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Abstract

This thesis studies the coarse geometry of the curve complex using intersection

number techniques. We show how weighted intersection numbers can be studied

using appropriate singular Euclidean surfaces. We then introduce a coarse analogue

of the convex hull of a finite set of vertices in the curve complex, called the short curve

hull, and provide intersection number conditions to find nearest point projections

to such hulls. We also obtain an upper bound for distances in the curve complex

using a greedy algorithm due to Hempel.

Covering maps between surfaces also play a significant part in this thesis.

We give a new proof of a theorem of Rafi and Schleimer which states that a cov-

ering map between surfaces induces a natural quasi-isometric embedding between

their corresponding curve complexes. Our proof employs a distance estimate via a

suitable hyperbolic 3–manifold which arises from work on the proof of the Ending

Lamination Theorem. We then define an operation using a given covering map and

intersection number conditions and show that it approximates a nearest point pro-

jection to the image of Rafi–Schleimer’s map. We also prove that this operation

approximates a circumcentre of the orbit of a vertex in the curve complex under the

deck transformation group of a regular cover.
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Introduction

The curve complex C(S) associated to a surface S was introduced by Harvey to

understand the thin part of the Teichmüller space of S [Har81]. By definition, it

is a simplicial complex whose vertices are isotopy classes of simple closed curves on

S and whose simplices are spanned by collections of curves which can be realised

disjointly simultaneously. It has proven to be a very useful tool in the geometric

group theoretic study of surface mapping class groups – indeed, in all but a small

finite number of cases, the mapping class group Mod(S) is naturally isomorphic to

the automorphism group of the corresponding curve complex C(S) [Iva97], [Luo00].

It also plays a crucial role the proof of the monumental Ending Lamination Theorem

[BCM12] where it captures the behaviour of short geodesics as one marches off “to

infinity” in a hyperbolic 3–manifold.

Much is already known about the large scale geometry of the curve complex.

The curve complex has infinite diameter [Kob88] and, in their celebrated paper,

Masur and Minsky [MM99] prove that the curve complex is Gromov hyperbolic.

Furthermore, Klarreich shows that the Gromov boundary of C(S) can be identified

with the space of ending laminations for S [Kla].

We seek to understand various geometric notions occurring in the context of

general Gromov hyperbolic spaces – including geodesics, quasi-convex sets, nearest

point projections and quasi-isometric embeddings – using tools which naturally arise

in low-dimensional topology and geometry. As a motivating example, let us consider

geodesics in C(S). There are several methods of approximating geodesics, each with

their own distinct advantages: Masur–Minsky employ projections of Teichmüller

geodesics [MM99], other authors such as Hamenstädt use train-track splitting se-

quences [Ham06], while Bowditch uses intersection number conditions [Bow06b].

We now describe (a simplified version of) Bowditch’s method in more detail.

Let α1 and α2 be distinct curves in C(S). Given a pair t = (t1, t2) of non-negative

reals satisfying t1 + t2 = 1, let γt be a curve which minimises

t1i(α1, ·) + t2i(α2, ·)
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among all curves in C(S), where i(·, ·) denotes the geometric intersection number.

Bowditch shows that by taking the union
⋃

t γt over all possible pairs t, we obtain

a subset of C(S) which is a bounded Hausdorff distance away from any geodesic

segment joining α1 and α2 in C(S). We can easily generalise Bowditch’s statement

for an arbitrary set of curves α1, . . . , αn – indeed, in Chapter 4 we show that the

analogous union behaves like a “coarse convex hull” for the αj ’s considered as a set

of vertices in C(S).

The appeal of this approach is that it can yield simple combinatorial methods

of approximating naturally occurring objects in the curve complex. We continue

with this theme to describe nearest point projection maps to the above “hulls”

and also to subcomplexes which arise from surface covering maps using intersection

number conditions.

Overview and main results

Chapter 1 covers background material regarding coarse geometric notions with a

special emphasis on δ–hyperbolic spaces. All the results stated are either contained

in the literature or can be deduced using elementary arguments.

In Chapter 2, we introduce some key players associated to a surface S, namely

its curve complex C(S) and mapping class group Mod(S), and outline several key

theorems. We also establish some basic notions regarding weighted intersection

numbers and hyperbolic geometry.

In Chapter 3, we generalise Bowditch’s construction of singular Euclidean

surfaces which are used to estimate weighted intersection numbers [Bow06b]. The

main result of this chapter is the proof that a quadratic isoperimetric inequality also

holds for our generalised structures. We then apply a result of Bowditch to deduce

that such surfaces possess essential annuli of definite width.

In Chapter 4, we introduce two notions of “hulls” for a given finite set of

vertices in C(S): the hyperbolic hull, a purely coarse geometric object; and the

short curve hull, defined using only intersection number conditions. With the aid of

results in Chapter 3, we prove that these two objects agree up to bounded Hausdorff

distance. We also give intersection number conditions for approximating a nearest

point projection to such hulls.

Moving on the Chapter 5, we give a new proof of a theorem due to Rafi and

Schleimer [RS09] which states that the natural lifting map between curve complexes

induced by a finite index covering map of surfaces is a quasi-isometric embedding.

Our proof employs a distance estimate via a suitable hyperbolic 3–manifold which

2



arises from work towards the Ending Lamination Theorem [BCM12].

Chapter 6 continues the theme of covering maps and the curve complex. This

time, we define a simple operation on curves and then prove that it approximates

a nearest point projection to the image of Rafi–Schleimer’s lifting map. Our proof

employs the results obtained in Chapter 4. We also show that this operation ap-

proximates a circumcentre for the orbit of a curve in C(S) under the group of deck

transformations for a regular cover.

Finally, in Chapter 7, we describe two methods for obtaining upper bounds

for distance in the curve complex in terms of intersection numbers.

3



Chapter 1

Coarse geometry

In this chapter, we recall some basic definitions and notions concerning Gromov

hyperbolic spaces. Many of the statements and results are either well known in

the literature or relatively straightforward to deduce; we shall include them for

completeness and to establish notation and terminology. We refer the reader to

[BH99], [Gro87], [ABC+91] and [Bow06a] for more background.

1.1 Notation

Let (X , d) be a metric space. Given any subset A ⊆ X and a point x ∈ X , we define

d(x,A) := inf{d(x, a) | a ∈ A}. For r ≥ 0, let

Nr(A) = {x ∈ X | d(x,A) ≤ r}

denote the r–neighbourhood of A in X . For subsets A,B ⊆ X and r ≥ 0, write

A ⊆r B ⇐⇒ A ⊆ Nr(B)

and

A ≈r B ⇐⇒ A ⊆r B and B ⊆r A.

Define the Hausdorff distance between A and B to be

HausDist(A,B) = inf{r ≥ 0 | A ≈r B}.

To simplify notation, we will often write a ∈ X in place of a singleton set

{a} ⊆ X . We will always use the standard Euclidean metric on the reals unless
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otherwise specified. If a and b are real numbers then

a ≈r b ⇐⇒ |a− b| ≤ r.

We will also adopt the following notation:

a �r b ⇐⇒ a ≤ r b+ r and b ≤ r a+ r.

1.2 Geodesics, quasiconvexity and quasi-isometries

Let I ⊆ R be an interval. A geodesic is a map γ : I → X so that d(γ(t), γ(s)) = |t−s|
for all t, s ∈ I. A geodesic segment connecting points x and y in X is the image of a

geodesic γ : [0, d(x, y)]→ X such that γ(0) = x and γ(d(x, y)) = y. A metric space

X is called a geodesic space if every pair of points can be connected by a geodesic

segment.

Definition 1.1 (Quasiconvexity). A subset U ⊆ X is Q–quasiconvex if any geodesic

segment connecting any pair of points in U lies in NQ(U). We say a subset is

quasiconvex if it is Q–quasiconvex for some Q ≥ 0.

Definition 1.2 (Quasi-isometric embedding, quasi-isometry). A (one-to-many) map

f : X → Y between metrics spaces is a Λ–quasi-isometric embedding if for all

x1, x2 ∈ X and y1 ∈ f(x1), y2 ∈ f(x2) we have

dY(y1, y2) �Λ dX (x1, x2).

In addition, if NΛ(f(X )) = Y then f is called a Λ–quasi-isometry and we say that

X and Y are Λ–quasi-isometric. If X and Y are Λ–quasi-isometric for some Λ ≥ 1

then we may simply say that they are quasi-isometric.

1.3 Gromov hyperbolic spaces

1.3.1 Thin triangles

We recall some basic results about Gromov hyperbolic spaces. Let X be a geodesic

space.

Definition 1.3 (Geodesic triangle). A geodesic triangle T in X consists of three

points x, y, z ∈ X together with three geodesic segments [x, y], [y, z], [z, x]. The

segments will be called the sides of the triangle T .
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We will abbreviate d(x, y) to xy.

Definition 1.4 (Gromov product). Let x, y, z be points in X . Define

〈x, y〉z =
1

2
(xz + yz − xy).

This quantity is called the Gromov product of x and y with respect to z.

Given a geodesic triangle T on x, y, z ∈ X , we construct a comparison tripod

T̄ as follows: Build a metric tree consisting of one central vertex whose valence is at

most 3 and three vertices of valence one with three edges of lengths 〈y, z〉x, 〈z, x〉y
and 〈x, y〉z. Label the central vertex oT and the other endpoints of the edges x̄, ȳ

and z̄ respectively. We allow for the possibility of edges having length zero in this

construction.

There exists a unique map

θT : T → T̄

satisfying θT (x) = x̄, θT (y) = ȳ and θT (z) = z̄ which restricts to an isometric

embedding on each edge of T . The elements of θ−1
T (oT ) are called the internal

points of T .

Recall that the diameter of a non-empty subset U ⊆ X is

diam(U) := sup{d(x, y) | x, y ∈ U}.

Definition 1.5 (Thin triangle, δ–hyperbolic space). A geodesic triangle T is δ–thin

if

diam(θ−1
T (p)) ≤ δ

for all p ∈ T̄ . A geodesic space X is δ–hyperbolic if all of its geodesic triangles are

δ–thin. We call X (Gromov) hyperbolic if it is δ–hyperbolic for some δ ≥ 0.

If T is a δ–thin geodesic triangle with vertices x, y, z ∈ X then its internal

points decompose it into three pairs of δ–fellow travelling geodesic segments whose

lengths are 〈y, z〉x, 〈z, x〉y and 〈x, y〉z.
The following result shows us that geodesic segments between two given

points in a δ–hyperbolic space are essentially unique up to bounded error.

Lemma 1.6 (Stability of geodesics). Let x, y be points in a δ–hyperbolic space X .

Then any two geodesic segments γ1, γ2 joining x and y δ-fellow travel: if u1 ∈ γ1

and u2 ∈ γ2 are points such that xu1 = xu2 then u1u2 ≤ δ.
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Proof. Consider the geodesic triangle with vertices x, y and y whose non-degenerate

sides are γ1 and γ2. The result follows from the definition of δ–thinness.

As an immediate corollary, we see that geodesics in a δ–hyperbolic space are

δ–quasiconvex.

1.3.2 Equivalent notions of Gromov hyperbolicity

Assume X is a geodesic space.

Lemma 1.7 (Four point condition, [BH99] Proposition 1.22). If X is a δ–hyperbolic

space then

xy + zw ≤ max{xz + yw, xw + yz}+ 2δ

for all x, y, z, w ∈ X .

Conversely, if the above inequality holds for all points x, y, z and w in a

geodesic space X , then X is δ′–hyperbolic for some δ′ ≥ 0 depending only on δ. �

Suppose k ≥ 0. A k–centre for a geodesic triangle T ⊆ X is a point in X
which lies within a distance k of each side of T .

Lemma 1.8 ([Bow06a] Proposition 6.13). Any geodesic triangle in a δ–hyperbolic

space possesses a δ–centre, namely, any of its internal points.

Conversely, suppose X is a geodesic space and let k ≥ 0. If all geodesic

triangles in X possess k–centres then X is δ–hyperbolic for some δ ≥ 0 depending

only on k. �

1.3.3 Nearest point projections to quasiconvex sets

Given a non-empty subset U ⊆ X and a point x ∈ X , define

projU (x) := {p ∈ U | xp = d(x, U)}

to be the set of nearest point projections of x to U in X . If U is closed in X then

projU (x) is always non-empty.

Nearest point projections to geodesic segments can be approximated by in-

ternal points:

Lemma 1.9. Let X be a δ–hyperbolic space. Let T a geodesic triangle with vertices

x, y, z ∈ X . Let ox be the internal point of T on [y, z] and suppose p ∈ [y, z] is a

point such that xp ≤ d(x, [y, z]) + ε, for some ε ≥ 0. Then oxp ≤ 2δ + ε.

7



Proof. Without loss of generality, suppose p lies on [ox, y]. Let q be a point on [x, y]

such that py = qy. By δ–hyperbolicity, we have pq ≤ δ. Let oz be the internal point

on [x, z] opposite y. Then

xoz + ozq = xq ≤ xp+ δ ≤ d(x, [y, z]) + ε+ δ ≤ xox + ε+ δ ≤ xoz + 2 δ + ε

and so oxp = ozq ≤ 2δ + ε

Let us now assume that U is a closed, non-empty Q–quasiconvex subset of a

δ–hyperbolic space X .

Lemma 1.10. Let p be a nearest point projection of x ∈ X to U . Let u be any point

in U and let ox, op and ou be the respective internal points of a geodesic triangle

with vertices x, p and u. Then pox ≤ δ + Q and hence pou ≤ δ + Q.

Proof. By quasiconvexity of U we have d(ox, U) ≤ Q. Thus,

xou + oup = xp = d(x, U) ≤ xox + d(ox, U) ≤ xou + ouox + Q ≤ xou + δ + Q

and so oxp = oup ≤ δ + Q.

Lemma 1.11. For all x ∈ X ,

diam(projU (x)) ≤ 2δ + 2Q.

Proof. Let p and q be nearest point projections of x to U . Let ox be the respective

internal point opposite x of a geodesic triangle with vertices x, p and q. Applying

1.10, we deduce pq ≤ pox + oxq ≤ 2δ + 2Q.

A consequence of Lemma 1.10 is that any geodesic from x to a point in U

must pass within a distance of δ + Q of every nearest point projection of x to U . It

turns out that this property characterises nearest point projections to quasiconvex

sets in hyperbolic spaces. For r ≥ 0, we define entryU (x, r) to be the set of all points

q ∈ U such that for all u ∈ U , every geodesic connecting x to u passes within a

distance of r of q. Such points will be called r–entry points of x to U .

Lemma 1.12. Let r ≥ 0. Then for all x ∈ X ,

entryU (x, r) ⊆2r projU (x).

8



In particular, for r ≥ 2δ + Q we have

entryU (x, r) ≈2r projU (x).

Proof. Suppose p is a nearest point projection and q is an r–entry point of x to U

respectively. Then there is some point y ∈ [x, p] so that yq ≤ r. Now

xy + yp = xp ≤ xq ≤ xy + yq ≤ xy + r

and so pq ≤ py + yq ≤ 2r which proves the first statement. The second statement

follows from Lemma 1.10.

Furthermore, any geodesic segment from a point x ∈ X to u ∈ U can be

approximated by the concatenation of two segments: the first from x to any point

p ∈ projU (x) and the second from p to u.

Lemma 1.13. Given x ∈ X , let p ∈ projU (x). Then for any u ∈ U ,

[x, u] ≈2δ+Q [x, p] ∪ [p, u]

and

xu ≈2δ+2Q xp+ pu.

Proof. By hyperbolicity, we have [x, u] ≈δ [x, ou] ∪ [ox, u] and xu = xou + oxu. By

Lemma 1.10,

diam[ou, p] = diam[p, ox] = pox ≤ δ + Q

and so [ou, p] ∪ [p, ox] ⊆δ+Q {ou, ox} ⊆δ [x, u].

1.3.4 Circumcentres

Let X be a δ–hyperbolic space and suppose U ⊆ X is a non-empty finite subset.

Definition 1.14 (Radius, Circumcentre). The radius of U is

rad(U) := min {r ≥ 0 | ∃x ∈ X , U ⊆ Br(x)} ,

where Br(x) is the closed ball of radius r centred at x. We call a point x ∈ X a

circumcentre of U if U ⊆ Br(x) for r = rad(U) and write circ(U) for the set of

circumcentres of U .

Lemma 1.15. Let x, y and z be points in X . Suppose m is a midpoint of some

geodesic [x, y] connecting x and y. Then max{xz, yz} ≈δ 1
2 xy +mz.

9



Proof. Without loss of generality, suppose xz ≥ yz. Then m lies on [x, oz], where

oz ∈ [x, y] is the internal point opposite z. By hyperbolicity, there is a point q ∈ [x, z]

such that xq = xm and qm ≤ δ. Finally,

max{xz, yz} = xz = xq + qz ≈δ xm+mz =
1

2
xy +mz

which completes the proof.

Lemma 1.16. Let c be a circumcentre of U and suppose x ∈ X is a point such

that U ⊆ Br+ε(x), where r = rad(U) and ε ≥ 0. Then cx ≤ 2δ + 2ε and hence

diam(circ(U)) ≤ 2δ.

Proof. Let m be a midpoint of c and x. Choose u ∈ U so that um is maximal.

Applying Lemma 1.15 and the definition of radius gives

rad(U) ≤ um ≤ max{cu, xu} − 1

2
cx+ δ ≤ rad(U) + ε− 1

2
cx+ δ

and we are done.

Lemma 1.17. Suppose c is a circumcentre of U . Let x, y ∈ U be points such that

xy ≥ diam(U) − 2ε, for some ε ≥ 0. Let m be the midpoint of a geodesic segment

[x, y]. Then c ≈2δ+ε m. Furthermore, we have

diam(U) ≤ 2 rad(U) ≤ diam(U) + 2δ.

Proof. Suppose x′ and y′ are points in U satisfying x′y′ = diam(U). By Lemma

1.15, we deduce

um ≤ max{x′u, y′u} − 1

2
x′y′ + δ ≤ diam(U)− 1

2
diam(U) + δ

for all u ∈ U . Choosing u so that um is maximal yields

rad(U) ≤ um ≤ 1

2
diam(U) + δ.

Next, observing

diam(U) = x′y′ ≤ x′c+ cy′ ≤ 2 rad(U)

completes the proof of the second claim. Finally,

cm ≤ max{cx, cy} − 1

2
xy + δ ≤ rad(U)− 1

2
diam(U) + ε+ δ ≤ 2δ + ε

10



where we have applied the second claim and Lemma 1.15 once more.

1.3.5 Isometries and stable lengths

Suppose Γ is a group acting by isometries on a metric space X . Define the stable

length of an element g ∈ Γ to be

‖g‖ := lim
n→∞

1

n
d(x, gnx),

where x is any point in X . It is straightforward to check that the ‖g‖ does not

depend on the choice of point x ∈ X . Indeed, the stable length depends only on the

conjugacy class of an element.

Following Gromov, we introduce the following terminology:

Definition 1.18. Let Γ act on a metric space X by isometries. Then an isometry

g ∈ Γ is:

• elliptic if any (hence all) of its orbits have finite diameter;

• parabolic if its orbits have infinite diameter but ‖g‖ = 0; or

• loxodromic if ‖g‖ > 0.

In the situation of groups acting isometrically on δ–hyperbolic spaces, the

above list is in fact exhaustive.

Theorem 1.19 ([Gro87] Corollary 8.1B). Any isometry of a δ–hyperbolic space is

either elliptic, parabolic or loxodromic. �
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Chapter 2

Surfaces and their relatives

In this chapter, we first provide some background information concerning curves on

surfaces and intersection numbers. We then introduce the main player of this thesis,

the curve complex, and state some key results concerning its large scale geometry.

We also discuss the mapping class group and its action on the curve complex. Finally,

we round off the chapter by recalling some basic hyperbolic geometry. All of the

results stated in this chapter can be found in the literature.

2.1 Curves and surfaces

Throughout this thesis, all surfaces will be real two-dimensional orientable mani-

folds. We will use S = (S,Ω) to denote a closed, orientable, connected surface of

genus g ≥ 0 together with a set Ω of m ≥ 0 marked points. Define the complexity

of S to be ξ(S) := 3g + m − 3. We choose to work primarily with marked points

instead of punctures or boundary components as this will be more convenient for

many of our constructions. In some situations, though, it may become necessary to

deal with the latter cases – we shall inform the reader when the need arises.

A curve on S is a continuous map a : S1 → S − Ω, where S1 = R/Z is

the circle. We will also write a for its image on S. A curve a is simple if it is an

embedded copy of S1.

Two curves a and b are freely homotopic if there exists a continuous map

F : S1 × [0, 1] → S − Ω such that F(θ, 0) = a(θ) and F(θ, 1) = b(θ). We will also

consider the curves a and a′(θ) = a(−θ) to be freely homotopic; in other words, we

will ignore orientations when speaking of free homotopy classes of curves.

We call a curve trivial or peripheral if it is freely homotopic to a curve

bounding a disc or a disc with exactly one marked point respectively. A simple
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closed curve which is non-trivial and non-peripheral is called essential.

Let C0(S) denote the set of free homotopy classes of essential simple closed

curves on S. Unless explicitly stated otherwise, we will blur the distinction between

curves and their free homotopy classes.

A multicurve on S is a finite collection of essential simple closed curves which

can be realised disjointly simultaneously.

2.1.1 Intersection numbers

Näıvely speaking, the intersection number of two curves on S is the number of times

they cross. We need to proceed with some caution to make this notion precise –

especially in the case of non-simple curves.

Suppose a and b are curves on S. A pair (θ1, θ2) ∈ S1 × S1 satisfying

a(θ1) = b(θ2) is called a pre-intersection point of a and b. Write a ∩̂ b ⊆ S1 × S1 for

the set of pre-intersection points of a and b.

Definition 2.1. Let α and β be free homotopy classes of closed curves on S. The

(geometric) intersection number of α and β is

i(α, β) := min{|a ∩̂ b| | a ∈ α, b ∈ β}.

We say that a ∈ α and b ∈ β are in minimal position if i(α, β) = |a ∩̂ b|.

If i(α, β) 6= 0 then we say that α and β intersect ; otherwise, we say that they

are disjoint.

When a and b are both simple then a ∩̂ b is in natural bijective correspondence

with a ∩ b ⊆ S and so our definition agrees with the usual notion of intersection

number. For non-simple curves, it is possible for distinct pre-intersection points of

a and b to be sent to the same point in a ∩ b, creating a multiple point. This can

occur, for example, when b crosses a self-intersection point of a. Fortunately, one

can always perturb a and b so that they are in general position, that is, they intersect

transversely and with no multiple points. Thus, the intersection number of α and β

is equal to the minimal number of intersection points over all their representatives

which are in general position.

Suppose a and b are curves which intersect transversely. A bigon on S formed

by a and b is a closed embedded disc whose boundary consists of exactly one subarc

of a and one subarc of b which intersect at their endpoints. The following criterion

allows us to detect whether two curves are in minimal position. We refer the reader

to [FM12] (Proposition 1.7 and Corollary 1.9) for a proof.
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Lemma 2.2 (Bigon Criterion). Suppose a and b are curves on S which intersect

transversely. If a and b are in minimal position then they do not form any bigons.

Furthermore, if a and b are simple then the converse also holds. �

We also remark that the definition of intersection number can be extended

to multicurves.

Weighted intersection numbers

Let α = (α1, . . . , αn) be an n–tuple of distinct multicurves in C0(S). A vector

t = (t1, . . . , tn) 6= 0 of non-negative real numbers shall be referred to as a weight

vector. Write t ·α for the formal sum
∑

i tiαi. We will extend intersection number

linearly over such sums:

i(t ·α, γ) :=
∑
i

tii(αi, γ).

For notational convenience, define a function on weight vectors by setting

‖t‖α :=
√
i(t ·α),

where

i(t ·α) =
∑
j<k

tjtki(αj , αk)

is the self-intersection number of t · α. This serves as a rescaling factor for the

singular Euclidean surface S(t ·α) appearing in Chapter 3.

2.1.2 Filling curves

A finite collection of curves {α1, . . . , αn} on S fills if every essential curve on S

intersects at least one of the αi. Equivalently, we can rephrase this as follows:

Lemma 2.3. Assume S is a surface where ξ(S) ≥ 1. Suppose a collection of

curves {α1, . . . , αn} on S is realised so that they intersect minimally and pair-

wise transversely. Then the collection fills S if and only if every component of

S − (α1 ∪ . . . ∪ αn) is an open disc with at most one marked point. �

The reverse direction is straightforward to verify. To prove the forward di-

rection, one can use the complexity assumption to check that any complementary

component which is not a disc with at most one marked point must contain an

essential closed curve on S.
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2.2 The curve complex

Harvey introduced the curve complex in [Har81] to study the geometry of Te-

ichmüller space. This will be the primary object of study in this thesis. For what

follows, we shall assume that S has complexity ξ(S) at least 2; modifications to

the definition are required for low-complexity cases but we shall not deal with them

here. For an introduction to the curve complex, see [Sch].

Definition 2.4. The curve complex of S, denoted C(S), is a simplicial complex

whose vertex set is C0(S) and whose simplices are spanned by multicurves. In

particular, two simple closed curves are connected by an edge in C(S) if and only if

they have disjoint representatives on S.

The dimension of C(S) is equal to ξ(S) − 1. If one replaces marked points

with boundary components then the top dimensional simplices of C(S) correspond

to pants decompositions of S, that is, multicurves which cut S into a collection of

pants.

We endow C(S) with the standard simplicial metric: each k–simplex is iso-

metrically identified with a standard Euclidean k–simplex whose edge lengths are

equal to 1. For our purposes, it suffices to study the 1–skeleton C1(S) of the curve

complex, often referred to as the curve graph. Indeed C1(S) equipped with the in-

duced path metric, denoted dS , is naturally quasi-isometric to C(S). To simplify

notation, we shall write C(S) in place of C1(S) and α ∈ C(S) to denote a curve (or

multicurve).

Let α and β be curves in C(S). Their distance dS(α, β) is equal to the length

of a shortest edge-path in C(S) connecting α and β. Observe that α and β are

disjoint if and only if dS(α, β) ≤ 1. We also have dS(α, β) = 2 if and only if α and β

intersect but do not fill S; and dS(α, β) ≥ 3 if and only if they do fill. The following

lemma allows us to bound distances in the curve graph using intersection numbers.

Lemma 2.5 ([Hem01], [Sch]). Suppose α and β are curves in C(S). Then

dS(α, β) ≤ 2 log2 i(α, β) + 2

whenever i(α, β) 6= 0. �

As an immediate corollary, we see that C(S) is connected (this was originally

observed by Harvey in [Har81]). In Chapter 7, we will give some improvements on

the multiplicative constant for the logarithmic term; however, it is not possible to

give a bound strictly better than a logarithmic one. It is also worth mentioning
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that one cannot give a lower bound on distance in C(S) purely in terms of inter-

section number – indeed, one can find pairs of non-filling curves which intersect an

arbitrarily large number of times.

The curve graph is also locally infinite and has infinite diameter [Kob88].

Masur and Minsky proved the following celebrated theorem regarding the large

scale geometry of the curve graph using methods from Teichmüller theory:

Theorem 2.6 ([MM99]). Given any surface S with ξ(S) ≥ 2, the curve graph C(S)

is δ–hyperbolic for some δ > 0. �

In [Bow06b], Bowditch gives a combinatorial proof of hyperbolicity using

intersection numbers. We will be extending many of the results established in his

paper in Chapters 3 and 4.

Theorem 2.7 ([Bowb], [Aou], [CRS], [HPW]). The constant δ > 0 in Theorem 2.6

can be chosen independently of S. �

Hensel, Przytycki and Webb in particular show that all geodesic triangles in

C(S) possess 17–centres.

2.3 Mapping class groups

Assume S = (S,Ω) is a surface together with a finite (possibly empty) set of

marked points Ω. Let Homeo+(S) be the group of orientation-preserving self-

homeomorphisms of S which preserve Ω setwise. Write Homeo0(S)/Homeo+(S) for

the subgroup of homeomorphisms isotopic to the identity through isotopies fixing

the marked points pointwise. The mapping class group of S is defined to be

Mod(S) := Homeo+(S) /Homeo0(S),

the group of orientation-preserving self-homeomorphisms of S up to isotopy. A

thorough introduction to mapping class groups can be found in [FM12].

Let us now assume ξ(S) ≥ 2. Since self-homeomorphisms of S preserve dis-

jointness of curves, it follows that Mod(S) acts on C(S) by isometries. In fact,

bar a small number of exceptions, Mod(S) is naturally isomorphic to the full auto-

morphism group of C(S) [Iva97], [Luo00]. Moreover, one can bound the number of

Mod(S)–orbits of vertices in C(S) in terms of ξ(S) and thus the action is coarsely

transitive.
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2.4 Hyperbolic geometry

We now outline some basic notions regarding hyperbolic space. We will only be

concerned with dimensions two and three, however to streamline the exposition

we will proceed in full generality. Refer to [Bea95], [And05] and [Apa00] for more

background.

The upper half-space model of n–dimensional hyperbolic space consists of the

points

Hn = {(x1, . . . , xn) ∈ Rn | xn > 0}

equipped with the length element

ds :=
dsE
|xn|

,

where dsE is the standard Euclidean length element on Rn. The ideal boundary of

Hn is

∂∞Hn = (Rn−1 × {0}) ∪ {∞},

which can be regarded as the one-point compactification of Rn−1.

Geodesics in the upper half-space model for Hn are subarcs of circles or

straight lines orthogonal to the hyperplane Rn−1 × {0} ⊂ ∂∞Hn. In particular,

geodesic segments between pairs of distinct points are unique. We also state the

following useful distance formula; see [Bea95] (Theorem 7.2.1) for a reference.

Theorem 2.8. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be points in Hn. Then

sinh

(
1

2
dHn (x,y)

)
=
‖x− y‖
2
√
xnyn

,

where ‖·‖ is the standard Euclidean norm on Rn. �

Theorem 2.9. Let g ∈ Isom+(Hn) be an orientation-preserving isometry of Hn.

Then exactly one of the following holds:

• g fixes at least one point in Hn and is therefore elliptic;

• g fixes exactly one point on ∂∞Hn and is therefore parabolic; or

• g fixes a pair of distinct points on ∂∞Hn and is therefore loxodromic.

Furthermore, Isom+(Hn) acts transitively on both Hn and ∂∞Hn. �

A group of isometries Γ ≤ Isom+(Hn) is parabolic if all non-trivial elements

are parabolic. One can show that there is a common fixed point for all non-trivial
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elements in a parabolic subgroup, and thus it makes sense to speak of the fixed point

of such a group. It is often convenient to arrange, by conjugation, so that the fixed

point is at ∞. A parabolic group Γ whose fixed point is at ∞ acts by Euclidean

translations on the Rn−1–factor of Hn = Rn−1×R+ and trivially on the R+–factor.

A horoball centred at ∞ ∈ ∂∞Hn is a set of the form

H = {(x1, . . . , xn) ∈ Hn | xn > h}

where h is some positive real. Its boundary ∂H = Rn−1 × {h}, called a horosphere,

is a horizontal hyperplane at height h. We may speak of horoballs and horospheres

centred at a point z ∈ ∂∞Hn by simply translating H by some isometry sending ∞
to z. Horoballs and horospheres centred at z ∈ ∂∞Hn are invariant under the action

of any parabolic group with z as the fixed point.

A hyperbolic n–manifold is the quotient of Hn by a subgroup of Isom+(Hn)

acting freely and discretely. In particular, any surface of negative Euler character-

istic admits a hyperbolic metric on its interior.
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Chapter 3

Singular Euclidean structures

In this chapter we give a generalisation of Bowditch’s singular Euclidean surfaces

which are used to to estimate weighted intersection numbers in [Bow06b]. We then

show that such surfaces satisfy a quadratic isoperimetric inequality and apply a

theorem of Bowditch to deduce that these surfaces contain essential annuli of definite

width.

3.1 Construction of S(t ·α)

Suppose S = (S,Ω) is a closed surface of genus g with a set of m marked points Ω

so that ξ(S) ≥ 2. Throughout this chapter, we shall fix an n–tuple α = (α1, . . . , αn)

of distinct multicurves in C(S) and a weight vector t = (t1, . . . , tn). For simplicity,

assume that α fills S and that all entries of t are positive. We will deal with the

appropriate modifications for the non-filling case in Section 3.5.

Begin by realising the multicurves αi on S so that they intersect generally

and pairwise minimally. We can achieve this, for example, by placing a complete

hyperbolic metric on the complement of the marked points in S, taking geodesic

representatives of the αi and perturbing slightly if required. The union of the αi

gives a connected 4–valent graph Υ on S. The closure of each component of S −Υ

is a polygon with at most one marked point. The polygons together with Υ give S

the structure of a 2–dimensional cell complex. By taking the dual 2–cell structure,

we obtain a tiling of S by rectangles which are in bijection with the self-intersection

points of α. We will insist that any marked point of S coincides with a vertex of

this tiling.

Each rectangle R corresponding to an intersection of αi with αj is isomet-

rically identified with a Euclidean rectangle of side lengths ti and tj so that αi is
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transverse to the two sides of length ti. This gives a singular Euclidean metric on

S. We may arrange for each αi to be locally geodesic in this metric by requiring

αi∩R to be a straight line connecting the midpoints of opposite sides of R, for every

rectangle R meeting αi. Thus, each component of αi is the core curve of an annulus

of width ti formed by taking the union of all rectangles R it meets.

The singular Euclidean surface defined above shall be denoted S(t ·α). We

remark that the metric depends on the realisation of α on S up to isotopy, however,

any such choice will work equally well for the purposes of proving the proposition

below.

We will allow ourselves to homotope a curve γ ∈ C(S) to meet marked points

in order to speak of geodesic representatives on S(t·α). To be more precise, suppose

c′ is a simple closed curve on S representing γ. We say c is a representative of γ if

there is a homotopy F : S1× [0, 1]→ S such that F(θ, 0) = c′(θ), F(θ, 1) = c(θ) and

F(S1 × {t}) ⊆ S − Ω for all 0 ≤ t < 1.

A geodesic representative c of γ on S(t · α) may not necessarily be an em-

bedded copy of S1. In these cases, there is a decomposition of the circle S1 = ∪Ik
into a finite union of closed intervals with disjoint interiors so that c : S1 → S(t ·α)

embeds each Ik as a straight line segment whose endpoints are singular points or

marked points.

We will use l(γ) to denote the length of a geodesic representative of γ on

S(t ·α) with respect to the singular Euclidean metric.

Proposition 3.1. The singular Euclidean surface S(t · α) has the following prop-

erties.

1. S(t ·α) has area ‖t‖2α =
∑

j<k tjtki(αj , αk).

2. For all curves γ ∈ C(S), we have

l(γ) ≤ i(t ·α, γ) ≤
√

2l(γ).

3. There exists an essential annulus on S(t ·α) whose width is at least W0 ‖t‖α,

where W0 > 0 is a constant depending only on ξ(S).

The first claim is immediate from the construction. Before proving the second

and third claims, we will outline some consequences of this proposition which shall

later be used to prove Lemma 4.5. It is worth mentioning that the third claim

holds for a larger class of metrics satisfying a suitable isoperimetric inequality. We

also remark that the metric on S(t · α) can be approximated by a non-singular
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Riemannian metric. We will, however, choose to work with singular Euclidean

metrics to simplify the exposition.

3.2 Short curves and wide annuli

We now state some facts arising from the interplay between weighted intersection

numbers, lengths of curves and widths of annuli on S(t ·α). Most of the statements

and proofs are covered in [Bow06b] but we will include them for completeness.

Let A be a closed Riemannian annulus. Define width(A) to be the length of

a shortest arc joining its two boundary components and length(A) to be the length

of a shortest core curve of A. The following is a consequence of the Besicovitch

Lemma [Bes52] (see Lemma 4.51
2 in [Gro99] for a proof).

Lemma 3.2 (Annulus inequality). Let A be an annulus. Then

width(A)× length(A) ≤ area(A) �

If γ is the core curve of an annulus A on S(t ·α) then

width(A)× l(γ) ≤ width(A)× length(A) ≤ area(A) ≤ area(S(t ·α)) = ‖t‖2α

where we have applied the annulus inequality for the second comparison.

Lemma 3.3. Let A be an annulus on S(t · α) with core curve γ. Then for all

β ∈ C(S), we have

width(A)× i(γ, β) ≤ l(β).

Proof. Let b : S1 → S(t ·α) be an map which realises β as a geodesic on S(t ·α).

We may pull back the metric on S(t · α) via b to give S1 the structure of a circle

of length l(β). The result follows by observing that b−1(A) ⊆ S1 contains at least

i(γ, β) disjoint arcs, each having length at least width(A).

By combining the above inequalities with Proposition 3.1, we can control

weighted intersection numbers with the core curve of A:

Corollary 3.4. Let A be an essential annulus on S(t ·α) with core curve γ. Then

i(t ·α, γ) ≤
√

2 ‖t‖2α
width(A)

and i(γ, β) ≤ i(t ·α, β)

width(A)

for all β ∈ C(S). �
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3.3 A grid structure on S(t ·α)

In this section, we describe a grid structure on S(t ·α) and give a proof of the second

claim of Proposition 3.1.

Definition 3.5 (Quarter-translation surface). A quarter-translation surface is a

topological surface S with a finite set of singularities ς together with an atlas of

charts from S − ς to R2 whose transition maps are translations of R2 possibly

composed with rotations through integral multiples of π
2 . The singular points have

cone angles which are integral multiples of π
2 and at least π.

Suppose S is a quarter-translation surface. We may pull back the standard

Euclidean metric on R2 to give a singular Euclidean metric on S. Geodesics which do

not meet any singular points or marked points with respect to this metric can only

self-intersect orthogonally. We will also define an L1 metric on S by pulling back

the metric given infinitesimally by |dx|+ |dy| on R2. The following is immediate:

Lemma 3.6. Let l2(η) and l1(η) denote, respectively, the Euclidean and L1 lengths

of a path η on S. Then l2(η) ≤ l1(η) ≤
√

2l2(η). �

Whenever we deal with quarter-translation surfaces, we will assume that we

are working with the singular Euclidean metric unless otherwise specified.

The transition maps between the charts for S preserve a pair of orthogonal

directions on R2 which we may take to be the standard horizontal and vertical

directions. By pulling these back via the coordinate charts, we can equip S with

a preferred (unordered) pair of orthogonal directions defined on the complement

of the singular points. We shall refer to these as the grid directions. Geodesics

which run parallel to a grid direction will be called grid arcs. Every non-singular

point on S has an open rectangular neighbourhood, with sides parallel to the grid

directions, on which the grid leaves restrict to give a pair of transverse foliations.

Such a rectangle will be called an open grid rectangle.

It is straightforward to check that S(t · α) is a quarter-translation surface.

We will assume that the grid directions on S(t · α) run parallel to the sides of the

rectangles used in its construction.

Lemma 3.7. Given a curve γ ∈ C(S), let c be any of its geodesic representatives

on S(t ·α) with respect to the Euclidean metric. Then

l1(c) = i(t ·α, γ).

22



Proof. If c is an embedded simple closed loop then we can isotope it to another

geodesic representative which meets at least one singularity. Thus we can assume

that S1 decomposes as a finite union of intervals ∪Ik with disjoint interiors such

that c : S1 → S(t ·α) embeds each Ik as a straight line segment with singularities

or marked points at its endpoints.

We can homotope c to a closed path c′ : S1 → S(t · α) so that each c′(Ik)

is an edge–path in the 1–skeleton of S(t ·α) with the same endpoints as c(Ik). The

homotopy can be performed in a way which preserves the l1–length of the path and

without creating new intersection points with any of the αi. One can check that c

intersects each αi minimally and thus the same is also true of c′. Finally, we deduce

lI(c′(S1)) = i(t ·α, γ)

by observing that every edge in the 1–skeleton of S(t ·α) transverse to αi has length

ti.

The second claim of Proposition 3.1 follows from the previous two lemmas.

3.4 An isoperimetric inequality

Let S = (S,Ω) be a closed singular Riemannian surface S with a finite set of marked

points Ω. Let ∆ be a closed disc and suppose ι : ∆ → S is a piecewise smooth

immersion which restricts to an embedding on its interior. Let D denote the image

ι(int(∆)).

Definition 3.8. An open disc D arising in the above manner is called a trivial

region on S if it contains at most one marked point.

Bowditch defines trivial regions as open discs on S containing at most one

marked point without any conditions concerning piecewise smooth embeddings.

Nevertheless, his proof of the following proposition still holds with our definition:

Proposition 3.9 ([Bow06b]). Suppose f : [0,∞) → [0,∞) is a homeomorphism.

Let ρ be a singular Riemannian metric on an orientable closed surface S with unit

area. Let Ω be a finite set of marked points on S. We will assume |Ω| ≥ 5 whenever

S is a 2–sphere. If area(D) ≤ f(length(∂D)) for any trivial region D then there is

an essential annulus A ⊆ S − Ω such that width(A) ≥ W0, where W0 > 0 depends

only on ξ(S) and f .

A little care is required to clarify what length(∂D) means, especially when

∂D is not an embedded copy of a circle. In general, the boundary ∂D is an embedded
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Eulerian graph on S whose edges are piecewise smooth arcs. We define length(∂D)

to be the sum of the lengths of the arcs with respect to the metric on S.

This section will be devoted to proving the following lemma which, together

with the above proposition, implies the third claim of Proposition 3.1.

Lemma 3.10. Suppose D is a trivial region on S(t ·α). Then

area(D) ≤ 4 length(∂D)2.

Before launching into the details of the proof, we give a brief outline of our

argument. First, we reduce the problem to that of studying embedded closed discs

on S(t ·α) whose boundary is a finite union of grid arcs. We then show that such a

disc D can be given a tiling by grid rectangles. This tiling is dual to a collection of

arcs on D, where each arc is parallel to a component of some αi ∩D. We shall call

the union of all rectangles meeting a given arc a band. The key step is to observe

that any two arcs in the collection intersect at most twice. Thus, the intersection

of two distinct bands is the union of at most two rectangles arising from the tiling.

Conversely, any rectangle from the tiling is contained in the intersection of two such

bands. This then allows us to bound the area of the rectangles in terms of the length

of ∂D.

3.4.1 Technical adjustments

Let us first make a couple of observations to simplify the problem.

Lemma 3.11. Any trivial region D on S(t ·α) can be perturbed to a trivial region

D′ whose boundary is a finite union of grid leaves. Moreover, D′ can be chosen so

that area(D′) ≥ area(D) and length(∂D′) ≤
√

2 length(∂D). �

We will henceforth assume that the boundary of any trivial region on S(t ·α)

is a finite union of grid leaves.

Let ι : ∆ → S(t · α) be a piecewise smooth immersion whose restriction

to int(∆) is an embedding with image D. Observe that ι : ∂∆ = S1 → ∂D is

an immersion of a circle which runs over each edge of ∂D at most twice. We will

metrise ∆ by pulling back the metric on S(t ·α) via ι.

Lemma 3.12. Suppose D and ∆ are as given above. Then area(∆) = area(D) and

length(∂D) ≤ length(∂∆) ≤ 2 length(∂D). �
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3.4.2 Tiling ∆ by rectangles

The disc ∆ inherits grid directions from S(t ·α) via ι away from the preimage of the

singular points. The boundary decomposes as a finite union ∂∆ = ∪Ik of closed grid

arcs with disjoint interiors. We may assume that this decomposition is minimal, that

is, it cannot be obtained from any other such decomposition by subdividing arcs.

An endpoint of any grid arc Ik will be called a corner point of ∂∆. A corner point

which does not coincide with a singularity or a marked point must be an orthogonal

intersection point of two grid arcs.

It is worth noting that ∂∆ must contain at least two corner points and at

least three if D contains no marked points. To see this, recall that the grid leaves

on S(t ·α) are parallel to some αi. Any of the forbidden cases will imply that some

αi is trivial, peripheral, self-intersects or does not intersect some αj minimally.

Let us refer to marked points, corner points and singularities collectively as

bad points. Let Z ⊂ ∆ be the union of ∂∆ with all grid arcs in ∆ which have a bad

point for at least one of their endpoints. Since there are finitely many bad points

in ∆, it follows that Z is a finite embedded graph on ∆. A vertex v ∈ int∆∩Z has

valence k if and only if the cone angle at v is kπ
2 . If v is a vertex which lies on ∂∆

then it has valence k+ 1 if and only if the cone angle at v inside ∆ is kπ
2 . It follows

that every vertex v of Z has valence at least 2, and at least 3 if v is not a marked

point.

Lemma 3.13. There exists a tiling of ∆ by finitely many grid rectangles with Z as

its 1–skeleton.

Proof. First note that there are finitely many connected components of ∆−Z since Z

is a finite graph. Let R be such a component and let R̄ be its completion with respect

to its induced path metric. Observe that R̄ is a closed planar region admitting a

Euclidean metric with piecewise geodesic boundary, where the interior angle between

adjacent edges of ∂R̄ is π
2 . By the Gauss–Bonnet formula, the sum of its interior

angles must equal 2πχ(R). Since the frontier ofR in ∆ meets at least one vertex of Z,

the angle sum must be strictly positive. As R is planar, it follows that χ(R) = 1 and

therefore R̄ is a Euclidean rectangle. Also note that Z is connected, for otherwise

there would exist some component of ∆− Z with disconnected frontier.

The inclusion R ↪→ ∆ can be extended continuously to a map R̄ → ∆,

sending each edge of ∂R̄ isometrically to an edge of Z meeting the frontier of R.

Thus R is a grid rectangle since the edges of Z, by construction, are parallel to

the grid directions. Finally, the closures of distinct rectangles R and R′ can only

intersect in a union of vertices and edges of Z.
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3.4.3 Controlling the area

Let A be the set of maximal grid arcs in ∆ which intersect Z only at midpoints of

edges of Z. This is a collection of arcs dual to the tiling of ∆ by rectangles described

in Lemma 3.13. (There cannot exist any closed curves in ∆ dual to the tiling as

this would imply that some αi is trivial or peripheral.) Given an arc a ∈ A, let

B = B(a) be the union of all rectangles in the tiling which meet a. We will call B

a band and a a core arc of B. Define width(B) to be the length of any edge of Z

crossed by a. Note that the set of bands in ∆ is in bijection with A.

Lemma 3.14. The intersection of two distinct bands B and B′ is the union of at

most two rectangles whose side lengths are width(B) by width(B′). Conversely, each

rectangle in the tiling lies in the intersection of a unique pair of distinct bands.

Proof. Let a and a′ be core arcs of B and B′ respectively. If a and a′ intersect

at least 3 times then they must bound a bigon in ∆ containing no marked points.

Now, a and a′ can both be properly isotoped in ∆ to components of ι−1(αi∩D) and

ι−1(αi∩D) for some αi and αj respectively. Moreover, the isotopies can be performed

without passing through any singular points or marked points. This procedure

cannot destroy any bigons since any right-angled bigon on ∆ must contain at least

one singularity. It follows that αi and αj also bound a bigon in D, contradicting

minimality.

For the converse, simply take the bands corresponding to the unique pair of

arcs which have an intersection point inside the given rectangle.

We will refer to an edge of Z lying in ∂∆ simply as an edge of ∂∆.

Lemma 3.15. Under the above hypotheses, we have

length(∂∆) = 2
∑
B

width(B)

where the sum is taken over all bands B in ∆.

Proof. Let B be a band in ∆. Observe that B ∩ ∂∆ consists of exactly two edges of

∂∆ whose length is equal to width(B). Conversely, each edge of ∂∆ lies in exactly

one band.

Lemma 3.16. Let ∆ be as above. Then

area(∆) ≤ 1

2
length(∂∆)2.
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Proof. By Lemma 3.14, ∆ is a union of rectangles, each of which lies in the inter-

section of a pair of distinct bands. Thus

area(∆) = area

 ⋃
B 6=B′

B ∩B′
 =

∑
B 6=B′

area(B ∩B′).

Since the intersection of two distinct bands is the union of at most two rectangles

whose side lengths are equal to the widths of the bands, we have

area(B ∩B′) ≤ 2 width(B)× width(B′)

and hence

area(∆) ≤ 2
∑
B 6=B′

width(B)× width(B′) ≤ 2

(∑
B

width(B)

)2

.

Finally, applying Lemma 3.15 completes the proof.

Combining this result with Lemmas 3.11 and 3.12 completes the proof of

Lemma 3.10. �

3.5 Non-filling curves

We now generalise the construction of S(t · α) to encompass non-filling curves.

Assume α = (α1, . . . , αn) is an n–tuple of distinct multicurves and t = (t1, . . . , tn) 6=
0 is a weight vector satisfying ‖t‖α 6= 0. Realise α minimally on S to form a 4–

valent graph Υ on S. Let Σ ⊆ S be the (possibly disconnected) subsurface filled by

Υ. This can be obtained by taking a closed regular neighbourhood of Υ on S and

then attaching all complementary regions which are discs with at most one marked

point. If α fills S then Σ = S. In general, Σ will be a disjoint union of surfaces

Σ1 ∪ . . . ∪ Σs. Observe that s ≤ ξ(S) since we can find a multicurve on S so that

exactly one component is contained in each Σk (by choosing a suitable subset of all

curves appearing in α, for example). Some of these components may be annuli –

this occurs precisely when a multicurve αi has a component disjoint from all other

αj . All other components will have genus at least one, or are spheres where the sum

of the number of marked points and boundary components is at least four.

We now define a 2–dimensional complex S(t ·α) as a quotient of S. Suppose

Σk is an annular component of Σ whose core curve is a component of αi. We identify

Σk with S1 × [0, ti] and then collapse the first co-ordinate to give a closed interval
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Ik of length ti. Next, we collapse every complementary component of Σ in S to

a marked point. These marked points will be called essential. We then apply the

construction given in Section 3.1 to the image of each non-annular component of Σ

in the quotient space. The resulting space is a finite collection of singular Euclidean

surfaces and closed intervals identified along appropriate essential marked points.

Note that this construction agrees with the one given in Section 3.1 for the case of

filling curves.

Let c be a representative of a curve γ ∈ C(S) on S. Its image c̄ on S(t · α)

will be a closed curve or a union of paths connecting essential marked points. Define

l(γ) to be the minimal length of c̄ over all representatives c of γ.

Proposition 3.17. Suppose α and t satisfy ‖t‖α > 0. Then the first two claims of

Proposition 3.1 hold for S(t ·α). �

The proof of the above proceeds in the same manner as for the case of filling

curves. It remains to prove an analogue of the third claim.

We will refer to the image of a component Σk of Σ in S(t ·α) as a component

of S(t · α). Let Y be a component of S(t · α) with maximal area. Since Σ has at

most ξ(S) components, we have area(Y ) ≥ ‖t‖
2
α

ξ(S) . Note that Y cannot be an interval

since ‖t‖α > 0. We may argue as in Section 3.4 to show the following.

Lemma 3.18. Suppose Y has genus at least one, or is a sphere with at least five

marked points. Then there is an essential annulus on Y whose width is at least
W0‖t‖α√

ξ(S)
, where W0 is a constant depending only on ξ(Y ) ≤ ξ(S). �

Let us assume Y is a sphere with 4 marked points for the rest of this section.

We will not prove the existence of annuli of definite width on Y . Instead, we show

that it suffices to find wide annuli on a torus T2 = R2/Z2 which double branch

covers Y for the purposes of proving Lemma 4.5.

Define a hyperelliptic involution h : T2 → T2 by setting h(x, y) = (−x,−y)

modulo Z2. The quotient map induced by the action of 〈h〉 is a double cover

P : T2 → S2 branched over four points. The branch points correspond to the fixed

orbits (0, 0), (0, 1
2), (1

2 , 0) and (1
2 ,

1
2) of h. We will identify Y with the quotient

space S2 so that the marked points coincide exactly with the branch points. We

then metrise T2 by lifting the singular Euclidean metric on Y via P . This metric

can also be obtained by taking the preimages of the αi contained in Y to T2 and

then applying the construction as described in Section 3.1. It follows from the work

in Section 3.4 that T2 enjoys the isoperimetric inequality stated in Lemma 3.10.

Invoking Proposition 3.9 gives the following:
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Lemma 3.19. There exists an essential annulus on T2 of width at least
W‖t‖α√
ξ(S)

for

some universal constant W > 0. �

Remark 3.20. By following Bowditch’s proof of Proposition 3.9 in [Bow06b] for the

the case of the torus, one can show that setting W = 1
3
√

2
will satisfy the statement

of the above lemma.

Observe that h(γ̃) is homotopic to γ̃ for any simple closed curve γ̃ on T2.

Thus, the image of any simple closed on T2 under P is homotopic to a simple closed

curve on Y .

Lemma 3.21. Let A be an essential annulus on T2 with core curve γ̃. Let γ ∈ C(S)

be the image of γ̃ on Y under P . Then

i(γ, β) ≤ 2 i(t ·α, β)

width(A)

for all β ∈ C(S).

Proof. First, recall that β ∩ Y is either a simple closed curve or a union of paths

connecting marked points of Y . The preimage P−1(β) is a finite union of (not

necessarily disjoint) essential curves on T2. By perturbing γ to an embedded curve

which misses the marked points of Y , we see that each point of γ ∩β lifts to exactly

two points on T2 under P , and so

i(γ, β) =
i(P−1(γ), P−1(β))

2
≤ i(γ̃, P−1(β)).

Applying Lemma 3.3 to each curve in P−1(β) gives

width(A)× i(γ̃, P−1(β)) ≤ l(P−1(β)).

Next, we have

l(P−1(β)) = 2 l(β ∩ Y ) ≤ 2 l(β) ≤ 2 i(t ·α, β)

where we have applied Proposition 3.17 for the final comparison. Finally, combining

the above inequalities gives the desired result.
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Chapter 4

Hulls in the curve complex

Let S = (S,Ω) be a connected compact surface S without boundary with a finite

set of marked points Ω satisfying ξ(S) ≥ 2. Throughout this chapter, we will fix

an n-tuple α = (α1, . . . , αn) of distinct multicurves in C(S), where n ≥ 2. We will

assume that no pair αi and αj has a common component.

We shall establish a coarse equality between two subsets of C(S) determined

by α – its hyperbolic hull Hull(α), defined purely in terms of the geometry of C(S);

and Short(α, L) which is defined using only intersection numbers. We also give a

combinatorial method of approximating nearest point projections to Hull(α).

4.1 Hyperbolic hulls

Let X be a δ–hyperbolic space and suppose U ⊆ X is a set of points. The hyperbolic

hull of U , denoted Hull(U), is the union of all geodesic segments in X connecting a

pair of points in U .

Example 4.1. Let U be a finite subset of Hn, where n ≥ 1. Then Hull(U) is a

uniformly bounded Hausdorff distance away from the convex hull of U in Hn.

Lemma 4.2. The hyperbolic hull of any non-empty set U ⊆ X is 2δ–quasiconvex.

Proof. Let u and v be points in Hull(U). Let x, y, z, w ∈ U be points, not necessarily

distinct, so that u ∈ [x, y] and v ∈ [z, w]. Let [u, v] be any geodesic segment. By

δ–hyperbolicity, we have

[u, v] ⊆δ [u, y] ∪ [y, v] ⊆δ [u, y] ∪ [y, z] ∪ [z, v] ⊆ [x, y] ∪ [y, z] ∪ [z, w] ⊆ Hull(U),

where [u, y] and [z, v] are assumed to be subarcs of [x, y] and [z, w] respectively.
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Lemma 4.3. Suppose C ⊆ X is a Q–quasiconvex set which contains U . Then

Hull(U) ⊆Q C.

Proof. This follows immediately from the definition of quasiconvexity.

In fact, the above properties characterises hyperbolic hulls up to finite Haus-

dorff distance.

Corollary 4.4. Let U ⊆ X be non-empty. Suppose C ⊆ X is a Q–quasiconvex set

such that

1. C contains U , and

2. for any Q′–quasiconvex set C ′ ⊆ X which also contains U , we have C ⊆r C
′

for some r = r(Q,Q′) ≥ 0.

Then C and Hull(U) agree up to finite Hausdorff distance. �

4.2 A hull via intersection numbers

4.2.1 Short curve sets

Let t = (t1, . . . , tn) 6= 0 be a weight vector. Given L ≥ 0, define

short(t ·α, L) := {γ ∈ C(S) | i(t ·α, γ) ≤ L ‖t‖α} .

If ‖t‖α = 0 then this set is contained in the 1–neighbourhood of α. If ‖t‖α > 0

then short(t ·α, L) can be viewed as the set of curves of bounded length on S(t ·α)

after rescaling it to have unit area. Note that short(t ·α, L) remains invariant under

multiplying t by a positive scalar.

The proof of the following lemma is essentially the same as in Bowditch’s

paper ([Bow06b] Lemma 4.1).

Lemma 4.5. There exists a constant L0 > 0 depending only on ξ(S) such that, for

any L ≥ L0, the set short(t ·α, L) is non-empty. Moreover,

diamC(S)(short(t ·α, L)) ≤ 4 log2 L + k0,

where k0 is a constant depending only on ξ(S).

Proof. If ‖t‖α = 0 then short(t · α, L) contains the αi and is contained in the

1–neighbourhood of α in C(S).
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Next, suppose ‖t‖α > 0 and α fills S. By the third claim of Proposition

3.1, there exists an essential annulus A on S(t ·α) whose width is at least W0 ‖t‖α,

where W0 depends only on ξ(S). Set L0 =
√

2
W0

. Let γ be the core curve of A. By

Corollary 3.4, we have

i(t ·α, γ) ≤
√

2 ‖t‖2α
width(A)

≤
√

2

W0
‖t‖α

and hence short (t ·α, L) 6= ∅ for all L ≥ L0. Furthermore, if β ∈ short (t ·α, L) is

another curve then, by Corollary 3.4, we have

i(γ, β) ≤ i(t ·α, β)

width(A)
≤

L ‖t‖α
W0 ‖t‖α

=
L

W0
.

Applying Lemma 2.5 and the triangle inequality gives

diam(short(t ·α, L)) ≤ 2

[
2 log2

(
L

W0

)
+ 2

]
= 4 log2 L + k0

where k0 is a constant depending only on ξ(S).

For the case where ‖t‖α > 0 but α does not fill S, it is immediate that

short(t ·α, L) is non-empty. To bound the diameter, invoke Lemmas 3.18, 3.19 and

3.21 then argue as above.

Consequently, up to bounded error, we can view short(t · α, L) as a single

curve in C(S) which has minimal intersection number with t ·α.

4.2.2 The short curve hull

For L ≥ 0, define the L–short curve hull of α to be

Short(α, L) :=
⋃
t

short(t ·α, L),

where the union is taken over all weight vectors t ∈ Rn≥0 (or, equivalently, by

choosing one representative from each projective class).

We write Hull(α) ⊆ C(S) for the hyperbolic hull of α considered as a set of

vertices in C(S).

Proposition 4.6. Let α be an n–tuple of multicurves in C(S). Then for any L ≥ L0,

Short(α, L) ≈k1 Hull(α)
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where k1 depends only on ξ(S), n and L.

This is essentially an extension of Bowditch’s coarse description of geodesics

using intersection numbers employed in his proof of hyperbolicity of the curve com-

plex [Bow06b]. Let us begin with a reformulation of his result:

Lemma 4.7 ([Bow06b] Proposition 6.2). Let α′ = (α1, α2) be a pair of multicurves

in C(S). Let [α1, α2] denote any geodesic segment connecting α1 and α2 in C(S).

Then for all L ≥ L0, we have

Short(α′, L) ≈k′1
[α1, α2].

where k′1 ≥ 0 depends only ξ(S) and L. �

Proof of Proposition 4.6. By applying the previous lemma to all pairs of multicurves

(αi, αj) in α = (α1, . . . , α2), we obtain the inclusion:

Hull(α) ⊆k′1
Short(α, L).

Fix a weight vector t = (t1, . . . , tn) and assume, for notational simplicity,

that the quantity tjtki(αj , αk) is maximised when {j, k} = {1, 2}. Let α′ = (α1, α2)

and t′ = (t1, t2). Since there are n(n−1)
2 distinct unordered pairs of indices {j, k}, it

follows that

‖t‖2α =
∑
j<k

tjtki(αj , αk) ≤
n(n− 1)

2
t1t2i(α1, α2) =

n(n− 1)

2

∥∥t′∥∥2

α′ .

Let γ be a curve in short(t ·α, L). Then

i(t′ ·α′, γ) ≤ i(t ·α, γ) ≤ L ‖t‖α ≤ L

√
n(n− 1)

2
‖t′‖2α′ ≤

nL√
2

∥∥t′∥∥
α′

which implies

short(t ·α, L) ⊆ short

(
t′ ·α′, nL√

2

)
.

Invoking Lemma 4.7, we have

short

(
t′ ·α′, nL√

2

)
⊆r [α1, α2] ⊆ Hull(α)

where r ≥ 0 is some constant depending on n, L and ξ(S). This concludes the proof

of Proposition 4.6. �
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We can describe the above proof in terms of the geometry of S(t·α). Assume

S(t ·α) has unit area. One can obtain S(t′ ·α′) by homotoping the annuli consisting

of rectangles traversed by αi to the core curve αi for each i 6= 1, 2. The maximality

assumption on α1 and α2 ensures that the total area of the remaining rectangles is

at least 2
n(n−1) . We then scale S(t′ · α′) by a factor of at most n√

2
to give it unit

area. Finally, observe that the length of a curve γ on S(t ·α) can only increase by

a factor of at most n√
2

during this process.

4.3 Nearest point projections to hulls

In this section, we approximate nearest point projections to short curve hulls using

only intersection number conditions.

Definition 4.8. Let β ∈ C(S) be a multicurve. A weight vector t = (t1, . . . , tn)

satisfying

tji(αj , β) = tki(αk, β)

for all j, k is called a balance vector for β with respect to α.

If β intersects all αi then setting ti = i(αi, β)−1 yields the unique balance

vector up to positive scale. If not, we can set ti = 1 whenever i(αi, β) = 0 and

ti = 0 otherwise to produce a balance vector. We will use tβ to denote any balance

vector for β. We also remark that the above definition is analogous to the notion of

balance time for quadratic differentials as described by Masur and Minsky [MM99].

Proposition 4.9. Assume L ≥ L0. Given a multicurve β ∈ C(S), let tβ be any

balance vector with respect to α. Let γ be any nearest point projection of β to

Hull(α). Then

γ ≈k2 short(tβ ·α, L),

where k2 ≥ 0 depends only on ξ(S), n and L.

As was the case with Proposition 4.6, this is an extension of a result of

Bowditch. His result was originally phrased in terms of centres for geodesic triangles,

however, our statement agrees with it up to uniformly bounded error.

Lemma 4.10 ([Bow06b] Proposition 3.1 and Section 4). Let α1, α2 and β be mul-

ticurves in C(S). Let t′β be a balance vector for β with respect to α′ = (α1, α2). Let

γ be a nearest point projection of β to [α1, α2]. Then

γ ≈k′2
short(t′β ·α′, L),
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where k′2 depends only on ξ(S) and L. �

If β is disjoint from some αi then Proposition 4.9 follows immediately from

Hempel’s bound (Lemma 2.5). We will henceforth assume this is not the case.

Our first step is to reduce the problem of finding a nearest point projection

to a hyperbolic hull to that of projecting to a suitable geodesic.

Lemma 4.11. Let U be a subset of a δ–hyperbolic space X . Fix a point w ∈ X .

Assume there exist x, y ∈ U and R ≥ 0 such that

dX ([x, y], [z, w]) ≤ R.

for all z ∈ U . Let p and q be nearest point projections of w to Hull(U) and [x, y]

respectively. Then

p ≈R′ q

where R′ depends only on R and δ.

Proof. By Lemma 1.12, it suffices to show that for all u ∈ Hull(U), any geodesic

[w, u] must pass within a bounded distance of q. If u lies on a geodesic segment

[z, z′] for some z, z′ ∈ U then [w, u] must lie inside the 2δ–neighbourhood of [w, z]

or [w, z′]. Hence, we only need to bound d(q, [w, z]) for all z ∈ U in terms of δ and

R.

Recall that geodesic segments are δ–quasiconvex. If z coincides with x or

y then d(q, [w, z]) ≤ 3δ by Lemma 1.10. Let us now suppose that x, y and z are

distinct. Choose points u ∈ [z, w] and v ∈ [x, y] so that uv = dX ([x, y], [z, w]) ≤ R.

Then

q ⊆3δ [w, v] ⊆R+δ [w, u] ⊆ [w, z]

where we have applied Lemma 1.13 for the first comparison.

In order to exploit the above result, we recall yet another lemma of Bowditch:

Lemma 4.12 ([Bow06b] Proposition 6.3). Let r > 0 and suppose α1, α2, α3, α4 ∈
C(S) are multicurves which satisfy

i(α1, α4) i(α2, α3) ≤ r i(α1, α2) i(α3, α4).

Then

dS([α1, α2], [α3, α4]) ≤ R

where R ≥ 0 depends only on r and ξ(S). �
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Proof of Proposition 4.9. Let tβ be a balance vector for β with respect to α. To

simplify notation, assume tjtki(αj , αk) is maximised when {j, k} = {1, 2}. Let γ12

and γ0 be nearest point projections of β to [α1, α2] and Hull(α) respectively. This

implies

t2tji(α2, αj) ≤ t1t2i(α1, α2)

for any j = 1, . . . , n. Since β is assumed to intersect all the αi, we have ti = i(αi, β)−1

(after rescaling) and so

i(α1, β) i(α2, αj) ≤ i(α1, α2) i(αj , β).

Invoking Lemma 4.12 gives

dS([α1, α2], [αj , β]) ≤ R

and so by Lemma 4.11 we deduce

dS(γ12, γ0) ≤ R′,

where R′ depends only on ξ(S).

Now suppose γ is a curve in short(tβ ·α, L). Using the same reasoning as for

the proof of Proposition 4.6, we see that

γ ∈ short(tβ ·α, L) ⊆ short

(
t′β ·α′,

nL√
2

)
where α′ = (α1, α2) and t′β = (t1, t2). By Lemma 4.10, we deduce that

dS(γ, γ12) ≤ k′2,

for some k′2 depending only on n, L and ξ(S). This together with the preceding

inequality implies

dS(γ, γ0) ≤ R′ + k′2

which concludes the proof of the proposition.
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Chapter 5

Covering maps I: A

quasi-isometric embedding

In [RS09], Rafi–Schleimer proved that a finite index covering map between surfaces

induces a quasi-isometric embedding between their respective curve complexes. We

will present a new proof of their theorem using methods from hyperbolic 3–manifold

theory. The material in this chapter also appears in [Tan12].

5.1 The lifting map

To simplify matters when dealing with covering maps of surfaces, we will use bound-

ary components in place of marked points. In this situation, we define the complexity

a surface S to be ξ(S) = 3 genus(S) + |∂S| − 3. We will also use int(S) to denote

the interior of S. These modifications make no difference on the level of the curve

complex.

Suppose P : Σ → S is surface covering map of degree degP < ∞. The

preimage P−1(a) of a curve a ∈ C(S) is a disjoint union of simple closed curves on

Σ. This induces a one-to-many lifting map Π : C(S) → C(Σ) where Π(a) is defined

to be the set of homotopy classes of the components of P−1(a). One can check that

all lifts of a to Σ are essential and non-peripheral, thus Π(a) spans a non-empty

simplex in C(Σ).

Theorem 5.1 ([RS09]). Let P : Σ → S be a finite degree covering map. Then

the map Π : C(S)→ C(Σ) defined above is a Λ–quasi-isometric embedding, where Λ

depends only on ξ(Σ) and degP .

This was first proved by Rafi–Schleimer in [RS09] using Teichmüller the-

ory and subsurface projections. We will give a new proof of this theorem using
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an estimate for distance in the curve complex via a suitable hyperbolic 3–manifold

homeomorphic to S × R with a modified metric. This allows us to naturally com-

pare distances by taking a covering map between the respective 3–manifolds. The

estimate (Theorem 5.7) arises from work towards the Ending Lamination Theorem

[BCM12] and is made explicit in [Bowa]. More details will be given in Section 5.2.

Remark 5.2. A consequence of Theorem 5.1 and of Gromov hyperbolicity of C(Σ)

is that the image Π(C(S)) is quasiconvex.

5.1.1 One direction of the inequality

Lemma 5.3. Let a and b be curves in C(S) and suppose α ∈ Π(a) and β ∈ Π(b).

Then

dΣ(α, β) ≤ dS(a, b).

Proof. The preimages of disjoint curves on S under P must themselves be disjoint.

Therefore, by choosing a preferred vertex in each Π(a), we can send any edge-path

connecting a and b in C(S) to an edge-path of equal length connecting α and β in

C(Σ). (We can extend this to higher dimensional simplices if so desired.)

5.2 Hyperbolic 3–Manifolds

5.2.1 Margulis tubes and cusps

Let X be a hyperbolic 3–manifold. The injectivity radius at a point x ∈ X is equal

to half the infimum of the lengths of all non-trivial loops in X passing through x.

The infimum is realised by a locally geodesic arc in X with both endpoints at x.

The ε–thin part (or just thin part) of X is the set of all points whose injectivity

radius is less than ε. The thick part of X is the complement of the thin part.

The well-known Margulis lemma explicitly describes the geometry of the

components of the thin part of a hyperbolic 3–manifold. We refer to [Mar07] and

[Apa00] for more details. We first state the classification before briefly explaining

each case.

Theorem 5.4 (Thin-thick decomposition). There is a universal constant ε3 > 0,

called the Margulis constant, so that for all ε ≤ ε3, the components of the ε–thin part

of any hyperbolic 3–manifold X are of the following three types:

1. Margulis tubes,

2. rank–one cusps, and
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3. rank–two cusps.

A Margulis tube is an r–neighbourhood of a simple closed geodesic in X, for

some r ≥ 0, and is homeomorphic to a solid torus. A Margulis cusp C is the quotient

of a horoball H ⊂ H3 by a discrete parabolic subgroup Γ < Isom+(H3) isomorphic

to Z in the rank–one case; or Z⊕Z in the rank–two case. Note that the fixed point of

Γ on ∂∞H3 must coincide with the centre of H. Up to conjugation, we may assume

∂H is a horizontal plane in H3. The group Γ then acts by Euclidean translations on

the R2–factor of H3 = R2×R+ and trivially on the R+–factor. Therefore, rank–one

cusps and rank–two cusps are respectively homeomorphic to A × R+ or T2 × R+,

where A is an infinite annulus and T2 is a torus. Moreover, the foliation of H by

horizontal horospheres descends to a foliation of C by either Euclidean annuli or

tori respectively. The boundary ∂C of a cusp is also a Euclidean annulus or torus.

Let us fix a value of 0 < ε ≤ ε3 for the rest of this chapter. The tubes and

cusps arising in the ε–thin part of X will be referred to as ε–tubes and ε–cusps

respectively. We will be interested in understanding the geometry of the boundary

of an ε–cusp in terms of ε. A systole on ∂C is a non-trivial loop of shortest length.

We write sys(∂C) to denote the length of any systole on ∂C.

Lemma 5.5. Let C be an ε–cusp in X. Then

sys(∂C) = 2 sinh ε.

Proof. Let σ be a systole on ∂C and suppose x is a point on σ. The cusp C lifts

to a horoball H in the universal cover H3. We may assume that ∂H is a horizontal

plane at height 1 in the upper half space model of H3. The loop σ lifts to a straight

line segment σ̃ on ∂H whose endpoints, x and y say, are lifts of x. In particular, we

have

‖x− y‖ = length(σ̃) = sys(∂C).

By Theorem 2.8, we deduce

sinh

(
1

2
dH3 (x,y)

)
=
‖x− y‖

2

and so x and y minimise the hyperbolic distance among all pairs of distinct lifts of

x in H3. Therefore the geodesic arc connecting x to y in H3 descends to a shortest

non-trivial loop in X which passes through x. Finally, the result follows by noting

that the injectivity radius at x ∈ ∂C is equal to ε.
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5.2.2 Electrified distance

Given a hyperbolic 3–manifold X, let Ψcusp
ε (X) denote its non-cuspidal part, that is,

X with its ε–cusps removed. We will write Ψ(X) for brevity. Define the electrified

length of a path in Ψ(X) to be its total length occurring outside the Margulis tubes of

X. More formally, we take the one-dimensional Hausdorff measure of its intersection

with the thick part of X. This induces a reduced pseudometric ρX on Ψ(X) obtained

by taking the infimum of the electrified lengths of all paths connecting two given

points. One can show that the infimum is attained, for example, by taking a path

which connects Margulis tubes by shortest geodesic segments.

The distance ρX shall be referred to as the electrified distance on Ψ(X) with

respect to its Margulis tubes or the reduced pseudometric obtained by electrifying

the Margulis tubes.

5.2.3 A distance estimate

We are now ready to introduce a suitable hyperbolic 3–manifold X on which the

electrified distance provides an estimate for the distance in the curve complex.

Proposition 5.6. Fix a constant µ > 0. Let S be a surface with ξ(S) ≥ 2 and

fix distinct curves a and b in C(S). Then there exists a hyperbolic 3–manifold

(X, d) ∼= int(S)× R with a preferred homotopy equivalence f to S such that the

unique geodesic representatives of the two curves in X, denoted a∗ and b∗, have

d–length at most µ.

The proposition is a consequence of Bers’ Simultaneous Uniformisation The-

orem together with a theorem of Sullivan relating the conformal structure at infinity

of a hyperbolic 3-manifold with the metric on the boundary of its convex core. In

fact, such a 3–manifold can be chosen so that there are no accidental cusps – that

is, all cusps are in bijective correspondence with the boundary components of S.

An outline proof is given in [Bow08] (Proposition 7.3); for further background see

[EM06] and [Mar07]

A preferred homotopy equivalence between S and X is required to specify a

particular identification of curves in C(S) with simple closed geodesics in X.

Theorem 5.7 ([Bowa]). Suppose (X, d) ∼= int(S) × R is a hyperbolic 3–manifold

with a preferred homotopy equivalence to S. Let a and b be curves in C(S) whose

corresponding geodesic representatives a∗ and b∗ in X have d–length at most µ ≥ 0.

Then

dS(a, b) �Λ′ ρX(a∗, b∗)
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where the constant Λ′ depends only on ξ(S), µ and ε. �

This estimate follows from the construction of geometric models for hyper-

bolic 3–manifolds used in the proof of the Ending Lamination Theorem. We refer

the reader to [Bowa] (Theorem 5.4) and [BCM12] for an in-depth discussion.

Remark 5.8. For Theorem 5.7 to make sense we need to ensure that a∗ and b∗ are

indeed contained in Ψ(X). This can be done using a pleated surfaces argument,

such as in [Bow07], to show that closed geodesics of bounded length in X avoid

cusps provided ε is sufficiently small.

5.3 The other direction of the inequality

5.3.1 Closed surfaces

We first prove Theorem 5.1 for closed surfaces. The required modifications for the

general case shall be dealt with in Section 5.3.2.

Fix a length bound µ and a constant ε ≤ ε3. Let P : Σ → S be a covering

map. Fix curves a, b in C(S) and choose α ∈ Π(a) and β ∈ Π(b). From Lemma 5.3,

we have dΣ(α, β) ≤ dS(a, b) so it remains to prove the reverse inequality.

Let (X, d) ∼= int(S)×R be a hyperbolic 3–manifold with a homotopy equiva-

lence f to S as described in Section 5.2.3. We also assume that a∗ and b∗ have length

at most µ
degP in X. There exists a covering map Q : Ξ→ X, where Ξ ∼= int(Σ)× R,

and a homotopy equivalence f̃ : Ξ → Σ such that P ◦ f̃ = f ◦ Q. We lift the

hyperbolic metric on X to Ξ via Q. Note that Q(α∗) = a∗ and Q(β∗) = b∗, hence

α∗ and β∗ have length bounded above by µ.

We may assume that X contains no accidental cusps, hence Ψ(X) = X and

Ψ(Ξ) = Ξ. Let ρX and ρΞ be the respective pseudometrics on X and Ξ obtained by

electrifying their ε–tubes.

Lemma 5.9. The map Q is 1–Lipschitz with respect to ρΞ and ρX .

Proof. Let x be a point in the ε–thin part of Ξ. Then there exists a non-trivial

loop passing through x of length at most 2ε. Since Q is a covering map, this

loops descends to non-trivial loop of the same length in X passing through Q(x).

Therefore the ε–thin part of Ξ is sent inside the ε–thin part of X. It follows that

the electrified lengths of paths cannot increase under Q.

This result, together with Theorem 5.7, proves Theorem 5.1 for closed sur-

faces.

41



5.3.2 Surfaces with boundary

We now assume S has non-empty boundary. Recall that Ψcusp
ν (X) denotes X with

its ν–cusps removed. For ε3 ≥ ν > ν ′ > 0, observe that Ψcusp
ν (X) ⊂ Ψcusp

ν′ (X). Let

r : Ψcusp
ν′ (X) → Ψcusp

ν (X) be the nearest point projection map to Ψcusp
ν (X) with

respect to the hyperbolic metric on Ψcusp
ν′ (X). We will call r the natural retraction

from Ψcusp
ν′ (X) to Ψcusp

ν (X)

Lemma 5.10. Let X be a hyperbolic 3–manifold. Choose small constants ν > ν ′ >

0 and let ρ and ρ′ be the pseudometrics on Ψcusp
ν (X) and Ψcusp

ν′ (X) obtained by

electrifying along their respective ε–tubes. Then the natural retraction

r : (Ψcusp
ν′ (X), ρ′)→ (Ψcusp

ν (X), ρ)

is h–Lipschitz, where h = sinh ν
sinh ν′ .

Proof. Begin with a geodesic arc γ in Ψcusp
ν′ (X). We will show that the length of γ

can only increase by a bounded multiplicative factor under the retraction r.

If γ is contained in Ψcusp
ν (X) then we are done, so we shall assume γ meets

some ν–cusp C of X. This cusp contains a ν ′–cusp C ′ which does not meet γ. The

cusps C and C ′ lift to nested horoballs H and H ′ in the universal cover H3. We

can arrange for the horospheres ∂H and ∂H ′ to be horizontal planes at heights 1

and h > 1 respectively in the upper half-space model. Using Lemma 5.5 and basic

hyperbolic geometry, we deduce

h =
sys(∂C)

sys(∂C ′)
=

sinh ν

sinh ν ′
.

Now define πH and πH′ to be the nearest point projections from H3 to ∂H

and ∂H ′ respectively. Taking a lift γ̃ of γ, we see that

length(γ̃ ∩H) ≥ length(πH′(γ̃ ∩H)) =
1

h
length(πH(γ̃ ∩H)).

Thus, by projecting each arc of γ inside a ν–cusp to the boundary of that cusp, we

create a new path whose length is at most h× length(γ).

Let Q : Ξ → X be the covering map as described in Section 5.3.1. Observe

that

Ψcusp
ε (X) ⊆ Q(Ψcusp

ε (Ξ)) ⊆ Ψcusp
ε′ (X)

where ε′ = ε
degP . As before, let ρΞ and ρX be the pseudometrics on Ψcusp

ε (Ξ) and

42



Ψcusp
ε (X) obtained by electrifying along their respective ε–tubes. Combining Lemma

5.10 with the proof of Lemma 5.9 gives us the following:

Lemma 5.11. Let r : Ψcusp
ε′ (X) → Ψcusp

ε (X) be the natural retraction. Then the

composition r ◦Q : Ψcusp
ε (Ξ)→ Ψcusp

ε (X) is h–Lipschitz with respect to ρΞ and ρX ,

where the constant h depends only on degP .

Finally, r ◦Q(α∗) = a∗ and r ◦Q(β∗) = b∗ and so the rest of the argument

follows as in Section 5.3.1. This completes the proof of Theorem 5.1 for surfaces

with boundary.

43



Chapter 6

Covering maps II: Nearest point

projections and circumcentres

In this chapter, we define an operation on curves using a given surface covering map

and intersection number conditions. We then show that it approximates a nearest

point projection map to the image of the associated lifting map defined in Chapter

5. We also show that our operation also approximates circumcentres of orbits in the

case of regular covers.

6.1 A projection map via intersection numbers

Let P : Σ→ S be a finite degree covering map of surfaces and let Π : C(S)→ C(Σ) be

the induced lifting map given by Π(b) := P−1(b). Define a map π : C(Σ)→ Π(C(S))

as follows: given a curve α ∈ C(Σ), let b ∈ C(S) which has minimal intersection

number with P (α) on S and set π(α) = Π(b). We will prove the following in Section

6.3

Theorem 6.1. Let P : Σ → S be a finite degree covering map of surfaces and let

Π and π be as above. Given a curve α ∈ C(Σ), let γ be a nearest point projection of

α to Π(C(S)) in C(Σ). Then π(α) ≈k3 γ, where k3 is a constant depending only on

degP and ξ(Σ).

Consequently, the operation α 7→ π(α) is coarsely well-defined. One can

check that the minimal value of i(P (α), ·) over all closed curves on S is attained by

a simple closed curve. In Section 6.4, we will also prove the following.

Proposition 6.2. Suppose further that P is regular and let G be its group of deck

transformations. Let γ′ be a circumcentre of the G–orbit of a curve α in C(Σ). Then
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π(α) ≈k4 γ
′, where k4 is some constant depending only on degP and ξ(Σ).

6.2 Deck transformations

The deck transformation group Deck(P ) of a covering map P : Σ→ S is the group

of all homeomorphisms f ∈ Homeo(Σ) satisfying P ◦ f = P .

Lemma 6.3. Let P : Σ → S be a finite degree covering map between surfaces

of negative Euler characteristic. Then the natural quotient map from Deck(P ) to

Mod(Σ) = Homeo(Σ)/Homeo0(Σ) is injective.

Proof. We will only give a sketch proof. Endow int(S) with a hyperbolic metric and

pull it back to int(Σ) via P . The group Deck(P ) then acts on int(Σ) by isometries.

The result follows since any isometry of a hyperbolic surface isotopic to the identity

must in fact coincide with the identity.

As a consequence, we may identify Deck(P ) with its image in Mod(Σ). It

is also worth mentioning that the above statement does not hold for covers of the

torus or annulus.

6.3 Nearest point projections

6.3.1 Regular covers

We shall first deal with the case where P : Σ → S is regular. Let G ≤ Mod(Σ) be

the group of deck transformations of P . Given a curve α ∈ C(Σ), observe that the

set of lifts of P (α) to Σ via P is exactly Gα. Let α = (α1, . . . , αn) be an n–tuple

of curves whose entries are the lifts of P (α) in any order. Note that n ≥ 1 is some

divisor of degP . Let 1 denote the vector of length n with all entries equal to 1.

Lemma 6.4. Let α and α be as above. Then π(α) ∈ short(1 ·α, L0|G|) where L0 is

a constant depending only on ξ(Σ).

Proof. Let b be a closed curve on S. Each point of b ∩ P (α) on S lifts to exactly

|G| = degP points of P−1(b) ∩Gα on Σ via P , hence

i(P−1(b),α) = |G| i(b, P (α)).

By Lemma 4.5, there exists a curve γ ∈ C(Σ) such that

i(γ, α) ≤ L0 ‖1‖α
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for some constant L0 = L0(ξ(Σ)). Now assume b has minimal intersection with P (α)

out of all curves on S. It follows that

i(P−1(b),α) = |G| i(b, P (α)) ≤ |G| i(P (γ), P (α)) = i(Gγ,α) ≤ |G| i(γ,α).

Finally, by combining the preceding inequalities, we see that

i(π(α),α) = i(P−1(b),α) ≤ |G| i(γ,α) ≤ |G| L0 ‖1‖α .

Thus π(α) ∈ short(1 ·α, L) for L = L0|G|.

Lemma 6.5. Let γ be any curve in Π(C(S)) and let β be any of its nearest point

projections to Hull(α). Then dΣ(π(α), β) ≤ k4, where k4 depends only on degP and

ξ(Σ).

Proof. We may replace γ with the multicurve Gγ since their nearest point projec-

tions to Hull(α) are a uniformly bounded distance apart. Since G acts transitively

on Gα and leaves Gγ invariant, it follows that i(Gγ, αi) = i(Gγ, αj) for all i, j.

Thus, 1 serves as a balance vector for Gγ with respect to α. By Proposition 4.9,

we deduce that

β ≈k2 short(1 ·α, L),

where k2 depends only on ξ(Σ), n and L ≥ L0. Applying the previous lemma

completes the proof.

Proof of Theorem 6.1 for regular covers. Let α and α be as above. Let γ be

any curve in Π(C(S)). Since Hull(α) is quasiconvex, Lemmas 6.5 and 1.13 imply

that any geodesic connecting α to γ in C(Σ) must pass within a distance r of π(α),

where r depends only on degP and ξ(Σ). Therefore π(α) is an r–entry point of α to

Π(C(S)). Since Π(C(S)) is also quasiconvex, Lemma 1.12 implies π(α) is a uniformly

bounded distance away from any nearest point projection of α to Π(C(S)). �

6.3.2 The general case

The main obstacle in proving the main theorem for a non-regular covering map

P : Σ→ S is the following: given a simple closed curve α ∈ C(Σ) there may be some

lifts of P (α) to Σ which are not simple. To address this issue, we pass to a suitable

finite cover of Σ using a standard group theoretic argument.
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Lemma 6.6. Let P : Σ → S be a covering map of finite degree. Then there exists

a cover Q : Σ̂→ Σ such that F := P ◦Q is regular and degF ≤ (degP )!.

Proof. Let H be the finite index subgroup of Γ = π1(S) corresponding to the cov-

ering map P and let H0 be the intersection of all Γ–conjugates of H. It is straight-

forward to check that H0 is exactly the kernel of the action of Γ on the set of left

cosets of H by left-multiplication. The desired result then follows.

The covering map F defined above is universal in the sense that any regular

cover of S which factors through P must also factor through F .

Lemma 6.7. Let P : Σ → S and F : Σ̂ → S be as above. If α is a simple closed

curve on S then all lifts of P (α) to Σ̂ via F are simple.

Proof. Any lift of α to Σ̂ via Q is also a simple lift of P (α) via F . Since F is regular,

it follows that all other lifts of P (α) to Σ̂ are simple.

Before continuing with the proof, we first show that that nearest point pro-

jections to quasiconvex sets are well-behaved under quasi-isometric embeddings. We

remind the reader that we allow f to be a one-to-many function.

Lemma 6.8. Let f : X → X ′ be a Λ–quasi-isometric embedding of geodesic spaces,

where X ′ is δ′–hyperbolic. Let C be a Q–quasiconvex subset of X and let C ′ = f(C).

Given a point x ∈ X , let x′ be a point in f(x). Let p and q′ be nearest point

projections of x to C and x′ to C ′ respectively. Let q ∈ X be a point so that

q′ ∈ f(q). Then p ≈K q, where K depends only on δ′, Λ and Q.

Proof. First, note that X is δ–hyperbolic and C ′ is Q′–quasiconvex in X ′ for some

constants δ = δ(Λ, δ′) and Q′ = Q′(Q,Λ, δ). Let c ∈ X be a k–centre for x, p and

q, where k = δ. Any point c′ ∈ f(c) is then a k′–centre for x′, p′ and q′, where

k′ = k′(k,Λ) and p′ ∈ f(p). One can check that xp ≈2k xc + cp. By quasiconvexity

of C, there is some point y ∈ C satisfying cy ≤ k + Q. Since p is a nearest point

projection of x to C, we obtain

xc+ cp− 2k ≤ xp ≤ xy ≤ xc+ cy ≤ xc+ k + Q

which implies cp ≤ Q + 3k. Similarly, we can deduce c′q′ ≤ Q′ + 3k′. Since f is a

Λ–quasi-isometric embedding, it follows that cq ≤ Λ× c′q′ + Λ and hence

pq ≤ pc+ cq ≤ K,

where K = Q + 3k + Λ(Q′ + 3k′) + Λ.
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Let Φ : C(S) → C(Σ̂) and Ψ : C(Σ) → C(Σ̂) be the lifting maps induced

by the covering maps F and Q respectively. Define φ : C(Σ̂) → Φ(C(S)) to be the

projection map associated to F as described in Section 6.1 . We may assume that

φ ◦Ψ = Ψ ◦ π.

Proof of Theorem 6.1. Given α ∈ C(Σ), let α̂ be any of its lifts to Σ̂ via Q. Note

that φ(α̂) = Ψ(π(α)). Let γ̂ be a nearest point projection of α̂ to Φ(C(S)) in C(Σ̂)

and let γ = Q(γ̂) ∈ Π(C(S)). Since F is regular, we can apply Theorem 6.1 to

deduce that

dΣ̂(φ(α̂), γ̂) ≤ k̂3,

where k̂3 depends only on degF and ξ(Σ̂) which can in turn be bounded in terms

of degP and ξ(Σ). By Theorem 5.1, Ψ is a Λ–quasi-isometric embedding, where

Λ = Λ(degF, ξ(Σ̂)), and so

dΣ(π(α), γ) ≤ Λk̂3 + Λ.

By the previous lemma, γ is a uniformly bounded distance away from any nearest

point projection of α to Π(C(S)) in C(Σ) and we are done. �

6.4 Circumcentres and finite group actions

6.4.1 Circumcentres of orbits

We now show that π(α) also approximates a circumcentre of Gα in C(Σ), where G

is the deck transformation group of a regular cover P : Σ → S. First, we give the

following characterisation of circumcentres of orbits under finite group actions on

δ–hyperbolic spaces:

Lemma 6.9. Assume G is a finite group acting by isometries on a δ–hyperbolic

space X . Fix a point x0 ∈ X and let c be a circumcentre for Gx0. Given a point

z ∈ X , let p be any of its nearest point projection to Hull(Gx0). Then

pc ≤ rad(Gz) + 7δ

and hence

zc ≤ rad(Gz) + d(z,Hull(Gx0)) + 7δ.

Proof. We first claim that p lies within a distance δ of a geodesic segment [u, v],

where u, v ∈ Gx0 are points such that uv ≥ diam(Gx0) − 2δ. Suppose p lies on a
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geodesic segment [x, y] for some x and y in Gx0. There exist some x′ and y′ in Gx0

so that xx′ = yy′ = diam(Gx0). If x′ = y′ then the claim follows from hyperbolicity.

Now assume x′ 6= y′. By Lemma 1.7, we have

2 diam(Gx0) = xx′ + yy′ ≥ max{xy + x′y′, xy′ + x′y} ≥ 2 diam(Gx0)− 2δ.

If xy+ x′y′ ≥ 2 diam(Gx0)− 2δ then xy ≥ diam(Gx0)− 2δ which implies the claim.

If not then xy′ ≥ diam(Gx0)− 2δ. The claim then follows by considering a geodesic

triangle with x, y and y′ as its vertices.

Now suppose q ∈ [u, v] is a point so that pq ≤ δ. Then

d(z, [u, v]) ≤ zq ≤ zp+ pq ≤ d(z,Hull(Gx0)) + δ ≤ d(z, [u, v]) + δ.

Invoking Lemma 1.9 we obtain p ≈δ q ≈3δ o, where o ∈ [u, v] is the internal point

opposite z. Setting D := rad(Gz) ≥ 1
2 diam(Gz), observe that

d(z, x0) = d(gz, gx0) ≈2D d(z, gx0)

for all g ∈ G. Therefore zu ≈2D zv which implies uo ≈2D ov. It follows that

o ≈D m, where m is the midpoint of [u, v]. Finally, applying Lemma 1.17 gives

p ≈4δ o ≈D m ≈3δ c and we are done.

Proof of Proposition 6.2. Let γ′ be a circumcentre for Gα. Combining Lemma 6.4

and Proposition 4.6, we deduce

dΣ(π(α),Hull(Gα)) ≤ k′5,

where k′5 depends only on ξ(Σ) and degP . Since π(α) is a G–invariant multic-

urve, the radius of its G–orbit is at most 1. Applying the previous lemma gives

dΣ(π(α), γ′) ≤ k′5 + 7δ + 1 and we are done. �

6.4.2 Almost fixed point sets

Let G be a finite group acting by isometries on a δ–hyperbolic space X . Given

R ≥ 0, let

FixX (G,R) := {x ∈ X | diam(Gx) ≤ R}

be the set of R–almost fixed points of G in X .
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Lemma 6.10. The set FixX (G, 2δ) is non-empty. Moreover, for all R ≥ δ,

FixX (G, 2 R) ≈R+δ FixX (G, 2δ).

Proof. Let x be any point in X and let c be a circumcentre for Gx. Since Gx is

G–invariant, all G–translates of c are also circumcentres for Gx. It follows from

Lemma 1.16 that c is contained in FixX (G, 2δ).

Assume further that x is contained in FixX (G, 2 R), where R ≥ δ. By Lemma

1.17, we have

xc ≤ rad(Gx) ≤ 1

2
diam(Gx) + δ ≤ R + δ

and hence FixX (G, 2 R) ⊆R+δ FixX (G, 2δ). The reverse inclusion is immediate.

Thus, to understand the geometry of the set of 2R–fixed points of X , for

R ≥ δ, it suffices to study the behaviour of FixX (G, 2δ). One can also check that

FixX (G, 2R) is quasi-convex for R ≥ δ.

Lemma 6.11. Let R ≥ δ. Given a point x ∈ X , let c be a circumcentre for its

G–orbit. Let p be a nearest point projection of x to FixX (G, 2R). Then c ≈k6 p,

where k6 = 2δ + 4R.

Proof. For all g ∈ G, we have

d(gx, p) ≤ d(gx, gp) + d(gp, p) ≤ d(x, p) + 2R ≤ d(x, c) + 2R ≤ rad(Gx) + 2R.

Applying Lemma 1.16 completes the proof.

We will demonstrate below that when R < δ, Lemmas 6.10 and 6.11 need not

hold; it is possible for FixX (G, 2R) to be empty or lie very deeply inside FixX (G, 2δ).

Recall the standard cylindrical co-ordinate system on R3: a point speci-

fied by (r, θ, t) ∈ [0,∞) × R × R in cylindrical co-ordinates represents the point

(r cos θ, r sin θ, t) ∈ R3 under the standard Cartesian co-ordinate system.

Example 6.12 (Rocketship). A rocketship of length l > 0 with n ≥ 2 fins, denoted

R = R(n, l), is the union of the following three subsets of R3 defined using cylindrical

co-ordinates:

• the nose N = {(t, θ, t) | 0 ≤ t ≤ 1, θ ∈ R}, a right circular cone of height 1

and base radius 1;

• the shaft S = {(1, θ, t) | 1 ≤ t ≤ l + 1, θ ∈ R}, a right circular cylinder of

height l and base radius 1; and
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• the fins Fn = {(1, 2kπ
n , t) | t ≥ l + 1, k ∈ Z}, a disjoint union of n closed rays.

We endow R with the path metric inherited from R3 equipped with the standard

Euclidean metric. One can show that R is quasi-isometric to a tree and therefore

δ–hyperbolic for some δ > 0; this can be done by collapsing the radial component

of the nose and shaft. Moreover, one can check that δ ≥ π
2 for l sufficiently large.

Observe that G = Z/nZ acts isometrically on R by rotations about the t–axis

through integral multiples of 2π
n . Let x be any point on Fn. Then a circumcentre c

for Gx is a point of the form (1, (4k+1)π
2n , l+1), for some k ∈ Z. For R ≥ 0 sufficiently

small, FixR(G, 2R) is contained entirely within the nose N. Therefore, c must be

a distance at least l away from any nearest point projection of x to FixR(G, 2R).

Furthermore, FixR(G, 2δ) contains both N and S, and so its Hausdorff distance

from FixR(G, 2R) is at least l.

Let us return our attention to the curve graph. When G is the deck trans-

formation group of a regular cover P : Σ→ S, the vertices in FixC(Σ)(G, 1) coincide

exactly with those of Π(C(S)) ⊆ C(Σ). Combining Theorem 6.1 and Proposition

6.2, we deduce:

Corollary 6.13. Any circumcentre for the G–orbit of a curve α ∈ C(S) is a uni-

formly bounded distance away from any nearest point projection of α to Π(C(S)).

Therefore Lemma 6.11 still holds for FixC(Σ)(G, 1), albeit with weaker control

over the constant k6. As the example above shows, this cannot be proved using

purely synthetic methods assuming only δ–hyperbolicity of C(Σ). In conclusion:

“There are no rocketships in the curve complex.”
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Chapter 7

Distance bounds

In this chapter, we describe two methods for obtaining distance bounds in the curve

complex in terms of intersection number – the first due to Bowditch [Bowb] and the

second arising from an algorithm of Hempel [Gor07]. We introduce the notion of

punctured graphs to help us bound the length of Hempel’s paths.

7.1 Bowditch’s bound

In this section we review Bowditch’s method given in [Bowb] for bounding the

distance in the curve complex using intersection numbers. We will assume S = Sg,m

is a surface satisfying ξ(S) ≥ 2 in this chapter.

For g ≥ 0 and m ≥ 0, define

κ(g,m) :=


2g − 3 : m = 0;

m− 3 : g = 0, m odd;

2g +m− 4 : otherwise.

The following is a well-known result in the literature, with proofs appearing

in [Bowb] and [Aou]. We give minor improvements on the constants by taking a bit

more care in the argument.

Lemma 7.1. Suppose α and β are a pair of filling curves in C(S). Then i(α, β) ≥
κ(g,m) + 2.

Proof. Realise α and β in minimal position. Since α and β fill S, all complementary

components of α ∪ β on S are topological discs with at most one marked point.

Thus, there is a 2–cell decomposition of S with α ∪ β as its 1–skeleton. Let #F ,

#E and #V respectively denote the number of 2–cells, edges and vertices in this
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decomposition. Observing that #F ≥ max{1,m}, #E = 2i(α, β) and #V = i(α, β),

we deduce

2− 2g = χ(S) = #F −#E + #V = max{1,m} − i(α, β)

and hence

i(α, β) = 2g + max{1,m} − 2.

The result now follows for all cases except for when g = 0 and m is odd. On S0,m,

with m ≥ 4, all curves are separating and hence the intersection number between

any two curves is even. If m is odd then so is m − 2, so we can therefore conclude

i(α, β) ≥ m− 1.

In particular, if α, β ∈ C(S) are curves such that i(α, β) ≤ κ(g,m) + 1 then

dS(α, β) ≤ 2.

Lemma 7.2 ([Bow06b]). Suppose α, β ∈ C(S) are curves such that i(α, β) ≤ ab
2 for

some a, b ∈ N. Then there exists γ ∈ C(S) so that i(α, γ) ≤ a and i(β, γ) ≤ b. �

Bowditch sets b = κ(g,m)+1 and repeatedly applies the previous two lemmas

to deduce:

Lemma 7.3 ([Bowb]). Suppose α and β are curves in C(S) so that

i(α, β) ≤ 2

(
κ(g,m)

2

)k
for some k ∈ N. Then dS(α, β) ≤ 2k. �

We may rearrange the above inequality to obtain:

Corollary 7.4. Let α and β be curves in C(S). Then

dS(α, β) ≤ 2

log κ(g,m)
· log i(α, β) + 2

whenever i(α, β) 6= 0. �

7.2 Hempel’s paths

Let us first recall a greedy algorithm due to Hempel [Gor07]:

Hempel’s algorithm: Let α, β be curves in C(S). Set β0 = β. Build a

path β0, β1, . . . , βL = α as follows: Suppose we have found βn−1. If α and βn−1 are
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disjoint then set βn = α and STOP. Otherwise, choose βn to be a curve which has

minimal intersection number with α among all curves disjoint from βn−1.

Lemma 7.5. For 1 ≤ n ≤ L−2, the curve βn either bounds a disc with two marked

points, or is non-separating.

The above lemma will follow in the course of proving Proposition 7.15.

Define

λ(g,m) :=

{
m+2

4 : g ≥ 1, m = 3, 4;
m−2

2 : g ≥ 0, m ≥ 5.

The rest of the chapter will be devoted to proving the following:

Lemma 7.6. Suppose α, β ∈ C(S) fill S and let γ ∈ C(S) be a curve which has

minimal intersection number with α among all curves disjoint from β. Then

i(α, γ) ≤ 1

λ(g,m)
i(α, β)

whenever β is a non-separating curve or a pants curve.

Lemma 7.7. Suppose i(α, β) 6= 0. Then a path constructed by Hempel’s algorithm

from β to α has length equal to at most logλ(g,m) i(α, β) + 3.

Proof. Let λ = λ(g,m). First note that i(α, β1) ≤ i(α, β). By re-iterating Lemmas

7.5 and 7.6, we obtain

i(α, βn) ≤ i(α, β)

λn−1

and hence

n ≤ logλ i(α, β)− logλ i(α, βn) + 1.

If α and βn fill S then, by Lemmas 7.1 and 7.6, we have

i(α, βn) ≥ κ(g,m) + 2 ≥ 2λ

which implies

n ≤ logλ i(α, β)− logλ 2λ+ 1 < logλ i(α, β).

Therefore, dS(α, βn) ≤ 2 whenever n ≥ dlogλ i(α, β)e.

Corollary 7.8. Let α and β be curves in C(S). Then

dS(α, β) ≤ 1

log λ(g,m)
· log i(α, β) + 3

whenever i(α, β) 6= 0. �
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Upon fixing a value of g, we have λ(g,m) >
√
κ(g,m) for m sufficiently large.

Thus, the above bound performs better than Bowditch’s.

7.3 Punctured graphs

A punctured graph G = (G, V ◦) is a finite metric graph G = (V,E) together with a

distinguished set of vertices V ◦ = V ◦(G) ⊆ V (G) called punctured vertices.

Let S = Sg,m and suppose α and β are a pair of filling curves in C(S). We

construct a punctured graph G = G(α, β) with the property that any curve γ ∈ C(S)

disjoint from β gives rise to an edge-path in G whose length equals i(α, γ). This

allows us to convert the problem of proving Lemma 7.6 to that of finding upper

bounds for certain edge-paths in punctured graphs.

Let α = (α, β) and 1 = (1, 1) and build the singular Euclidean surface S(1·α)

as described in Section 3.1. We will regard S(1 · α) as a 2–dimensional complex

tiled by squares. Let G = G(α, β) be the subgraph of the 1–skeleton of S(1 · α)

whose edges are dual to α. Note that G contains all vertices of S(1 ·α). The set of

punctured vertices V ◦(G) is defined to be the marked points of S. (Recall that any

marked points on S must coincide with some vertex of the square tiling.) Finally,

we equip G with the induced path metric from S(1 · α), thus each edge has unit

length.

Lemma 7.9. There exists a deformation retract of S(1 ·α) − β onto G.

Proof. We define a homotopy F : (S(1 ·α) − β)× [0, 1]→ G as follows. Each square

R in S(1 · α) can be isometrically identified with the unit square [0, 1] × [0, 1] so

that β ∩R is identified with [0, 1]× {1
2}. Define Ft(·) = F(·, t) on R− β by setting

Ft(x, y) :=

{
(x, (1− t)y) : y < 1

2 ;

(x, 1− (1− t)y) : y > 1
2 .

One can check that Ft can be consistently extended to all of S(1 ·α) − β.

Now G has either one or two components, depending on whether β is non-

separating or separating. Let Sβ be the closure of S(1·α) − β. If β is separating, we

will also write S±β for the components of Sβ and G± for corresponding components

of G. If one component of Sβ is a disc with two marked points, we will always refer

to that component as S−β and call β a pants curve.

The volume vol(G) of G is the sum of all edge lengths in G.
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Lemma 7.10. Let G = G(α, β). Then vol(G) = i(α, β). Moreover, if β is separating

then vol(G+) = vol(G−) = 1
2 i(α, β).

Proof. Observe that α − β consists of exactly i(α, β) disjoint arcs which connect

two points on ∂Sβ. By definition of G, these arcs are in one-to-one correspondence

with the edge set G, simply by taking the corresponding dual edge, and hence the

first claim follows. If β is separating, then the endpoints of each arc must lie on

the same component of ∂Sβ. Since each component of ∂Sβ meets exactly i(α, β) of

these endpoints, the second claim also holds.

Define the rank (also called the Betti number) of a connected punctured

graph G to be

rank(G) := |E(G)| − |V (G)|+ 1.

Note that π1(G) is a free group on rank(G) generators.

Lemma 7.11. If β is non-separating, then rank(G) = 2g − 1 and |V ◦(G)| = m. If

β is a pants curve then rank(G+) = 2g and |V ◦(G+)| = m− 2.

Proof. First recall that if Σ is a compact surface with boundary, then π1(Σ) is a

free group of rank 2 genus(Σ) + |∂Σ| − 1. (We are ignoring the marked points at

the level of the fundamental group.) If β is non-separating then Sβ is a connected

surface of genus g− 1 with two boundary components containing m marked points.

Since G is homotopy equivalent to Sβ, we have

rank(G) = rank(π1(G)) = rank(π1(Sβ)) = 2g − 1.

Similarly, when β is a pants curve S+
β has genus g, one boundary component and

m − 2 marked points, hence rank(G+) = 2g. Finally, recall that the punctured

vertices of G are exactly the marked points of S and we are done.

Let γ ∈ C(S) be a curve disjoint from β. If γ 6= β then any geodesic represen-

tative of γ on S(1·α) must in fact lie in G(α, β). (Recall that we allow representatives

of curves to meet marked points.) Thus, we may regard γ as a closed edge-path in

G whose combinatorial length coincides with its Euclidean length on S(1 ·α).

Lemma 7.12. Let γ ∈ C(S) be a curve disjoint from β. Then l(γ) = i(γ, α), where

l(γ) is the length of γ in G. Moreover, the subgraph H(γ) of G spanned by the edges

of γ must contain an embedded cycle or at least two punctured vertices.
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Proof. The first claim is immediate. For the second claim, suppose H(γ) contains

no embedded cycles and has at most one punctured vertex. Then a regular neigh-

bourhood N(H(γ)) in S(1 ·α) is a disc containing γ with at most one marked point.

This implies that γ is trivial or peripheral – a contradiction.

Lemma 7.13. Any embedded loop σ in G arises as a representative of curve γ ∈ C(S)

disjoint from β. Similarly, let τ be an embedded path connecting two punctured ver-

tices in G which meets no other punctured vertex. Then there is a pants curve

γ′ ∈ C(S) disjoint from β which has a representative running over each edge of τ

exactly twice.

Proof. Given an essential loop σ ⊆ G, take γ to be any boundary component of

a regular neighbourhood N(σ) in Sβ. Since σ represents a non-trivial element of

π1(G), it follows that γ is non-trivial in π1(Sβ). Thus γ is either essential on Sβ; or

parallel to ∂Sβ in which case γ = β in C(S).

A regular neighbourhood N(τ) on Sβ of a punctured path τ is a disc with

two marked points. Taking γ′ = ∂N(τ) gives the desired curve.

This result motivates the following definitions: A systole in G is an embedded

loop of minimal length in G. A punctured path in G is an embedded path in G
connecting a pair of distinct punctured vertices with no punctured vertices in its

interior. A tense path is a punctured path of minimal length.

Definition 7.14. For a punctured graph G, define girth(G) to be the length of any

systole in G and pathgirth(G) to be twice the length of any tense path in G. Set

girth(G) := min{girth(G), pathgirth(G)}.

We summarise the results of this section below:

Proposition 7.15. Let S = Sg,m. Given filling curves α, β ∈ C(S), let G = G(α, β)

be as above. Let γ ∈ C(S) be a curve which has minimal intersection number with α

among all curves disjoint from β. Then i(γ, α) = girth(G) and γ is either a systole

in G, or runs over each edge of tense path exactly twice in G. �

Consequently, the problem of bounding the intersection number i(α, γ) is

equivalent to bounding the volume of systoles or tense paths in G.

7.4 Girth, genus and doubles

Given a punctured graph G, let genus(G) be the minimal integer k ≥ 0 such that

there exists an embedding of G into a surface of genus k. We can always take such a
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minimal genus surface Σ to be closed. If G ↪→ Σ is a (smooth) embedding, then all

complementary components of G in Σ are discs. The following result is well-known

in the literature:

Lemma 7.16. A minimal genus embedding G ↪→ Σ has rank(G) − 2 genus(G) + 1

complementary discs.

Proof. This follows from an Euler characteristic calculation:

2− 2 genus(Σ) = χ(Σ) = |F | − |E|+ |V | = |F | − rank(G) + 1,

where V = V (G), E = E(G) and F is the set of complementary regions.

Let us write face(G) := rank(G)−2 genus(G)+1. Since face(G) ≥ 1, it follows

that genus(G) ≤ 1
2rank(G).

Lemma 7.17. For any connected punctured graph G, we have

girth(G) ≤ 2 vol(G)

face(G)
.

Proof. Suppose G ↪→ Σ is a minimal genus embedding, with Σ closed. Let F be the

set of complementary components of G in Σ. The set F can be viewed as the faces

of a 2–cell decomposition of Σ with G as its 1–skeleton. By summing the lengths of

∂f for each face f ∈ F , we count each edge of G exactly twice, hence∑
f

vol(∂f) = 2 vol(G).

Observe that each ∂f is an essential loop in G. Thus,

girth(G) ≤ min
f

vol(∂f) ≤ 2 vol(G)

|F |
=

2 vol(G)

face(G)
,

where we have applied Lemma 7.16 for the final equality.

Definition 7.18. The double DG of G is the graph obtained by gluing two dis-

joint copies of G along its punctured vertices and declaring all vertices to be non-

punctured. More formally,

DG := G × {0, 1} / (v, 0) ∼ (v, 1) for all v ∈ V ◦(G)

with V ◦(DG) = ∅.
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Lemma 7.19. Let G be a connected punctured graph with at least one punctured

vertex. Then

rank(DG) = 2 rank(G) + |V ◦(G)| − 1

and

girth(DG) = girth(G).

Proof. The first claim follows from observing that |V (DG)| = 2 |V (G)| − |V ◦(G)|
and |E(DG)| = 2 |E(G)|.

For the second claim, observe that the double of any systole σ in G is the

union of two embedded loops in DG, both of the same length as σ. The double of

a tense path τ in G is an embedded loop in DG of twice the original length. Hence

girth(DG) ≤ girth(G).

To prove the other direction, let σ be a systole in DG. Let σ′ be the pre-image

of σ under the natural projection G × {0, 1} → DG. If all edges of σ′ are contained

in one component of G × {0, 1} then σ′ is isometric to an embedded loop in G and

so length(σ) ≥ girth(G). If not, then σ′ is the disjoint union of two punctured

paths, one in each component of G×{0, 1}, whose endpoints become identified upon

projecting to DG. These punctured paths must have equal length, for otherwise we

can double the shorter one to obtain an essential loop in DG shorter than σ. Thus

length(σ) ≥ pathgirth(G) and we are done.

Corollary 7.20. For a connected punctured graph G we have

girth(G) ≤ 4 vol(G)

face(DG)

whenever G has at least one punctured vertex. �

Lemma 7.21. Let G be a connected punctured graph with at least one punctured

vertex. Then

• genus(DG) ≤ 2 genus(G) if face(G) = 1, and

• genus(DG) ≤ 2 genus(G) + min{face(G)− 1, |V ◦(G)|} − 1 otherwise.

Proof. Let G ↪→ Σ be a minimal genus embedding. First, suppose face(G) = 1.

There exists a closed disc D on Σ so that G ∩ intD = ∅ and G ∩ ∂D is precisely

V ◦(G) (we may take the complement an open regular neighbourhood of G on Σ and

perturb near the punctured vertices, for example). By doubling Σ − int(D) along

its boundary, we obtain an embedding of DG on a surface Σ′ of twice the genus of

Σ.
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Now suppose face(G) ≥ 2. Observe that any punctured vertex of G must

meet the closure of at least one complementary region of G on Σ. We can choose an

embedding so that all the punctured vertices of G are contained in R̄1∪ . . .∪ R̄k, the

union of the closures of 1 ≤ k ≤ min{face(G)− 1, |V ◦(G)|} complementary regions.

There exists a closed disc Di ⊂ R̄i so that G ∩ intDi = ∅ for each i and

G ∩ (∂D1 ∪ . . . ∪ ∂Dk) = V ◦(G).

We can then double Σ− (intD1∪ . . .∪ intDk) along its boundary to obtain a surface

Σ′ of

genus(Σ′) = 2 genus(Σ) + k − 1

admitting an embedding of DG.

A graph G of rank at most 3 cannot contain a subgraph homemomorphic

to K5 (the complete graph on 5 vertices), or K3,3 (the complete bipartite graph on

6 vertices, where 3 of the vertices are adjacent to the other 3). By Kuratowski’s

theorem, such graphs must be planar and so genus(G) = 0 whenever rank(G) ≤ 3.

Corollary 7.22. Let G be a connected punctured graph with at least one punctured

vertex. Then genus(DG) = 0 if rank(G) ≤ 1; and genus(DG) ≤ 1 if rank(G) = 2. �

7.5 Bounding the ratio

Let S = Sg,m with ξ(S) ≥ 2. Suppose α, β ∈ C(S) fill S and, furthermore, assume

β is either non-separating or a pants curve. Let G = G(α, β) be the punctured

graph defined in Section 7.3. Recall from Lemma 7.10 that vol(G) = i(α, β); and

vol(G±) = 1
2 i(α, β) if β is separating. By Lemma 7.11, we have rank(G) = 2g − 1

and |V ◦(G)| = m if β is non-separating; and rank(G+) = 2g and |V ◦(G+)| = m− 2

if β is a pants curve.

Let γ ∈ C(S) be a curve with minimal intersection with α among all curves

disjoint from β. Recall from Proposition 7.15 that i(α, γ) = girth(G).

Proof of Lemma 7.6.

If g = 0 and m ≥ 5, then all curves on S are separating. From the above

discussion, rank(G+) = 0 and |V ◦(G+)| = m− 2. By Lemma 7.19 and Corollary

7.22, we deduce face(DG+) = m− 2 and genus(DG+) = 0. Applying Corollary 7.20,
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we obtain

i(α, γ) = girth(G) = girth(DG) ≤ 4 vol(G+)

face(DG+)
≤ 2 i(α, β)

m− 2
=

i(α, β)

λ(0,m)
.

Now suppose g = 1 and m ≥ 3. If β is non-separating then rk(G) = 1

and |V ◦(G)| = m. By a similar argument, we deduce rank(DG) = 2 + m − 1 and

genus(DG) = 0. This yields face(DG) = m+ 2 and thus i(α, γ) ≤ 4 i(α,β)
m+2 . Following

the same reasoning for when β is a pants curve, we obtain i(α, γ) ≤ 2 i(α,β)
m . Hence

i(α, γ) ≤ max

{
4 i(α, β)

m+ 2
,

2 i(α, β)

m

}
=

4 i(α, β)

m+ 2
=

i(α, β)

λ(1,m)
.

For the general case, observe that if (H, V ◦(H)) ⊆ (G, V ◦(G)) is a punctured

subgraph, that is H ⊆ G and V ◦(H) ⊆ V ◦(G), then girth(G) ≤ girth(H). We may

then reduce our problem to one of the above scenarios by removing suitable edges

from G. �

In principle, we can apply the results of Section 7.4 to obtain improved

bounds for when genus(S) ≥ 2. This boils down to the problem of finding upper

bounds on the genus of graphs of a given rank. However, the problem of determining

the genus of a finite graph is NP–hard; and determining whether a given graph has

genus g is NP–complete [Tho89].
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