homeomorphism ψ : Ĉ → Ĉ which induces a type preserving isomor-

phism χ : G1 → G2. Suppose also that ψ is conformal on Ω(G1). Then ψ is Möbius.

This should be compared to Sullivan’s rigidity theorem (see eg [MT, Kap]) which

asserts the same result but only under the much stronger assumption that ψ is qua-

sicomformal.

Manifolds which fibre over the circle Ending laminations are well illustrated

with the example of hyperbolic structures on manifolds which fibre over the circle.

Start with a hyperbolisable surface S, and a pseudo-Anosov map φ : S → S. By

definition, such a map does not fix any closed curve on the surface. Instead, there is

a pair of measured laminations λ± with the property that φ±n
∗ (γ) → [λ±] in PML.

Thurston showed how to construct a hyperbolic structure on the 3-manifold M =

(S×[0, 1])/ ∼, where∼ is the equivalence relation which identifies (x, 1) with (φ(x), 0).

This is described in detail in [O]. The cyclic cover M̃ of this manifold has fundamental

group π1(S) and is a limit of quasifuchsian groups G(φn
∗ω0, φ−n

∗ ω0) where ω0 is any

choice of initial conformal structure on S. Thus M̃ = H3/G for some Kleinian group

G isomorphic to π1(S). The map φ induces an isometry M̃ → M̃ . The manifold M̃

is homeomorphic to S× (−∞,∞) and so has two ends. The geodesic representatives

6This statement has to be suitably modified if either the γn get very short or if there are cusps.
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of φn
∗ (γ) in M̃ exit one end of M̃ and those of φ−n

∗ (γ) the other. Thus the ending

laminations of M̃ are exactly the laminations [λ±].

Such groups G provide celebrated examples of Kleinian groups whose limit sets

are space filling curves. Involved in the construction of G is the fact that Λ(G) = Ĉ.

Let G0 be the Fuchsian group such that H2/G0 has the conformal structure ω0. The

group G is isomorphic to G0. There is a continuous map, called the Cannon-Thurston

map, from S1 = Λ(G0) to Λ(G), providing a continuous mapping from the unit circle

S1 onto the Riemann sphere Ĉ. Pictures of such a sequence of limit sets converging

to a space filling curve can be found in [MSW].
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