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Triangular Matrices: Definition

Definition
A square matrix is upper (resp. lower) triangular
if all its non-zero off diagonal elements are above and to the right
(resp. below and to the left) of the diagonal
— i.e., in the upper (resp. lower) triangle
bounded by the principal diagonal.

I The elements of an upper triangular matrix U
satisfy (U)ij = 0 whenever i > j .

I The elements of a lower triangular matrix L
satisfy (L)ij = 0 whenever i < j .
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Triangular Matrices: Exercises

Exercise
Prove that the transpose:

1. U> of any upper triangular matrix U is lower triangular;

2. L> of any lower triangular matrix L is upper triangular.

Exercise
Consider the matrix Er+αq

that represents the elementary row operation
of adding a multiple of α times row q to row r.

Under what conditions is Er+αq

(i) upper triangular? (ii) lower triangular?

Hint: Apply the row operation to the identity matrix I.

Answer: (i) iff q < r ; (ii) iff q > r .
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Products of Upper Triangular Matrices

Theorem
The product W = UV of any two upper triangular matrices U,V
is upper triangular,
with diagonal elements wii = uiivii (i = 1, . . . , n) equal
to the product of the corresponding diagonal elements of U,V.

Proof.
Given any two upper triangular n × n matrices U and V,
the elements (wij)

n×n of their product W = UV satisfy

wij =

{∑j
k=i uikvkj if i ≤ j

0 if i > j

because uikvkj = 0 unless both i ≤ k and k ≤ j .

So W = UV is upper triangular.

Finally, putting j = i implies that wii = uiivii for i = 1, . . . , n.
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Products of Lower Triangular Matrices

Theorem
The product of any two lower triangular matrices
is lower triangular.

Proof.
Given any two lower triangular matrices L,M,
taking transposes shows that (LM)> = M>L> = U,
where the product U is upper triangular,
as the product of upper triangular matrices.

Hence LM = U> is lower triangular,
as the transpose of an upper triangular matrix.
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Determinants of Triangular Matrices

Theorem
The determinant of any n × n upper triangular matrix U
equals the product of all the elements on its principal diagonal.

Proof.
Recall the expansion formula |U| =

∑
π∈Π sgn(π)

∏n
i=1 uiπ(i)

where Π denotes the set of permutations on {1, 2, . . . , n}.
Because U is upper triangular, one has uiπ(i) = 0 unless i ≤ π(i).

So
∏n

i=1 uiπ(i) = 0 unless i ≤ π(i) for all i = 1, 2, . . . , n.

But the only permutation π ∈ Π which satisfies i ≤ π(i)
for all i = 1, 2, . . . , n is the identity permutation ι.

Because sgn(ι) = 1, the expansion reduces to the single term

|U| = sgn(ι)
∏n

i=1
uiι(i) =

∏n

i=1
uii

which is the product of the diagonal elements, as claimed.
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Inverting Triangular Matrices

Similarly |L| =
∏n

i=1 `ii for any lower triangular matrix L.
Evidently:

Corollary

A triangular matrix (upper or lower) is invertible
if and only if no element on its principal diagonal is 0.

In the next slide, we shall prove:

Theorem
If the inverse U−1 of an upper triangular matrix U exists,
then it is upper triangular.

Taking transposes leads immediately to:

Corollary

If the inverse L−1 of an lower triangular matrix L exists,
then it is lower triangular.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 9 of 46



Inverting Triangular Matrices: Proofs

Recall the (n − 1)× (n − 1) cofactor matrix Crs

that results from omitting row r and column s of U = (uij).

When it exists, U−1 = (1/|U|) adjU, so it is enough to prove
that the n × n matrix (|Crs |) of cofactor determinants,
whose transpose (|Crs |)> is the adjugate, is lower triangular.

In case r < s, every element below the diagonal of the matrix Crs

is also below the diagonal of U, so must equal 0.

Hence Crs is upper triangular,
with determinant equal to the product of its diagonal elements.

Yet s − r of these diagonal elements are ui+1,i for i = r , . . . , s − 1.
These elements are from below the diagonal of U, so equal zero.

Hence r < s implies that |Crs | = 0, so the n × n matrix (|Crs |)
of cofactor determinants is indeed lower triangular, as required.
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Unitriangular Matrices: Definition and Two Properties

Definition
A unitriangular matrix is a triangular matrix (upper or lower)
for which all elements on the principal diagonal equal 1.

Theorem
The determinant of any unitriangular matrix is 1.

Proof.
The determinant of any triangular matrix is the product
of its diagonal elements, which must be 1
in the unitriangular case when every diagonal elements is 1.
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Converting a Diagonal Matrix to Unitriangular Form

Theorem
Suppose U is any upper triangular matrix
with the property that all its diagonal elements uii 6= 0.

Then there exists a diagonal matrix D
such that both DU and UD are upper unitriangular.

Similarly for any lower triangular matrix L
with the property that all its diagonal elements `ii 6= 0.
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Converting a Diagonal Matrix: Proof

Define D as the diagonal matrix diag ((1/uii )
n
i=1)

whose diagonal elements dii are the reciprocals 1/uii

of the corresponding elements uii of the upper triangular matrix U,
all of which are assumed to be non-zero.

Then DU is upper unitriangular because (DU)ik = diiδik and so

(DU)ij =
∑n

k=1
diiδikukj = diiuij =

{
1 when i = j ;

0 when i > j .

The same holds for UD whose elements (UD)ij = uijdjj

are also 1 when i = j and 0 when i > j .
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The Product of Unitriangular Matrices Is Unitriangular

Theorem
The product W = UV of any two upper unitriangular n × n
matrices U and V is also upper unitriangular.

Proof.
Because both U and V are upper triangular, so is W = UV.

Also, each i element of the principal diagonal of W is wii = uiivii ,
which is 1 because unitriangularity implies that uii = vii = 1.

It follows that W is upper unitriangular.

The same argument can be used to show that the product
of any two lower unitriangular n × n matrices
is also lower unitriangular.
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The Inverse of a Unitriangular Matrix Is Unitriangular

Theorem
Any upper unitriangular n × n matrix U is invertible,
with an upper unitriangular inverse U−1.

Proof.
Because U is unitriangular, its determinant is 1, so V = U−1 exists.

Because U is upper triangular, so is U−1.

Also uiivii = δii = 1 for all i = 1, 2, . . . , n,
implying that vii = 1/uii = 1.

Therefore U−1 is indeed upper unitriangular.

The same argument can be used to show that the inverse
of any lower unitriangular n × n matrix is also lower unitriangular.
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Three Simultaneous Equations
Consider the system
of three simultaneous equations in three unknowns,
which depends upon two “exogenous” constants a and b:

x + y − z = 1
x − y + 2z = 2
x + 2y + az = b

It can be expressed as using an augmented 3× 4 matrix:

1 1 −1 1
1 −1 2 2
1 2 a b

or, perhaps more usefully, a doubly augmented 3× 7 matrix:

1 1 −1 1 1 0 0
1 −1 2 2 0 1 0
1 2 a b 0 0 1

whose last 3 columns are those of the 3× 3 identity matrix I3.
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The First Pivot Step
Start with the doubly augmented 3× 7 matrix:

1 1 −1 1 1 0 0
1 −1 2 2 0 1 0
1 2 a b 0 0 1

First, we pivot about the element in row 1 and column 1
to zeroize the other elements of column 1.

This elementary row operation requires us to subtract row 1
from both rows 2 and 3. It is equivalent to multiplying

by the lower triangular matrix E1 =

 1 0 0
−1 1 0
−1 0 1

.

Note that is the result of applying the same row operation to I.

The result is:

1 1 −1 1 1 0 0
0 −2 3 2 −1 1 0
0 1 a + 1 b − 1 −1 0 1
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The Second Pivot Step
After augmenting again by the identity matrix, we have:

1 1 −1 1 1 0 0 1 0 0
0 −2 3 2 −1 1 0 0 1 0
0 1 a + 1 b − 1 −1 0 1 0 0 1

Next, we pivot about the element in row 2 and column 2.
Specifically, multiply the second row by −1

2 ,
then subtract the new second row from the third to obtain:

1 1 −1 1 1 0 0 1 0 0
0 1 −3

2 −1
2

1
2 −1

2 0 0 −1
2 0

0 0 a + 5
2 b − 1

2 −3
2

1
2 1 0 1

2 1

Again, the pivot operation is equivalent to multiplying

by the lower triangular matrix E2 =

1 0 0
0 −1

2 0
0 1

2 1

,

which is the result of applying the same row operation to I.
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Case 1: Dependent Equations

In case 1, when a + 5
2 = 0, the equation system reduces to:

x + y − z = 1
y − 3

2 z = −1
2

0 = b − 1
2

In case 1A, when b 6= 1
2 , neither the last equation,

nor the system as a whole, has any solution.

In case 1B, when b = 1
2 , the third equation is redundant.

The first two equations have a general solution
with y = 3

2 z − 1
2 and x = z + 1− y = 3

2 −
1
2 z ,

where z is arbitrary.

In particular, there is an entire one-dimensional space of solutions.
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Case 2: Three Independent Equations

1 1 −1 1 1 0 0 1 0 0
0 1 −3

2 −1
2

1
2 −1

2 0 0 −1
2 0

0 0 a + 5
2 b − 1

2 −3
2

1
2 1 0 −1

2 1

Case 2 occurs when a + 5
2 6= 0,

and so the reciprocal c := 1/(a + 5
2 ) is well defined.

Now divide the last row by a + 5
2 , or multiply by c , to obtain:

1 1 −1 1 1 0 0
0 1 −3

2 −1
2

1
2 −1

2 0
0 0 1 (b − 1

2 )c −3
2 c 3

2 c 1
2 c

The system has been reduced to row echelon form in which:

1. the leading non-zero element of each row equals 1;

2. the leading zeroes of each row form the steps of a ladder
(or échelle) which descends as one goes from left to right.
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Case 2: Three Independent Equations, Third Pivot

1 1 −1 1 1 0 0
0 1 −3

2 −1
2

1
2 −1

2 0
0 0 1 (b − 1

2 )c −3
2 c 3

2 c 1
2 c

Next, we zeroize the elements in the third column above row 3.

To do so, pivot about the element in row 3 and column 3.

This requires adding the last row to the first,
and 3

2 times the last row to the second.

In effect, one multiplies

by the upper triangular matrix E3 :=

1 1 1
0 1 3

2
0 0 1


The first three columns of the result are

1 1 0
0 1 0
0 0 1

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 23 of 46



Case 2: Three Independent Equations, Final Pivot

1 1 0
0 1 0
0 0 1

The final pivoting operation involves subtracting the second row
from the first, so the first three columns become the identity matrix

1 0 0
0 1 0
0 0 1

This is a matrix in reduced row echelon form because,
given the leading non-zero element of any row (if there is one),
all elements above this element are zero.
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Final Exercise

Exercise

1. Find the last 4 columns of each 3× 7 matrix
produced by these last two pivoting steps.

2. Check that the fourth column
solves the original system of 3 simultaneous equations.

3. Check that the last 3 columns
form the inverse of the original coefficient matrix.
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Definition

An m × n matrix is in row echelon form just in case:

1. The first non-zero element in each row,
called the leading entry, is 1.

That is, in each row r ∈ {1, 2, . . . ,m},
there is leading element ar` for which:

I ar` = 1;
I arc = 0 for all c < `.

2. Each leading entry is in a column to the right
of the leading entry in the previous row.

This requires that, given the leading element ar` = 1 of row r ,
one has ar ′c = 0 for all r ′ > r and all c ≤ `.

3. In case a row has no leading entry,
because all its elements are zero,
it must be below any row with a leading entry.
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Examples

Here are three examples of matrices in row echelon form

Aref =

1 2 0 0
0 0 1 0
0 0 0 1

 ; Bref =


1 2 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ; Cref =

1 0
0 1
0 0


Here are three examples of matrices
that are not in row echelon form

D =

0 1
1 0
0 0

 ; E =

1 2
0 1
0 1

 ; F =

1 0
0 0
0 1


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A Generalized Row Echelon Form

An m × n matrix is in generalized row echelon form (or GREF)
just in case:

1. Each (non-zero) leading entry is in a column to the right
of the leading entry in the previous row.

This requires that, given the leading element ar` 6= 0 of row r ,
one has ar ′c = 0 for all r ′ > r and all c ≤ `.

2. In case a row has no leading entry,
because all its elements are zero,
it must be below any row with a leading entry.

That is, we abandon the restriction
that the first non-zero element in each row is 1.
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Pivoting to Reach a Generalized Row Echelon Form

Any m × n matrix can be transformed into its row echelon form
by applying a series of elementary row operations
involving non-zero pivot elements.

1. Look for the first non-zero column j1 in the matrix,
and find within it an element ai1j1 6= 0
with a large absolute value |ai1j1 |; this will be the first pivot.

2. Interchange rows 1 and i1, moving the pivot to the top row.

3. Subtract aij1/a1j1 times the new row 1
from each new row i > 1.

This first pivot operation will zeroize all the elements
of the pivot column j1 that lie below the new row 1.
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The Intermediate Matrices and Pivot Steps
After k − 1 pivoting operations have been completed,
and column jk−1 (with jk−1 ≥ k − 1) was the last to be used:

1. The first k − 1 rows of the m × n matrix
form a (k − 1)× n GREF matrix.

2. The last m − k + 1 rows of the m × n matrix
form an (m − k + 1)× n matrix
whose first jk−1 columns are all zero.

3. To determine the next pivot, look for the first column jk
which has a non-zero element below row k − 1,
and find within it an element aik jk 6= 0 with ik ≥ k
and with a large absolute value |aik jk |;
this will be the kth pivot.

4. Interchange rows k and ik , moving the pivot up to row k .

5. Subtract aijk/akjk times the new row k
from each new row i > k .

This kth pivot operation will zeroize all the elements
of the pivot column jk that lie below the new row k.
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Ending the Pivoting Process

1. Continue pivoting about successive pivot elements aik jk 6= 0,
moving row ik ≥ k up to row k at each stage k,
while leaving all rows above k unchanged.

2. Stop after r steps when either r = m,
or else all elements in the remaining m − r rows are zero,
so no further pivoting is possible.
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Permuting before Pivoting

Suppose that pivoting stops after r steps.

Suppose that the elements (aik jk )rk=1

of the original m × n matrix A have been used as the r pivots.

Let P denote the m ×m permutation matrix whose kth row
satisfies p>k = (pkj)

n
j=1 = (δik j)

n
j=1 for all k ∈ Nr ,

so that each row k of P equals row ik of the identity matrix Im.

Also, in case pivoting stops with r < m,
suppose that rows r + 1, . . . ,m of P
are chosen arbitrarily from non-pivot rows of A.

Then the elements of the m × n matrix PA satisfy

(PA)kj =
∑m

`=1
pk`a`j =

∑m

`=1
δik`a`j = aik j
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Pivoting after Permuting

Then the m× n matrix Ã := PA that results from these operations
can be transformed to GREF form
by pivoting successively about its elements (ãkjk )rk=1.

Remember that the kth pivoting operation
involves subtracting a multiple ãijk/ãkjk of the pivot row k
from each lower row i (with i > k),
in order to zeroize the ijk element for all i > k.

For each k ∈ Nr , the kth pivoting operation
is therefore represented by a lower unitriangular m ×m matrix L̃k .

So then is the product matrix L := L̃r L̃r−1 . . . L̃2L̃1

that results from combining all the successive pivoting operations
into a single transformation.

Hence, there exists an m ×m lower unitriangular matrix L
such that LPA is in GREF.
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Definitions

A matrix is in reduced row echelon form (RREF)
(respectively, in generalized reduced row echelon form (GRREF))
when it satisfies the following conditions.

1. The matrix is in row echelon form
(respectively, in generalized row echelon form).

2. The leading entry ai` 6= 0 in each row i
is the only non-zero entry in its column.

That is, aij = 0 for all j 6= `.

Here are three examples of matrices in reduced row echelon form

Arref =

1 2 0 0
0 0 1 0
0 0 0 1

 ; Brref =


1 2 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ; Crref =

1 0
0 1
0 0



University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 36 of 46



Reaching a Generalized Reduced Row Echelon Form
Consider an m × n matrix C
that is already in generalized row echelon form.

Suppose it has r leading non-zero elements ckjk
in rows k = 1, 2, . . . , r , where jk is increasing in k .

Starting at the pivot element crjr 6= 0 in the last pivot row r ,
zeroize all the elements in column jr above this element
by subtracting from each row k above r
the multiple ckjr /crjr of row r of the matrix C,
while leaving row r itself unchanged.

Each of these operations of subtracting one row from a higher row
corresponds to an upper unitriangular m ×m matrix,
as does the whole pivoting process.

Repeat this operation for each of the pivot elements ckjk ,
working from cr−1,jr−1 all the way back and up to c1j1 .

The combined procedure for all the r pivot elements constructs
one upper unitriangular m ×m matrix U
such that UC is in GRREF.
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Permuting the Columns
We have shown how to take a general m × n matrix A
and transform it into a matrix G = ULPA in GRREF form
by applying the product of three m ×m matrices:

1. an upper unitriangular matrix U;

2. a lower unitriangular matrix L;

3. a permutation matrix P.

Denote its r leading non-zero elements in rows k = 1, 2, . . . , r
by gkjk , where jk is increasing in k .

We finally post multiply G by an n × n permutation matrix P̃
that moves column jk to column k , for k = 1, 2, . . . , r .

It also partitions the matrix columns into two sets:

1. first, a complete set of r columns containing all the r pivots,
with one pivot in each row and one in each column;

2. then second, the remaining n − r columns without any pivots.

So the resulting matrix GP̃ has a diagonal sub-matrix Dr×r
in its top left-hand corner; its diagonal elements are the pivots.
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A Partly Diagonalized Matrix

Our constructions have led to the equality

GP̃ = ULPAP̃ =

(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
The right-hand side is a partitioned m × n matrix,
whose four sub-matrices have the indicated dimensions.

We may call it a “partly diagonalized” matrix.

Provided we can show that the non-negative integer r ≤ m
is unique, independent of what pivots are chosen,
we may want to call r the pivot rank of the matrix A.
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Decomposing an m × n Matrix

Premultiplying the equality

ULPAP̃ =

(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
by the inverse matrix (ULP)−1 = P−1L−1U−1,
which certainly exists, gives

AP̃ = (ULP)−1

(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
Postmultiplying the result by P̃−1 leads to

A = P−1L−1U−1

(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
P̃−1

This is a decomposition of A into the product
of five matrices that are much easier to manipulate.
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A Final Reduction
Premultiply our last partly diagonalized m × n matrix

GP̃ = ULPAP̃ =

(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
by the m ×m diagonal matrix

D∗ := diag(d−1
11 , d

−1
22 , . . . , d

−1
rr , 0, 0, . . . , 0)

whose partitioned form is

(
D−1

r×r 0r×(m−r)

0(m−r)×r 0(m−r)×(m−r)

)
.

The result is

D∗GP̃ = D∗ULPAP̃ =

(
Ir B∗r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
where B∗r×(n−r) := (Dr×r )−1Br×(n−r).

So the diagonal matrix in the top left corner
has been converted to the identity.
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Special Cases

So far we have been writing out full partitioned matrices,
as is required when the number of pivots satisfies r < min{m, n}.
Here are three other special cases when r ≥ min{m, n},
where the partially diagonalized m × n matrix

GP̃ = ULPAP̃ =

(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
reduces to:

1.
(
Dm×m Bm×(n−m)

)
in case r = m < n, so m − r = 0;

2.

(
Dn×n

0(m−n)×n

)
in case r = n < m, so n − r = 0;

3. Dn×n in case r = m = n, so m − r = n − r = 0.
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Finding the Determinant of a Square Matrix
In the case of an n × n matrix A, our earlier equality becomes

ULPAP̃ =

(
Dr×r Br×(n−r)

0(n−r)×r 0(n−r)×(n−r)

)
The determinant of this upper triangular matrix is clearly 0
except in the special case when r = n.

When r = n, there is a complete set of n pivots.

There are no missing columns, so no need to permute the columns
by applying the permutation matrix P̃.

Instead, we have the complete diagonalization ULPA = D.

The unitriangular matrices have determinants |U| = |L| = 1.

Also |P| = |P−1| = ±1, depending on the common sign
of the permutation P and its inverse.

So the product rule for determinants implies that |A| = sgn(P)|D|.
It is enough to multiply the diagonal elements, and choose the sign.
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A Matrix Equation

Consider the matrix equation AX = Y where

1. the matrix A is m × n;

2. the matrix X is n × p;

3. the matrix Y is m × p.

Really, it is p systems of m equations in n unknowns.

Premultiplying by D∗ULP, then manipulating, transforms
the left-hand side of the matrix equation AX = Y to

D∗ULPAX = D∗ULPAP̃P̃−1X =

(
Ir×r B∗r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
P̃−1X

So the whole equation AX = Y gets transformed to(
Ir×r B∗r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
P̃−1X = D∗ULPY
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Inverting a Square Matrix

Suppose that A is n × n,
and consider the equation system AX = In.

It has a solution if and only if |A| 6= 0,
in which case there is a unique solution X = A−1.

The necessary and sufficient condition |A| 6= 0 for invertibility
holds if and only if there is a full set of n pivots, so ULPA = D.

Then AX = In implies that ULPAX = DX = ULPI = ULP.

So X = A−1 = D−1ULP.

Pivoting does virtually all the work of matrix inversion,
because all that is left to invert a diagonal matrix,
then find the product of four n × n matrices.

Of these four matrices, one is diagonal, two are triangular,
and one is a permutation.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 46 of 46


	More Special Matrices
	Triangular Matrices
	Unitriangular Matrices

	Pivoting to Reach the Reduced Row Echelon Form
	Example
	The Row Echelon Form
	The Reduced Row Echelon Form
	Determinants and Inverses


