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Outline

Why is it that 22/7 and 355/113 are chosen as good approximations to π? In fact 355/113

= 3 + 1/(7 + 1/16) approximates π to six decimal places. They are examples of continued

fractions, which are used to get ‘best approximations’ to an irrational number for a given

upper bound on the denominator, so-called Diophantine approximation.

There is a beautiful connection between continued fractions and the famous tiling of

the hyperbolic (non-Euclidean) plane shown Figure 1. It is called the Farey tessellation and

its hyperbolic symmetries are the 2x2 matrices with integer coefficients and determinant

one, important in number theory. We shall use the Farey tessellation to learn about both

continued fractions and hyperbolic geometry, leading to geometrical proofs of some classical

results about Diophantine approximation.

Lecture 1 We describe the Farey tessellation F and give a very quick introduction to the

basic facts we need from hyperbolic geometry, using the upper half plane model.

Lecture 2 We introduce continued fractions and explain the relationship between contin-

ued fractions and F .

Lecture 3 We use F to visualise some classical results about continued fractions and out-

line a few of the many applications and further developments.

Everything needed about continued fractions and hyperbolic geometry will be explained

in the lectures, but to prepare in advance you could look at any of the many texts on these

subjects. Here are a few sources:

G. H. Hardy and E. M. Wright. The Theory of Numbers. Oxford University Press,

Many editions.

A. Ya. Khinchin Continued Fractions. University of Chicago Press, 1935.

C. Series. Hyperbolic geometry notes MA448. Unpublished lecture notes, available at

homepages.warwick.ac.uk/~masbb/

For an introduction to the Farey tessellation and continued fractions from a slightly

different viewpoint see

A. Hatcher. Toplogy of Numbers. Unpublished draft book, available at www.math.

cornell.edu/~hatcher/TN/TNpage.html
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1 The Farey tessellation and the hyperbolic plane

Fractions p/q, r/s ∈ Q are called neighbours if |ps − rq| = 1. Their Farey sum, denoted

p/q ⊕F r/s, is defined to be (p + r)/(q + s). Note that if p/q < r/s are neighbours, then

so are p/q < p/q ⊕F r/s and p/q ⊕F r/s < r/s. Figure 1, drawn in the complex plane, is

formed by the following procedure:

• Draw vertical lines from n to ∞ at each integer point n ∈ R. Label these points n/1.

Note that for each n ∈ Z, the pair (n/1, (n+ 1)/1) are neighbours.

• Join each adjacent pair (n/1, (n+ 1)/1) by a semicircle with its centre on R.

• Mark the point n/1⊕F (n+1)/1 = (2n+1)/2. Join the adjacent neighbours n/1, (2n+

1)/2 and (2n+ 1)/2, (n+ 1)/1 by semicircles centred on R.

• Inductively, suppose that p/q < r/s are Farey neighbours joined by an arc. Join p/q

to (p+ r)/(q + s) and (p+ r)/(q + s) to r/s by semicircles.

• Continue in this way.

Figure 1: The Farey tessellation

Exercise 1.1. Check by induction that if p/q, r/s are joined by an arc of F then

(
p r

q s

)
has determinant ±1.
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The Farey tessellation is a tessellation or tiling of the hyperbolic plane. This means there

is a basic figure, a so-called ideal triangle, whose images under some group of symmetries

cover the hyperbolic plane without overlaps.

To understand this we need a bit of background on hyperbolic geometry. Everything

we shall use is worked through in detail in the first few chapters of [11], but we explain

what we need briefly here. Hyperbolic geometry originated as geometry in which Euclid’s

parallel postulate fails. It is the geometry of space with constant curvature −1. All we need

to know is that 2-dimensional hyperbolic geometry can be modelled as the upper half plane

H = {z ∈ C : =z > 0} with the metric ds2 = (dx2 + dy2)/y2, where z = x + iy. What

this means is that to find the length of an arc γ joining points A,B we have to integrate:

`(γ) =
∫
γ ds =

∫
γ

√
dx2 + dy2/y and dH(A,B) = infγ `(γ).

Here is an example. Let A = ai and B = bi so that A,B are on the imaginary axis I,
and assume b > a. Let γ be any arc joining A to B. Then

`(γ) =

∫
γ
ds =

∫
γ

√
dx2 + dy2/y ≥

∫
γ
dy/y =

∫ y=b

y=a
dy/y = log b/a.

Moreover if we take γ0 to be the vertical path from A to B then `(γ0) = log b/a. Hence

dH(ai, bi) = log b/a. Note that this shows that the vertical path γ0 is a shortest distance

path, otherwise called a geodesic or a hyperbolic line.

The boundary at infinity The above formula shows that dH(i, ti)→∞ as t→ 0. Thus

the real axis is at infinite distance from a point in H. Notice that the real axis R is not

included in H. Clearly the point ∞ is also at infinite distance from any point in H. We

view R ∪∞ as a circle, known as the boundary (or circle) at infinity.

1.1 Isometries of H

To understand a geometry and its tilings we need to understand its isometries, that is, its

distance preserving maps. The isometries of H have a very nice description in terms of

the group SL(2,R). This is the group of 2 × 2 matrices with real entries and determinant

1, i.e.

{(
a b

c d

)
: a, b, c, d ∈ R, ad − bc = 1

}
. SL(2,R) acts on H in the following way.

Let T =

(
a b

c d

)
∈ SL(2,R) and z ∈ H. Then T (z) = (az + b)/cz + d). By convention,

T (∞) = a/c and T (−d/c) =∞.

Exercise 1.2. Show that:

a. if =z > 0 then =(az + b)/cz + d) > 0.

b. T maps the circle at infinity to itself.
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c. if T =

(
a b

c d

)
and T ′ =

(
a′ b′

c′ d′

)
then T ′(T (z)) = (T ′T )(z), where T ′T is the matrix

product of T ′ with T and T ′(T (z)) is the image of T (z) under T ′.

d. if (az + b)/(cz + d) ≡ z then a = d = ±1, b = c = 0.

Exercise 1.2 (c) shows that to compose maps we simply need to multiply matrices. (d)

shows that the group PSL(2,R) = SL(2,R) / ± Id (where Id =

(
1 0

0 1

)
) acts freely on

H, that is, if T (z) = z then T = id as an element of PSL(2,R). Where it won’t lead to

confusion, we often use

(
a b

c d

)
to represent a transformation in PSL(2,R).

Proposition 1.1. PSL(2,R) acts by isometries on H. In other words, if T ∈ PSL(2,R),

then dH(T (P ), T (Q)) = dH(P,Q) for any P,Q ∈ H.

Proof. To abbreviate, write |dz| =
√
dx2 + dy2. Let T =

(
a b

c d

)
∈ SL(2,R) and let

w = T (z) = (az+ b)/cz+d). We claim that |dw|/=w = |dz|/=z and consequently
∫
γ |dz| =∫

T (γ) |dw|.

Exercise 1.3. Finish the proof!

Linear fractional transformations

A mapping of the form z 7→ (az + b)/cz + d), where a, b, c, d ∈ C and ad− bc 6= 0 is called

a linear fractional transformation or Möbius map. Möbius maps carry circles to circles

and preserve angles. Here ‘circle’ is interpreted to mean either an ordinary circle or a line

through infinity. For more details and a proof see [11] Chapter 1.

Exercise 1.4. a. Show that under the action of PSL(2,R), a vertical line in H is carried

either to another vertical line or to a semicircle centred on R.

b. Show that T =

(
1 0

1 1

)
maps the imaginary axis I to the semicircle with centre 1/2

joining 0 to 1.

c. Let ξ < η ∈ R. Find a map T ∈ PSL(2,R) which maps 0 to ξ and ∞ to η.

d. Why is any semicircle with centre on R a geodesic (straight line) in H?

e. Show that there is a unique geodesic joining any two points in H, namely the semicircle

through the two points with centre on R.
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The group SL(2,Z)

The group SL(2,Z) is the subgroup of SL(2,R) all of whose entries are integers. We define

PSL(2,Z) = SL(2,Z) /± Id.

Exercise 1.5. a. Show that J =

(
0 1

−1 0

)
is the unique non-trivial element of SL(2,Z)

which maps I to itself.

b. Check that, as an isometry of H, J has order 2 and fixes i.

The ‘tiles’ of F are all ideal triangles. This means that each tile has three geodesic sides,

which meet in pairs on the boundary at infinity, i.e. R ∪∞. We denote the triangle with

vertices 0, 1,∞ by ∆, called the basic triangle. When we need to be strict, we consider that

∆ is the closed triangle including its sides (but excluding the 3 vertices which lie outside

H) and we let ∆◦ denote its interior, that is, ∆ excluding its sides.

Exercise 1.6. a. Find the element S ∈ PSL(2,Z) which sends 0→ 1, 1→∞,∞→ 0.

b. Conclude that the stabiliser of ∆ in PSL(2,Z) has order 3.

c. Show that S has a unique fixed point in H, and find it.

The following proposition allows us to prove the key facts about F .

Proposition 1.2. The ideal triangles in the Farey tessellation F cover the hyperbolic plane

without overlaps (except of their boundaries). Moreover if g ∈ SL(2,Z), then g(∆) is a

triangle in F .

Proof. From the construction, it is clear that every point in H is contained in at least one

(closed) ideal triangle of the construction. We have to show that no two triangles overlap.

First note that every triangle in the tessellation is the image of ∆ under some element

in SL(2,Z). In fact by Exercise 1.1, if p/q, r/s are joined by an arc of F and if we assume

that p/q > r/s then det

(
p r

q s

)
= 1 so that T =

(
p r

q s

)
∈ SL(2,Z). By Exercise 1.4,

T carries the positive imaginary axis I to the hyperbolic line joining p/q to r/s, in other

words, the semicircle with these endpoints. Moreover T carries 1 to the point p/q ⊕ r/s so

that it takes the other two sides of ∆ to semicircular arcs joining these new neighbours.

Let T be the set of triangles in F . If E ∈ T , let E◦ denote its interior. We have

to show that E◦1 ∩ E◦2 = ∅ for any E1, E2 ∈ T . We have just shown that Ei = gi(∆) for

some gi ∈ SL(2,Z). So it is enough to show that ∆◦ ∩ g(∆◦) = ∅ for any g ∈ SL(2,Z).

(Why?) Let g =

(
a b

c d

)
so that a/c > b/d. By translating and rotating ∆ if needed

(using the transformation S of Exercise 1.6), we may assume that the side of g(∆) joining
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a/c to b/d cuts the imaginary axis I (why?), so that a/c > 0 > b/d. We claim this is

impossible for g ∈ SL(2,Z). Note that without loss of generality we can take d > 0,

(why?) so automatically b < 0. Then a, c have the same sign. If both are positive then

1 = ad− bc ≥ 1 + 1 = 2 which is impossible. The other case is similar.

The same argument shows that g(∆) ∈ T for any g ∈ SL(2,Z). This completes the

proof.

Here are some important consequences of Proposition 1.2.

Corollary 1.3. 1. Every pair of neighbouring rationals are the endpoints of some side

of F .

2. Every point p/q ∈ Q is a vertex of F .

3. The Farey tessellation F is invariant under the action of PSL(2,Z).

Exercise 1.7. Prove Corollary 1.3. Hint for (2): Use the Euclidean algorithm!

Exercise 1.8. a. Let J =

(
0 −1

1 0

)
as in Exercise 1.5. Suppose that g ∈ PSL(2,Z)

carries I to another side s of F , so that g(i) ∈ s. Prove that gJg−1 is the unique

non-trivial element in PSL(2,Z) which fixes s.

b. Find an element g ∈ SL(2,Z) which carries I to the hyperbolic line from 0 to 1 and

hence or otherwise, find the unique non-trivial element of PSL(2,Z) which fixes the

point (1 + i)/2.

Exercise 1.9. a. Explain why J maps any hyperbolic line through i to itself, interchang-

ing endpoints.

b. With g as in Exercise 1.8, prove that T = gJg−1J = ±

(
1 1

1 2

)
maps the hyperbolic

line L joining i to (1+ i)/2 to itself. Hint: T is the product of two π rotations about points

on L.

c. What are the end points of this line? Check they are fixed by T .

We will come back to this transformation T later.

Finally, here is an exercise on hyperbolic geometry which we will need in the last lecture.

Exercise 1.10. a. Let H be the region above the horizontal line =z = h. Explain why

the image of H under T =

(
a b

c d

)
is the region inside a disk tangent to R at a/c.

b. Prove that the radius of this disk is 1/2hc2. Hint: Suppose the disk has radius r, so its

highest point is a/c + 2ir. Explain why h is the imaginary part of T−1(a/c + 2ir) and hence

find the formula relating r and h.
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Fundamental domain for SL(2,Z).

According to Exercise 1.6, the basic tile ∆ is fixed by a non-trivial element S in SL(2,Z),

where S3 = id. (The element S was computed in Exercise 1.6.) A fundamental domain

for the action of a group G on H is a region R such that the images of the closure of R

cover the plane, and such that IntR ∩ g(IntR) = ∅ for every non-trivial element of G. To

find a fundamental domain for SL(2,Z) we have to subdivide ∆ into three parts, which are

mapped one onto the other by S. This is illustrated in Figure 2 in which the basic triangle

∆ is subdivided into three four sided regions, each of which is a fundamental domain for

the action of SL(2,Z) on H. The uppermost dotted arcs are parts of semicircles of radius

1. The three dotted arcs in ∆ meet in the point (1 + i
√

3)/2 and S =

(
0 1

−1 1

)
rotates the

three quadrilaterals in ∆ one onto another.

Figure 2: Fundamental domain for the action of SL(2,Z) on H.

2 The Farey tessellation and continued fractions

A continued fraction is an expression

x = a0 +
1

a1 +
1

a2 +
1

a3 + .. .
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where x ∈ R and ai ∈ N. Usually we shorten this to x = [a0; a1, a2, a3, . . .]. We also require

that ai > 0 for all i ≥ 1. (For conventions on negative numbers x, see also 2.0.1 below.) It

is not hard to see that any rational x can be expressed in this way. For example, if x = 3/4

then: 1/x = 4/3 = 1 + 1/3 so x = [0; 1, 3] or alternatively x = [0; 1, 2, 1]. If x /∈ Q then a

similar procedure leads to an infinite continued fraction.

Example 2.1. Suppose x = (1 +
√

5)/2. Recall that if y ∈ R then [y] denotes the integer

part of y, that is y = [y] + t where 0 ≤ t < 1. Since 1 < x < 2 we have [x] = 1 and

x− 1 = (−1 +
√

5)/2 so that 1/(x− 1) = 2/(−1 +
√

5) = 2(1 +
√

5)/4 = x. Unwinding we

get x = 1 + 1/x from which it follows that x = [1; 1, 1, 1, . . .].

Exercise 2.1. a. Show that
√

2 = [1; 2, 2, 2, 2, . . .]. Hint: Use (
√

2 + 1)(
√

2− 1) = 1.

b. Show that x > 0 is rational iff its continued fraction terminates. Show that in this case there

are always two continued fraction expressions for x, namely [a0; a1, . . . , an] with an > 1 and

[a0; a1, . . . , an − 1, 1]

c. Use a calculator to find the first few terms in the continued fraction expansion for π.

The continued fraction for x ∈ R can be read off from the Farey tessellation F as follows.

Join x to any point on the imaginary axis I by a hyperbolic geodesic (semicircular arc) γ.

This arc cuts a succession of tiles of F . Each tile is an ideal triangle, so γ cuts exactly two

sides of F . These sides meet in a vertex which is either to the left, or to the right, of the

oriented arc γ. Label this segment of γ by L or R accordingly. (In the exceptional case in

which γ terminates in a vertex of the triangle, choose either label.) The resulting sequence

Ln0Rn1Ln3 . . . , n1 ∈ N is called the cutting sequence of x. If x > 1 the sequence begins with

L, while if 0 < x < 1 the sequence begins with R. (For x < 0 see 2.0.1). Note that the

cutting sequence is independent of the initial point of γ on I. The key observation is:

Proposition 2.2. Let x > 1 have cutting sequence Ln0Rn1Ln3 . . . , ni ∈ N. Then x =

[n0;n1, n2, . . .]. Likewise if 0 < x < 1 has cutting sequence Rn1Ln3 . . . , ni ∈ N then x =

[0;n1, n2, . . .].

Proof. Let γ be an oriented geodesic starting at a point on I and ending at x, thus defining

the cutting sequence of x. Assume that x > 1. Since [x] = n0 > 0 we see that γ begins its

descent to R (i.e. first cuts a non-vertical side of F) in the interval n0 ≤ x < n0 + 1. Thus

the cutting sequence of γ begins Ln0R.

Let P =

(
1 1

0 1

)
, J =

(
0 −1

1 0

)
. By Corollary 1.3, both P and J map F to itself

preserving orientation1. Thus γ cuts an ideal triangle T with the same symbol as P (γ) cuts

1This means that the order, clockwise or anticlockwise, of points round the boundary of a circle or

triangle is preserved by the action of any element in SL(2,Z). It works because every element in SL(2,Z)

has positive determinant.
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P (T ) and similarly for J , in other words, both P and J preserve cutting sequences as long

as we keep track of starting points correctly.

Let u−1, u0, u1, . . . be unit vectors based at the points z−1, z0, z1, . . . on sides of F which

mark the changes from L segments to R segments, and pointing along γ, where z−1 ∈ I.
(We start the numbering from −1 for convenience later.)

Consider the effect of JP−n0 on γ. Note that P−n0(z0) ∈ I. The geodesic P−n0(γ)

starting from P−n0(z0) ends at P−n0(x) ∈ [0, 1), hence the initial term of the cutting

sequence of P−n0(γ) is R. Now J maps I to itself and J(x − n0) = −1/(x − n0) < −1,

while JP−n0(z0) points into the left half plane. From the continued fraction expansion of

x, [1/(x− n0)] = n1 and so −(n1 + 1) < −1/(x− n0) ≤ −n1. This means that the cutting

sequence of JP−n0(γ), starting from the point JP−n0(u0) where it crosses I, is Rn1L.

Now apply Pn1 followed by J . The geodesic JPn1JP−n0(γ) meets I at JPn1JP−n0(z1)

and ends in the point 1/(1/(x − n0) − n1) > 1. From the continued fraction expansion of

x we have [1/(1/(x − n0) − n1)] = n2. Therefore JPn1JP−n0(γ) has a cutting sequence

which starts Ln2R. This sequence is the same as the sequence of γ read starting from z1,

so γ itself has sequence Ln0Rn1Ln2R . . .. Now the argument repeats.

The reasoning for 0 < x < 1 is similar.

Example 2.3. By Exercise 1.9, T =

(
1 1

−2 1

)
maps the hyperbolic line α joining i to

(1 + i)/2 to itself. Then α cuts I and ends at the point (
√

5− 1)/2 ∈ R. As in the exercise,

T is the product of order two rotations each of which are symmetries of F . It is not hard

to see that every time α cuts a side s of F , it does so in the unique SL(2,Z) image of i on

s (see Exercise 1.8). Reading along α, we see that starting from i, α has cutting sequence

LRLRLR . . .. Hence (
√

5− 1)/2 = [0; 1, 1, 1, . . .], agreeing with Example 2.1.

Example 2.4. We will show that
√

2 = [1; 2, 2, 2, . . .] (c.f. Exercise 2.1). Let x =
√

2 + 1

and let γ be the semicircle centre 1 radius
√

2, with endpoints ±x. The segment of γ joining

the point where it cuts I to x is the cutting sequence of x. Clearly the sequence begins

LLR. Applying JP−2 we find JP−2(x) = 1/(1 −
√

2) = −(1 +
√

2) = −x. By symmetry

the cutting sequence from I to −x begins RRL. Thus x has sequence LLRRL . . . . Now

applying JP 2 we get JP 2JP−2(x) = x. Thus x has the sequence LLRRLLRR . . . and

hence 1 +
√

2 = [1; 2, 2, 2, . . .].

2.0.1 Negative numbers

To handle negative numbers there are differing conventions. In [6], negative numbers are

written x = [a0; a1, a2, a3, . . .] with a0 < 0 and ai > 0 for i ≥ 1. Dealing with cutting

sequences, we observe that x and J(x) have the same cutting sequence and so it is usually

enough to replace a negative number y by −1/y = [b0; b1, b2, b3, . . .] with b0 ≥ 0.
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More on continued fractions

Let x = [a0; a1, a2, . . .] and pn/qn = [a0; a1, a2, . . . , an]. The fractions pn/qn (always assumed

to be in lowest terms) are called the convergents of x. They can be interpreted in terms of

the passage of a geodesic γ ending at x across F . We shall see that pn/qn, pn+1/qn+1 are

the two ends of the side of F cut by γ at the moment the sequence of γ changes from L to

R or vice versa, so that x lies between pn/qn and pn+1/qn+1.

We start with the following theorem, which contains some basic facts about continued

fractions.

Theorem 2.5. Let x = [a0; a1, a2, . . .] and pn/qn = [a0; a1, a2, . . . , an], so particular p0 =

a0, q0 = 1. Then

1.

(
pn pn+1

qn qn+1

)
has determinant ±1 for all n ≥ 0.

2. For n ≥ 1, pn+1 = an+1pn + pn−1, qn+1 = an+1qn + qn−1 where p−1 = 1, q−1 = 0.

3. p2n/q2n ≤ p2n+2/q2n+2 ≤ x ≤ p2n+1/q2n+1 ≤ p2n−1/q2n−1 for all n ≥ 0, with equality

on one or other side iff x is rational and the sequence terminates.

Proof. For definiteness take x > 0 and as above let P =

(
1 1

0 1

)
, J =

(
0 −1

1 0

)
. Then

P−a0(x) = [0; a1, a2, . . .] and JP−a0(x) = −[a1; a2, . . .]. Likewise JP a1JP−a0(x) = [a2; a3, . . .]

and so on. Let M = JP−a2n . . . JP a1JP−a0 (so that M depends on a0, . . . , a2n). By un-

winding the continued fraction, one sees that for any ξ,

M([a0; a1, a2, . . . , a2n + ξ]) = ξ. (1)

Setting ξ = 0,∞ respectively, we findM([a0; a1, a2, . . . , a2n]) = 0 andM([a0; a1, a2, . . . , a2n+

∞]) = M([a0; a1, a2, . . . , a2n−1] =∞. ThusM−1(0) = p2n/q2n andM−1(∞) = p2n−1/q2n−1.

We deduce that M−1 =

(
λp2n−1 λp2n
λq2n−1 λq2n

)
for some λ ∈ R. Since p2n, q2n, λp2n, λq2n ∈ Z and

since p2n, q2n have no common factor we deduce that λ ∈ Z (why?). Moreover detM = 1

so that λ2 = 1 hence λ = ±1. So M−1 = ±

(
p2n−1 p2n
q2n−1 q2n

)
∈ SL(2,Z).

Now the claims of the theorem follow easily. (1) holds because detM = 1; this also

shows that p2n/q2n < p2n−1/q2n−1. To prove (2), note that

p2n+1/q2n+1 = [a0; a1, a2, . . . , a2n, a2n+1] = [a0; a1, a2, . . . , a2n + 1/a2n+1]

so by Equation (1) with ξ = 1/a2n+1 we have M−1(1/a2n+1) = p2n+1/q2n+1. On the other

hand M−1(1/a2n+1) = (p2n−1 + a2n+1p2n)/(q2n−1 + a2n+1q2n). Comparing coefficients and

using the fact that all the integers involved are relatively prime, the result follows.
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To prove (3) note that x = [a0; a1, a2, . . . , a2n + t] where 0 ≤ t < 1 < ∞. Now M−1

maps the interval [0,∞) to the interval [p2n/q2n, p2n−1/q2n−1) and so M−1(0) ≤M−1(t) <
M−1(∞). But M−1(t) = x by Equation (1) and the result follows.

Corollary 2.6. With the notation of Theorem 2.5, pn/qn → x as n → ∞. Moreover

|x− pn/qn| ≤ 1/qnqn+1 and qn ≥ n for all n ∈ N.

The following result interprets Theorem 2.5 in terms of cutting sequences.

Corollary 2.7. Let s0, s1, s2, . . . be the sides of F which mark the changes in the cutting

sequence of γ from L to R and vice versa, starting with s0 being the vertical line from a0
to ∞. Then for n ≥ 0, the endpoints of s2n are the points p2n/q2n < p2n−1/q2n−1 while the

endpoints of s2n+1 are the points p2n/q2n < p2n+1/q2n+1.

Proof. By definition s0 has endpoints a0 and∞. As in Theorem 2.5, define p−1 = 1, q−1 = 0

so that ∞ = p−1/q−1 and a0 = p0/q0. Let z0, z1, z2, . . . be the points where γ cuts sides

s0, s1, s2, . . .. After z0 there are a1 segments of γ labelled R, up to the point z1. The

left hand end of s1 is still a0 = p0/q0. Using repeated Farey addition, we see the right

hand endpoint of s1 is (a1p0 + p−1)/q0 = p1/q1 as claimed. Now let’s find s2. The cutting

sequence progresses through a2 segments labelled L. Thus the right hand endpoint of s2
is still p1/q1. The left hand endpoint moves through a2 steps from p0/q0 towards p1/q1.

Thus its endpoint is (p0 + a2p1)/(q0 + a2q1) = p2/q2 by Theorem 2.5, proving our claim.

Continuing in the way completes the proof.

Corollary 2.6 explains why (pn/qn) are called the convergents of x while Corollary 2.7

gives a nice geometrical interpretation. The relations |x − pn/qn| ≤ 1/qnqn+1 and qn+1 =

an+1qn + qn−1 show that |x − pn/qn| ≤ 1/q2nan+1 ≤ 1/q2n. If an+1 is large, pn/qn gives an

extremely good approximation to x. For example, π = [3; 7, 15, 1, 292, 1, . . .] has convergents

3, 22/7, 333/106, 355/113, . . .. In particular p3/q3 = 355/113 = 3.141592653 . . . and |π −
355/113| < 1/(292× (113)2) < 10−6.

3 Applications

3.1 Equivalence under SL(2,Z)

Two numbers x = [a0; a1, . . .], y = [b0; b1, . . .] are said to have the same tails if there exist

k, l ∈ N such that ak+r = bl+r for all r ≥ 1. They have the same tails mod 2 if k+ l is even.

To see the significance of this idea, we need the following lemma:

Lemma 3.1. Let γ, γ′ be oriented geodesics in H with the same positive endpoint x. Then

the cutting sequences of γ, γ′ eventually coincide.
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Proof. We can obviously assume that x /∈ Q. Pick a side s of F which is cut by both

γ and γ′. Use the method of Proposition 2.2 to find A ∈ SL(2,Z) such that A(s) = I.
Note that the unit tangent vectors u, u′ along γ, γ′ pointing towards x map under A to unit

vectors pointing from I into the same half plane (right if x > 0, left otherwise). The result

now follows from the observation that, starting from I, the cutting sequence of x > 0 is

independent of the initial point on I of the choice of geodesic on I ending at x.

Now we can prove a classic result about continued fractions, see for example [6].

Proposition 3.2. x = [a0; a1, . . .], y = [b0; b1, . . .] have the same tails mod 2 if and only if

there exists g ∈ SL(2,Z) such that g(x) = y.

Proof. Suppose x, y have the same tails and k = 2n, l = 2m. Then

JP a2n−1 . . . JP a1JP−a0(x) = [a2n; a2n+1, . . .] = JP b2m−1 . . . JP b1JP−b0(y).

If both k, l are odd the argument is similar. So if k+l is even, g(x) = y for some g ∈ SL(2,Z).

We leave the case k + l odd to the reader.

Now suppose g(x) = y for some g ∈ SL(2,Z). Assume first x, y > 0. Pick w < 0 and

let γx, γy be the oriented geodesics with endpoints (w, x) and (w, y) respectively, so that

γx, γy cut I in points zx, zy respectively. Thus the continued fraction expansions of x, y can

be read off from the cutting sequences of γx, γy, starting from zx, zy. Now g(γx) ends in the

point g(x) = y, so by Lemma 3.1 the cutting sequences of g(γx), γy eventually coincide. On

the other hand, after choosing appropriate starting points, the cutting sequence of g(γx) is

the same of that of γx. So the tails of the cutting sequences of γx, γy must agree. Moreover

k + l must be even because of the alternating L,R symbols in the cutting sequences must

match.

If x < 0 then we can replace it by J(x) > 0 and apply the same argument, noting that

J(x) has the same cutting sequence as x and also that the tail of the continued fraction

expansion of J(x) = −1/x is the same as that of x, and similarly for y.

3.2 Periodic continued fractions

It is not hard to see algebraically that any number whose continued fraction is eventually

periodic is quadratic2. Conversely, any quadratic number has an eventually periodic ex-

pansion. This result, due to Lagrange, is slightly tricky to prove, see for example [6], [4]

or [9]3.

Example 3.3. The continued fraction of
√
n has a particularly nice form: its continued

fraction coefficients are palindromic. The reason for this can be understood by consider-

ing the semicircle centre 0 and radius
√
n. It can be proved that γ is mapped to itself

2A quadratic number is one which satisfies a quadratic equation with integer coefficients.
3There is a gap in the proof in [9] which is corrected in [12] §5.4.3.
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by some element of SL(2,Z). Why does it follow that the whole doubly infinite cutting

sequence of γ is periodic? Now using the symmetry in the imaginary axis, show that√
n = [a0, a1, a2, . . . a2, a1, 2a0] where the overline indicates infinite repetition. As an exam-

ple, check that
√

7 = [2; 1, 1, 4].

3.3 Diophantine approximation

Corollary 2.6 gives a hint that continued fractions give good approximants to irrationals.

This is the subject of Diophantine approximation. In fact, the best rational approximation

to an irrational for a given bound on the denominator is given by the convergents of its

continued fraction, see for example [7] and [6].

Diophantine approximation has a beautiful geometrical interpretation. Since we don’t

have time to go into this in detail here, let us focus on the example of the golden mean

ω = (1 +
√

5)/2. The key is to look at horocycles, that is, circles in H tangent to the real

axis, or horizontal lines in H (which can be interpreted as circles tangent to ∞), and to use

the result of Exercise 1.10. A horodisk is the region enclosed by the horocycle.

Lemma 3.4. Let ω = (1 +
√

5)/2 = [1; 1, 1, 1, . . .] and let pn/qn be its convergents. Then

inf{c : |ω − pn/qn| ≤ c/q2n for infinitely many n} = 1/
√

5.

Proof. We want to investigate |ω− pn/qn|. Define the height ht(γ) of a hyperbolic geodesic

γ to be its maximum Euclidean height above R, that is, its Euclidean radius. Let α be the

geodesic with endpoints (1±
√

5)/2 studied in Exercise 1.9. Every time α crosses a tile of

F , it enters and leaves through one of the SL(2,Z) images of the special points i. The same

must be true of every image g(α), g ∈ SL(2,Z). Therefore sup{ht(g(α) : g ∈ SL(2,Z)} =

ht(α) =
√

5/2.

Let H be the open horodisk bounded by the line =z =
√

5/2 and let pn−1/qn−1, pn/qn
be successive convergents to ω. Assume for definiteness that n is even; the argument if not

is similar. Then the image of H under A =

(
pn−1 pn
qn−1 qn

)(
0 1

−1 1

)
∈ SL(2,Z) is a horodisk

tangent to R at pn/qn. By Exercise 1.10, it has radius 1/
√

5q2n. (The first matrix in this

product sends ∞ to the odd convergent pn−1/qn−1, and 0 to pn/qn. To fix this we first

apply S which sends ∞ to 0.) Since A−1(α) ∩ H = ∅ we have α ∩ A(H) = ∅. Therefore

the vertical line Vω in H ending at ω does not intersect A(H). (Why?) It follows that

|ω − pn/qn| ≥ 1/
√

5q2n. Since this holds for all convergents, we have c(ω) ≥ 1/
√

5.

Let T =

(
1 1

−2 1

)
. By Exercise 1.9, T maps α to itself and no power of T fixes ∞.

Let H ′ be a horizontal horocycle of height
√

5/2− ε where ε > 0. Then T k(α) ∩H ′ 6= ∅ for

k ∈ N. So α∩T−k(H ′) 6= ∅ for k ∈ N. Since T k does not fix∞, we see that E = T−k(H ′) is

a horocycle of larger radius than T−k(H) based at pk/qk for some pk/qk ∈ Q. We would like
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to claim that, since α intersects E, so does Vω, because it would follow that for some d > 1

(depending on ε), |ω − pk/qk| ≤ d/
√

5q2k. This is not quite correct. However for any p ∈ α,

the points Tn(p) approach ω as n→∞. Moreover α and Vω are asymptotic. Choose p ∈ α
so that a small neighbourhood B of p is contained in E. Then Tn(p) ∈ Tn(B) ⊂ Tn(E).

Note that the sets Tn(B) all have the same diameter since T is an isometry. It follows that

for large enough n, Vω ∩ Tn(B) 6= ∅ so that also Vω ∩ Tn(E) 6= ∅. We conclude that for

any d > 1, |ω − pn/qn| ≤ d/
√

5q2n for infinitely many n ∈ N. See [5] for details. The result

follows.

The number 1/
√

5 is called the Hurwitz constant. This is just the beginning of the

story. For x ∈ R, let

c(x) = inf{c : |x− p/q| ≤ c/q2 for infinitely many p/q}.

It can be shown that c(x) depends only on the equivalence class of x modulo SL(2,Z), that

is, on the tail of the continued fraction of x, see [?] Chapter 7 Lemma 1. We have just

shown that c(ω) = 1/
√

5. In fact ω = (1 +
√

5)/2 = [1; 1, 1, 1, . . .] and its images under

SL(2,Z) are the worst approximated numbers, in the sense that for any number whose tail

does not end in an infinite string of 1’s, c(x) < c(ω).

The set of all possible values of c(x), x ∈ R is called the Lagrange spectrum. The

following lemma shows there is a definite gap in the spectrum between the Hurwitz constant

and the next possible value of c(x):

Lemma 3.5. Let x = [a0; a1, a2, a3, . . .] and suppose that an 6= 1 for infinitely many n.

Then c(x) ≤ 1/2.

Proof. Let γ be a geodesic starting on I and ending at x. The hypothesis shows that the

cutting sequence of γ contains L2 or R2 infinitely often. Thus infinitely many of the images

of γ have height at least 1. An argument similar to that above shows that c(x) ≤ 1/2. For

details see [10] or [5].

It turns out there is a very special sequence of quadratic numbers xn for which c(xn)

decreases monotonically to 1/3, while there are uncountably many SL(2,Z) classes of points

x with c(x) = 1/3. This all has a beautiful geometrical explanation, see [10]. One can also

show by geometrical arguments that there exists a number c0 > 0 such that the Lagrange

spectrum contains the entire interval (0, c0]. These points form what is called the Hall ray,

see [8] and [1]. The precise best value of c0 was discovered by G. Freiman in 1973:

1/c0 = 4+
253589820 + 283748

√
462

491993569
= 4+[0, 3, 2, 1, 1, 3, 1, 3, 1, 2, 1]+[0, 4, 3, 2, 2, 3, 1, 3, 1, 2, 1].

For more information and references on Diophantine approximation, see [3].
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3.4 Dense geodesics and ergodic theory

The connection between continued fractions and geodesics in the hyperbolic plane was used

in a famous paper by E. Artin [2] to provide the first example of a geodesic trajectory on a

Riemann surface with a dense trajectory. Here is a quick sketch of how it works. Consider

the surface Σ obtained by gluing the sides of the fundmental domain for SL(2,Z) shown in

Figure 2. The two vertical sides are matched by the transformation P =

(
1 1

0 1

)
while the

two finite sides are matched by the rotation S =

(
0 1

−1 1

)
, see Exercise 1.6. (Check that

S2(i) = i + 1.) This produces a hyperbolic surface Σ which is topologically a sphere with

one missing point, namely the point at infinity is a ‘missing point’ or cusp. There are two

other special points which are cone points, one of order 2 and one of order 3, corresponding

to the points i and (1 + i)/2 respectively. (For more background on hyperbolic surfaces and

covering spaces, see [11].)

The sides of F all project to the geodesic L on Σ which joins the cusp to the order

2 cone point; L is the image of the line in H joining i to ∞. (The segment from i to 0

also projects to L.) Every other infinite oriented geodesic ḡ on Σ must cross L infinitely

often. Starting from a point where ḡ cuts L, ḡ lifts to a unique geodesic γ in H which

cuts I on the line between i and ∞. After possibly applying J and a suitable power of P ,

we can arrange that γ has endpoints η ∈ (−1, 0] and ξ ∈ [1,∞). Let ξ = [a0; a1, a2, . . .]

and −1/η = [b0; b1, . . .]. Represent the geodesic with endpoints (η, ξ) by the doubly infinite

sequence . . . , b1, b0, |a0, a1, . . . where the bar | indicates the position where γ cuts I. Using

the ideas we have already outlined, one can show that γ′ is another lift of L with its

endpoints (η′, ξ′) in the same intervals iff its representative sequence . . . , b′1, b
′
0, |a′0, a′1, . . . is

a shift of . . . , b1, b0, |a0, a1, . . .4.
Observe that if geodesics γ, δ with endpoints (η, ξ), (α, β) respectively are close then γ

and δ are close for a long section of their trajectories. Equally, (η, ξ) is close to (α, β) if the

corresponding sequences agree over a long block surrounding the zero bar |.
Now choose a doubly infinite sequence in which every possible finite block of positive

integers occurs infinitely often. This sequence represents infinitely many distinct geodesics

in H, depending on where we place the zero bar. Denote the set of all such geodesics by

Ξ. From the above discussion, one sees that all possible initial positions and directions for

geodesics cutting I are approximated arbitrarily well by geodesics in Ξ. The geodesics in Ξ

are all images of one another under SL(2,Z), and hence project to a single geodesic on the

surface Σ whose trajectory is dense on Σ.

Introducing measure theory into the above discussion leads to some very important

ideas in ergodic theory. For example, the first proof that the geodesic flow on a Riemann

4To get the geodesic with the opposite orientation, just read the sequence backwards.
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surface can be ergodic5 was done using this method. We can also use this picture to give

an easy derivation of the famous Gauss measure for continued fractions, see [7] for the

definitions and classical results and [9] for the proof using hyperbolic geometry. The idea of

using symbols to study dynamical systems, of which this is one of the very earliest examples,

is fundamental in the theory of chaos.

3.5 More general groups and surfaces

There are far reaching generalisations of many of the above ideas, obtained when the group

SL(2,Z) is replaced by any discrete subgroup of SL(2,R) containing a translation z 7→
z+ c, c ∈ R. The study of Diophantine approximation on the quotient surfaces becomes the

study of how far trajectories ‘go up the cusp’, see for example [5], [8] and [1].
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4 Solutions to exercises

Exercise 1.1 Easy.

Exercise 1.2

a. Let z = x+ iy. Then =(ax+aiy+ b)/(cx+ ciy+d) = =(ax+aiy+ b)(cx− ciy+d)/|cz+d|2 =

y/|cz + d|2.

b. Obvious using the conventions T (∞) = a/c, T (−d/c) =∞.

c. T ′(T (z)) = T ′(
az + b

cz + d
) =

a′(az + b) + b′(cz + d)

c′(az + b) + d′(cz + d)
. Check the coefficients in this fraction are

the same as the matrix coefficients of the matrix product T ′T .

d. If az + b ≡ cz2 + dz ∀ z ∈ H then b = 0, a = d, c = 0. Now use ad− bc = 1.

Exercise 1.3 Check dw = dz/(cz + d)2 and =w = =z/|cz + d|2. (See Exercise 1.2 (a).) For more

detail see [11] Ch. 2.

Exercise 1.4

a. T ∈ SL(2,R) maps lines to lines or circles and preserves angles of intersection. A vertical line

in H is a ‘circle’ orthogonal to R∪∞. By Exercise 1.2 (b), T maps R∪∞ to itself. So it maps

A vertical line in H to the part of a line or circle orthogonal to R ∪∞ in H.

b. T (0) = 0, T (∞) = 1, now use (a).

c.

(
η ξ

1 1

)
would work except its determinant is η − ξ 6= 1 (in general). To remedy this divide

all the matrix coefficients by
√
η − ξ.

d. By (a) and (b) we can find T ∈ SL(2,R) which carries the semicircle to I. We already know

I is a geodesic and T is an isometry.

e. Given z1, z2 ∈ H, the point where the perpendicular bisector of the line from z1 to z2 meets

R is the centre of the required semicircle. It is a geodesic by (c).

Exercise 1.5

a. J interchanges 0 and ∞ so maps I to itself. If T =

(
a b

c d

)
∈ SL(2,Z) fixes 0,∞ then

b = 0 = c. So ad = 1 which since a, d ∈ Z forces a = d = ±1.

b. J2 =

(
−1 0

0 −1

)
is the identity in PSL(2,R). If J(z) = z then −1/z = z which gives z = ±i;

only i ∈ H.

Exercise 1.6

a. Let S =

(
p r

q s

)
∈ SL(2,Z). Then r/s = 1, (p + r)/(q + s) = ∞, p/q = 0. So r = s, q =

−s, p = 0. Using ps− rq = 1, r2 = 1 so S =

(
0 1

−1 1

)
.

b. Check that S3 = −
(

1 0

0 1

)
. Any other non-trivial element fixing ∆ must fix one vertex and

hence one side. By applying S or S2 we may assume the side fixed is I. The only non-trivial

element fixing I (Exercise 1.5) is J but J interchanges left and right half planes so does not

map ∆ to itself.
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c. S(z) = z implies 1/(−z + 1) = z i.e. z2 − z + 1 = 0 so z = (1± i
√

3)/2. Exactly one of these

solutions lies in H.

Exercise 1.7

a. Let p/q, r/s be neighbours and say ps − rq = 1. Then T =

(
p r

q s

)
∈ SL(2,Z) and by

Proposition 1.2 T (I) is a side of F .

b. Use the Euclidean algorithm to find a, b ∈ Z so that ap−bq = 1. Then T =

(
p b

q a

)
∈ SL(2,Z)

and T (∞) = p/q. Now use Proposition 1.2.

c. Similar reasoning shows that each triangle in F maps to another such, and the map on triangles

in T is bijective.

Exercise 1.8

a. g(I) = s so gJg−1(s) = gJg−1g(I) = gJ(I) = g(I) = s. If another non-trivial element h fixed

s then g−1hg would fix I. Now use Exercise 1.5.

b. Let g =

(
a b

c d

)
. Then g(0) = b/d = 0 so b = 0; g(∞) = a/c = 1 so a = c; ad − bc = 1 so

ad = 1. Since a, d ∈ Z, a = d = ±1. Thus one such matrix is g =

(
1 0

1 1

)
.

Calculate gJg−1 =

(
1 −1

2 −1

)
. Check: gJg−1((1 + i)/2) =

(1 + i)/2− 1

1 + i− 1
=

1 + i

2
.

Exercise 1.9

a. J is an order 2 isometry which fixes i, so it is an order 2 rotation on the circle of tangent

directions at i, so it must rotate by π. Alternatively, check that a hyperbolic line L passes

through i iff its endpoints are −1/η and η for some η > 0. Since J interchanges its endpoints

it maps L to itself.

b. Let L be the line through i, (1+ i)/2. By similar reasoning to (a), gJg−1 also maps L to itself.

So T = gJg−1J maps L to itself fixing endpoints. The matrix for T is found by multiplying

out.

c. Endpoints are (−1±
√

5)/2. Either do a direct Euclidean computation or find the fixed points

of T : T (z) = z iff (z + 1)/(z + 2) = z iff z2 + z − 1 = 0.

Exercise 1.10 H is a disk tangent to R ∪∞ at ∞. T maps circles to circles and preserves angles,

so T (H) is a disk tangent to T (R ∪∞) = R ∪∞ at T (∞) = a/c. T−1(a/c + 2ir) must lie on the

boundary of H so =T−(a/c+ 2ir) = h. T−1 =

(
d −b
−c a

)
so

T−1(a/c+ 2ir) =
d(a/c+ 2ir)− b
−c(a/c+ 2ir) + a

=
1 + 2ircd

−2irc2
and =T−(a/c+ 2ir) =

1

2rc2
.
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