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Information Partitions

1. Introduction

In game theory, von Neumann and Morgenstern themselves provided us the standard model

of information that a rational agent is supposed to have. Given a state space S, an agent’s

possible information at any time is assumed to be represented by a partition Π of S into

pairwise disjoint information sets E ⊂ S. The information sets are the equivalence classes

of a (symmetric reflexive and transitive) equivalence or indistinguishability relation ∼ with

the property that any two states s, s′ ∈ S are indistinguishable iff there exists E ∈ Π such

that s, s′ ∈ E.

Recently, several game theorists have questioned the realism of the partition model,

with its implicit requirements that agents know both what they do and what they do

not know — see for example Bacharach (1985, 2005), Binmore and Brandenburger (1990),

Geanakoplos (1990, 1994), Samet (1990), Shin (1993), Modica and Rustichini (1994, 1999),

Morris (1996). Yet the standard may be weaker than many game theorists have realized,

especially for agents who have an “epistemic state” or “fix” on each state s ∈ S in the form

of a subset E ⊂ S. In the first place, it should be understood that the standard model is

not meant to apply to an arbitrary state space. Rather, the much more interesting claim is

that there exists a state space, perhaps artificially constructed, on which the agent has an

information partition.

In this connection, Geanakoplos (1990) points out that, whenever there is a possibility

correspondence s 7→→P (s) mapping each state to a unique fix, there is already a natural

partition of the state space S into classes of states that are indistinguishable because they

yield the same fix. This is briefly discussed in Section 2. Then Section 3 describes knowledge

operators and some of their familiar properties. One of these is called “logical omniscience”.

Later, Section 4 shows how, given any knowledge operator satisfying this property and the

requirement that any tautology is known to be true, there is a unique associated possibil-

ity correspondence. In this sense, Geanakoplos has shown how it is easy to construct an

information partition for any logically omniscient agent. The same is even true of belief

operators, which differ from knowledge operators because what is believed may not always

be true.
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To complete the preliminaries, Section 5 describes information partitions that are mod-

ified in an important way by allowing one cell of the partition to consist of states that are

known to be false. It is argued that such modified partitions arise naturally when describing

how knowledge evolves over time.

Not all information or knowledge can readily be described by possibility correspon-

dences, however, or by associated knowledge operators. Section 6 illustrates this by means

of a familiar example of intransitive indifference due to Luce (1956). This kind of example

can be accommodated, however, within Bacharach’s (2005) more general framework of in-

formation patterns, as described in Section 7. Such patterns allow several different fixes to

be associated with each state s ∈ S. Despite their significant greater generality, Section 8

shows how, on the extended space of state/fix pairs, it is still always possible to construct

in a straightforward manner a modified information partition of the form described in Sec-

tion 5, with some state/fix pairs known to be impossible.

Section 9 contains brief concluding remarks.

2. Possibility Correspondences and Information Partitions

A common generalization of the partition model is based on a general possibility correspon-

dence P : S→→S with the interpretation that, for each state s ∈ S, the set P (s) describes

those states that the agent cannot rule out as impossible when s is the true state. Bacharach

(2005) calls P (s) the agent’s fix when the true state is s, and regards P as a mapping from

S to 2S which he calls the fix function. I shall use both the term “fix” and the evocative

alternative epistemic state, because P (s) ⊂ S is supposed to represent everything the agent

knows about what states in S are possible. Note that, using the terminology of Bacharach

(2005) once again, a possibility correspondence exists iff each state s ∈ S is “epistemically

sufficient for itself” (or e.s.i.).

Binmore and Brandenburger (1990) also discuss how it is common to assume that the

possibility correspondence satisfies at least some of the following four axioms:

(P1) P (s) ⊂ S for all s ∈ S

(P2) s ∈ P (s) for all s ∈ S

(P3) for all s, s′ ∈ S: s′ ∈ P (s) =⇒ P (s′) ⊂ P (s)
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(P4) for all s, s′ ∈ S: s′ ∈ P (s) =⇒ P (s) ⊂ P (s′).

It is easy to check that, given any information partition Π on S, there is an associated

possibility correspondence P : S→→S satisfying (P1)–(P4) such that s ∈ P (s) ∈ Π for all

s ∈ S. Conversely, define

P−(s) := { s′ ∈ S | P (s′) = P (s) }

As Morris (1996, p. 11) argues concisely, (P3) and (P4) imply that P (s) ⊂ P−(s), whereas

(P2) implies that P−(s) ⊂ P (s). Therefore P (s) = P−(s), or s′ ∈ P (s) ⇐⇒ P (s′) = P (s).

It follows immediately that the binary relation ∼ defined on S by s ∼ s′ ⇐⇒ s′ ∈ P (s)

must be an equivalence relation. Then the corresponding partition Π(∼) of S into different

∼-equivalence classes is an information partition such that s ∈ P (s) ∈ Π for all s ∈ S. So

each possibility correspondence P : S→→S satisfying (P1)–(P4) is associated with a unique

information partition.

Actually, as Geanakoplos (1990) points out, the sets P−(s) always generate a partition,

even if one or more of the axioms (P2)–(P4) are violated. This is the natural information

partition that arises when the agent infers that the state can only be one of those that could

produce the known fix on the state. Because P−(s) ⊂ P (s) for all s ∈ S whenever axiom

(P2) is satisfied, in this case the constructed partition refines each possibility set by using

knowledge about what the fix would be in other states.

3. Logically Omniscient Knowledge Operators

An agent’s knowledge operator K on the given state space S is a mapping K : 2S → 2S

from the power set into itself. For each event E ⊂ S, the set KE ⊂ S is to be interpreted as

the set of all states in which the agent knows that E is true. As discussed by Binmore and

Brandenburger (1990) in particular, it is common to assume that the knowledge operator

satisfies at least some of the following five axioms. Apart from (K1) which is discussed

below, the names are taken from Bacharach (2005):

(K0) KS = S (Rule of Epistemization)

(K1) K(∩α∈AEα) = ∩α∈AKEα for every family {Eα | α ∈ A } ⊂ S (Logical Omniscience)

(K2) KE ⊂ E for all E ⊂ S (Axiom of Knowledge)
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(K3) KE ⊂ KKE for all E ⊂ S (Axiom of Transparency)

(K4) ¬KE ⊂ K(¬KE) for all E ⊂ S (Axiom of Wisdom)

These axioms have been explained and justified by many writers. Several have also

been given other names. Axiom (K0) indicates that all tautologies are known to be true; in

some sense, it is another very weak form of logical omniscience. Axiom (K1) earns its name

because it requires the agent to be able to carry out certain logical deductions. It trivially

implies that K(E ∩E′) = KE ∩KE′, a finitistic version of (K1) which Morris (1996) calls

“distributivity” and Bacharach (2005) calls the “conjunction axiom”. Of course, when S is

a finite set, the finitistic version of (K1) is equivalent to (K1) itself. Some other important

implications of (K1) will be presented shortly.

Axiom (K2), sometimes called “non-delusion” (Geanakoplos, 1990), requires that what

is known must be true. It is this axiom in particular which distinguishes knowledge from

belief, since beliefs can be mistaken whereas knowledge cannot be. To the extent that the

following discussion does not require (K2) to be satisfied, it is also relevant to beliefs as well

as to knowledge or information.

The first three axioms are usually regarded as uncontroversial relative to the last two.

Of these, axiom (K3) requires the agent to know what is known (Hintikka, 1962). Finally,

axiom (K4) imposes the more demanding requirement that the agent should know his or her

own epistemic limitations and recognize what is unknown. Following Fagin, Halpern and

Vardi (1991), axioms (K3) and (K4) respectively are often called “positive introspection”

and “negative introspection”.

Axiom (K1) is logically equivalent to the combination of the following two interesting

axioms:

(K1′) for all E,E′ ⊂ S: E ⊂ E′ =⇒ KE ⊂ KE′

(K1′′) ∩α∈AKEα ⊂ K(∩α∈AEα) for every family {Eα | α ∈ A } ⊂ S

Axiom (K1′) is one form of logical omnscience requiring that any event E′ must be

known if it can be deduced logically from a known event E. That is, all logical implications of

what is known must also be known. See Bacharach (2005) especially for further discussion.

Axiom (K1′′) is a second form of logical omnscience requiring that, if each event Eα (α ∈ A)

is known, then so is the logical conjunction ∩α∈AEα.
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Of course axiom (K1) trivially implies (K1′′). It also implies (K1′) because, if E ⊂ E′

and (K1) holds, then

KE = K(E ∩ E′) = KE ∩KE′ ⊂ KE′

Conversely, for all β ∈ A, because ∩α∈AEα ⊂ Eβ , axiom (K1′) evidently implies that

K(∩α∈AEα) ⊂ KEβ . So K(∩α∈AEα) ⊂ ∩α∈AKEα. And if (K1′′) holds as well, then so

does (K1). Hence (K1) is logically equivalent to axioms (K1′) and (K1′′) combined, which

explains why I have chosen to call it “logical omnscience”.

Together, as is well known, the five axioms (K0)–(K4) are equivalent to the partition

model of knowledge or information. This result will be discussed in the next section.

4. Associated Possibility Correspondences and Knowledge Operators

Let P : S→→S be any possibility correspondence. For event E to be known when the state

is s, it is necessary and sufficient that P (s) ⊂ E. Hence it is natural to construct the

associated knowledge operator KP so that, for all E ⊂ S, one has

KP E := { s ∈ S | P (s) ⊂ E }

Conversely, let K : 2S → 2S be any knowledge operator. Given any state s ∈ S, a state

s′ ∈ S is possible if and only if s′ ∈ E whenever KE is true because s ∈ KE. Accordingly,

construct the associated possibility correspondence PK so that, for all E ⊂ S, one has1

PK(s) := { s′ ∈ S | ∀E ⊂ S : s ∈ KE =⇒ s′ ∈ E } =
⋂
{E ⊂ S | s ∈ KE }

The following result plays a crucial role in understanding when logically omniscient

knowledge operators exist. So, even though Morris (1996, p. 5, Theorem 1) demonstrates

the same result, a full proof is provided here.

Proposition 1. Each P : S→→S satisfying (P1) is equivalent to a unique K : 2S → 2S

satisfying (K0) and (K1).

Proof: Given any P : S→→S satisfying (P1), it is obvious that the associated knowledge
operator KP satisfies (K0), and easy to prove that (K1) is satisfied as well. Also KP can

1 In general, this construction gives a smaller set than the alternative construction P ′
K(s) :=

{ s′ ∈ S | s 6∈ K(S \ {s′}) } used by Morris (1996, p. 6, eq. (2.2)). But it is easy to show that the
two constructions are equivalent when (K1′) is satisfied.
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be used to generate the possibility correspondence PKP
: S→→S with

PKP
(s) = { s′ ∈ S | ∀E ⊂ S : P (s) ⊂ E =⇒ s′ ∈ E }

Now, considering the particular set E = P (s) makes it evident that, if s′ ∈ PKP
(s), then

s′ ∈ E = P (s). On the other hand, for any s′ ∈ P (s) it must be true that P (s) ⊂ E =⇒
s′ ∈ E, so s′ ∈ PKP

(s). Hence PKP
(s) = P (s).

Conversely, given any K satisfying (K0) and (K1), it is obvious that the associated pos-
sibility correspondence PK satisfies (P1). Then PK can be used to generate the knowledge
operator KPK

with

KPK
E = { s ∈ S | ∩{E′ ⊂ S | s ∈ KE′ } ⊂ E }

Now, if s ∈ KPK
E then PK(s) ⊂ E, implying that s ∈ KPK

E. On the other hand,
s ∈ KPK

E implies that PK(s) = ∩{E′ ⊂ S | s ∈ KE′ } ⊂ E. Hence, for each s′ ∈ S \ E,
there exists E′ ⊂ S with s ∈ KE′ such that s′ 6∈ E′ and so E′ ⊂ S \ {s′}. But (K1) implies
(K1′), so for all s′ ∈ S \ E one has KE′ ⊂ K(S \ {s′}) and so s ∈ K(S \ {s′}). Therefore,
s ∈ ∩s′∈S\EK(S \ {s′}) and so, by (K1), s ∈ K

(
∩s′∈S\E(S \ {s′})

)
. Yet de Morgan’s laws

imply that ⋂
s′∈S\E

(S \ {s′}) = S \
⋃

s′∈S\E

{s′} = S \ (S \ E) = E

and so s ∈ KE.

The equivalence between knowledge operators satisfying (K0) and (K1) and possibility

correspondences satisfying (P1) extends to other properties as well. Indeed, as Morris (1996,

p. 11, Lemma 2) correctly claims:

Proposition 2. For n = 2, 3, 4, any knowledge operator satisfying properties (K0), (K1)

and (Kn) is associated with a unique possibility correspondence satisfying properties (P1)

and (Pn), for the same n.

Proof: Each of the three proofs makes elementary use of the appropriate definitions, and
is left to the reader.

In particular, Proposition 2 implies that any information partition is associated with a

unique knowledge operator satisfying all five axioms (K0)–(K4).
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5. Modified Partitions with States Known to be Impossible

Up to now I have followed the usual epistemic models in assuming that no state s ∈

S can be excluded as totally impossible. Yet as the example of Section 6 below shows,

some interesting epistemic models may include (extended) states which the agent’s variable

information structure will rule out as impossible in some eventualities. Accordingly, suppose

that S is first partitioned into one set F of states that are known to be false, and the

complementary set T of states that could still be true.

In this case, a reasonable requirement of the possibility correspondence P : S→→S is

that it should satisfy P (s) ⊂ T whenever s ∈ T , but P (s) = S whenever s ∈ F . Thus,

for states not already ruled out as false, the possibility set excludes all false states. But,

just as any statement, true or false, can be deduced logically from a false premiss, so the

hypothesis that a false state has occurred puts no restriction at all on the set of possible

states; not even states known to be false can be ruled out.

Note that such a possibility correspondence necessarily violates (P4) because, if s ∈ F

and s′ ∈ P (s), then whenever s′ ∈ T one has

P (s) = S 6⊂ P (s′) ⊂ T = S \ F ⊂ S \ {s}

However, it is still possible for P to satisfy the following weakened form of (P4):

(P4′) s′ ∈ P (s) =⇒ P (s) ⊂ P (s′) for all s, s′ ∈ T

Indeed, when states s ∈ F are known to be impossible, it is still possible for P : S→→S to

satisfy all four conditions (P1)–(P3) and (P4′). If it does so, there must be a restricted pos-

sibility correspondence P|T : T →→T satisfying (P1)–(P4) on T . This restricted possibility

correspondence must be associated with an information partition Π|T on the set T ; then

there is also a unique partition of S consisting of Π|T together with the set F of impossible

states. Thus Π|T ∪ {F} is a modified information partition in which one particular cell F

is known to be impossible.

Given such a possibility correspondence P : S→→S with P (s) ⊂ T whenever s ∈ T ,

but P (s) = S whenever s ∈ F , the unique associated knowledge operator is given by

KE := { s ∈ S | P (s) ⊂ E } for all E ⊂ S, as in Section 4. This must satisfy KT = T and

KS = S, while KE = K(E ∩ T ) ⊂ T for all E 6= S, and KE = ∅ for all definitely false
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events E ⊂ F . All of these are intuitively appealing properties, given the partition T ∪ F

of S into states that could possibly be true and those that are definitely false.

Because P : S→→S must violate (P4), the associated knowledge operator K must

violate (K4), but could still satisfy the following weakened form of (K4):

(K4′) ¬KE ⊂ K(¬KE) for all E ⊂ T

In particular, K could still satisfy (K0)–(K4) on all subsets of T , even though only (K4′)

holds on S. Indeed, this property must hold whenever K is associated with a modified

information partition Π|T ∪ {F}, where F is the set of states known to be false.

The modified information partitions considered here appear to be novel in recognizing

that some states s ∈ S may be known to be impossible. Yet this seems entirely natural.

After all, as time t progresses, an agent’s information should be modelled by a family of

increasingly refined information partitions Πt. In discrete time these will form an event tree,

whereas in continuous time there will be a filtration. At each time t the agent will know

that some event E ∈ Πt has occurred, and that states s ∈ S \ E are therefore impossible.

Given that E is known to have occurred at time t, information at later times t′ > t will be

described by a partition Πt′|E of E rather than of S. Alternatively, however, they can be

described equally well by the extended partition Πt′|E ∪ {S \E} of the original state space

S, even though this includes the set S \ E of states that are known to be impossible.

6. A Classical Example: Luce’s Semi-Transitive Coffee Drinker

The recent literature cited in Section 1 has presented many examples of non-partitional

information structures. The following classic example of intransitive indifference due to

Luce (1956, p. 179) is, however, very familiar in another context, as well as being close to

what seems to be a real phenomenon:

. . . consider the following experiment. Find a subject who prefers a cup of coffee
with one cube of sugar to one with five cubes (this should not be too difficult). Now

prepare 401 cups of coffee with
(

1 +
i

100

)
x grams of sugar, i = 0, 1, · · · , 400, where

x [grams] is the weight of one cube of sugar. It is evident that he will be indifferent
between cup i and cup i + 1, for any i, but by choice he is not indifferent between
i = 0 and i = 400.
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The obvious reason for the indifference relation to be intransitive in this example is that

the coffee drinker cannot distinguish between cup i and cup i + 1, for any i, though he can

distinguish between i = 0 and i = 400. So the coffee drinker’s indistinguishability relation

is intransitive, though it is naturally reflexive and symmetric. There is no corresponding

information partition. Incidentally, this is so even though there need be no “processing

errors” of the kind noted by Geanakoplos (1990). In this example, therefore, it is hard to

see how one could successfully construct an information partition as in Section 3. For this

reason, the standard epistemic model described in Sections 3 and 4 does not seem applicable

to Luce’s coffee drinker, even when non-partitional information is allowed.

In fact a proper model of the coffee drinker’s information should presumably include

a description of how sweet the coffee is perceived to be, as well as of the actual quantity

of sugar. Such a model therefore consists of pairs (m, q), where m ∈ M denotes a discrete

ordinal measure of perceived sweetness or an appropriate mental state, and q ∈ Q denotes

the true quantity of sugar. Evidently, there will be some relationship between the mental

state m and the quantity q. An obvious way of expressing this relationship mathematically

is through a binary relation whose graph is a subset R ⊂ M×Q. Then (m, q) ∈ R will mean

that mental state m is possible when the true quantity is q, so the coffee drinker should

regard quantity q as possible when the perception of sweetness is m. The graph R should

have the property that each m is associated with at least one q, and vice versa. Hence,

there must exist two non-empty valued inverse correspondences m 7→→Q(m) and q 7→→M(q)

whose common graph is the set R.

In such a model, Luce’s coffee drinker can be regarded as having at least one mental

state m ∈ M associated with each cup i = 0, 1, · · · , 400 containing qi := (1+0.01i)x grams of

sugar. Moreover, for each pair of quantities qi, qi+1 there must exist a common mental state

m ∈ M(qi)∩M(qi+1) so that the two quantities cannot be distinguished. Now, though there

is no information partition on the set Q, provided that the coffee drinker is aware of mental

state m, there must be a trivial partition on R corresponding to the indistinguishability

equivalence relation ∼ defined by (m, q) ∼ (m′, q′) ⇐⇒ m = m′.

One defect of this newly constructed partition of M × Q is that it cannot really deal

with changes in the coffee drinker’s perceptions. For example, the sense of taste may become

dulled by a heavy cold. Such changes alter the relation R between perceptions of sweetness
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and actual sugar quantities; there will be a new “dulled” relation R̄. Pairs that were

previously impossible because (m, q) 6∈ R will now become possible because (m, q) ∈ R̄; the

reverse is also possible in some cases. In order to accommodate such changes in perceptions,

it is natural to specify a partition on the whole Cartesian product space M ×Q. But some

extended states (m, q) ∈ M×Q are known not to be possible, given the variable relationship

R between mental states and quantities. Accordingly one should construct, as in Section 5,

a modified information partition which represents the agent’s knowledge that some extended

states are impossible. This modified partition will include a variable set F ⊂ M × Q of

extended states that are definitely known to be false, together with a variable partition of

R = (M ×Q) \ F , the set of extended states that are known to be possible.

A second defect of the construction concerns the formulation in terms of abstract men-

tal states m ∈ M , instead of relatively concrete sugar quantities q ∈ Q and possibility

sets or fixes E ⊂ Q. This is a significant and probably unhelpful departure from the epis-

temic model with a possibility correspondence q 7→→P (q), which considers only the natural

state space Q and its subsets. As a possible remedy it seems obvious that one should

try constructing the possibility correspondence P : Q→→Q as the composition of the two

correspondences q 7→→M(q) and m 7→→Q(m) whose common graph is the set R. Such a com-

position P = Q ◦ M is defined by P (q) := ∪m∈M(q) Q(m). However, any such possibility

correspondence merely takes us back to the epistemic models of Sections 3 and 4, for which

it is easy to construct an information partition on the set Q. This is exactly the framework

which, I have argued, fails to accommodate Luce’s example. In fact, a more appropriate

remedy seems to be quite different, and is the topic of the next section.

7. Information Patterns

In work dating back to 1984 which still remains unpublished, Bacharach (2005) mentions

the possibility of more general information patterns. These occur when at least one state

s ∈ S may not be e.s.i. (epistemically sufficient for itself) because more than one fix E ⊂ S

may correspond to s.2 So an information pattern will be defined as a correspondence

P̃ : S→→ 2S with graph T̃ . Thus, each different event E ∈ P̃ (s) is a possible fix when

2 However, Bacharach’s (2005) definition of an epistemic model involves a knowledge operator
satisfying (K0)–(K2), so that a “fix function” or possibility correspondence can be constructed as
in Section 4 above. Hence each state s ∈ S must be e.s.i. after all.
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the state is s; it is no longer required that there be a single fix P (s) in each state s. This

implies in particular that none of the axioms (P1)–(P4) need apply to information patterns;

and associated knowledge operators to which axioms (K0)–(K4) might apply may not even

exist.

Of course, for each s ∈ S there is a union possibility set of all states that are possible

in some fix that could occur in state s. This is defined by

P∪(s) :=
⋃
{E | E ∈ P̃ (s) }

This generates a union possibility correspondence P∪ : S→→S that satisfies (P1). There is

an associated union knowledge operator defined by

K∪E := { s ∈ S | E′ ∈ P̃ (s) =⇒ E′ ⊂ E }

for all E ⊂ S. This definition reflects the idea that E is known to be true iff it is true in

any fix the agent could have in some state s ∈ K∪E. Note that, because P∪ satisfies (P1),

the associated K∪ satisfies (K0) and (K1). However, in general the information pattern P̃

cannot be recovered from K∪; only P∪ can. So information patterns are more general than

possibility correspondences or fix functions. They are also more general than knowledge

operators.

Information patterns can accommodate Luce’s example much more successfully than

possibility correspondences can. For example, suppose that the set of possible quantities is

Q = [0, 6x] ⊂ <, and that the set of possible mental states is M = {mk | k = 1, 2, . . . , 11 }.

Suppose too that R ⊂ M ×Q satisfies

(m, q) ∈ R ⇐⇒ q ∈ Q(m) ⇐⇒ m ∈ M(q)

where

Q(mk) := Ik := [ 12 (k − 1)x, 1
2 (k + 1)x ) (k = 1, 2, . . . , 11)

Now, instead of composing the two correspondences q 7→→M(q) and m 7→→Q(m) into the

possibility correspondence P = Q ◦ M , one can instead define the information pattern
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P̃ : Q→→ 2Q by

P̃ (q) := {Q(m) | m ∈ M(q) } =


{I1} if 0 ≤ q < 1

2x

{ Ik−1, Ik } if 1
2 (k − 1)x ≤ q < 1

2kx

(k = 2, 3, . . . , 11)

{I11} if 11x/2 ≤ q < 6x

In other words, P̃ (q) ⊂ 2Q is the range of all possible fixes as the mental state m varies

over the set M(q), whereas P∪(q) ∈ 2Q is the union of all those fixes. This difference allows

P̃ (q) to describe the coffee drinker’s inability to specify precisely what fix or mental state

E ⊂ Q is appropriate for each possible quantity level q ∈ Q.

Returning to general information partitions, note how the Geanakoplos construction

that was briefly described in Section 3 does not work very well. Of course, one can still

partition the state space S into subsets on which the entire image set P̃ (s) ⊂ 2S of possible

fixes is constant. But this requires the agent to be aware of what this entire image set is,

rather than knowing just one particular fix E ∈ 2S .

An alternative construction would be to consider the correspondence P̂ : 2S →→S de-

fined by P̂ (E) := { s ∈ S | E ∈ P̃ (s) } for each E ⊂ S. Thus, P̂ (E) is the set of states in

which E is a possible fix. But this construction does not work very well either. For one

thing, it does not yeld a partition or even a possibility correspondence. Also, when E1 6= E2

but P̂ (E1) = P̂ (E2), this construction fails to recognize the agent’s ability to distinguish

between the two fixes E1 and E2.

Nevertheless, incorporating the sets P̂ (E) in a more extensive construction does yield

a suitable information partition. This is the final topic of the paper.
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8. Constructing an Information Partition

Consider now the extended space S∗ := S × 2S whose members are state/fix pairs (s,E)

with s ∈ S and E ⊂ S. Given any information pattern P̃ : S→→ 2S , a natural modified

information partition Π∗ will now be defined on S∗.

The construction is almost trivial. It involves first setting

T ∗ := Graph P̃ := { (s,E) ∈ S∗ | E ∈ P̃ (s) }; F ∗ := S∗ \ T ∗

as the set of all states in S∗ that are logically possible, and the complement which consists

of all states that are definitely impossible or false. Then the new possibility correspondence

P ∗ : S∗→→S∗ is defined for all (s,E) ∈ S∗ by

P ∗(s,E) :=

{
{ (s′, E′) ∈ S∗ | E = E′ ∈ P̃ (s′) } = P̂ (E)× {E} if (s,E) ∈ T ∗

S∗ if (s,E) ∈ F ∗

Evidently P ∗(s,E) ⊂ T ∗ iff (s,E) ∈ T ∗.

The associated knowledge operator K∗ : 2S∗ → 2S∗
is defined for all extended events

E∗ ⊂ S∗ by

K∗E∗ :={ (s,E) ∈ S∗ | P ∗(s,E) ⊂ E∗ }

=

{
{ (s,E) ∈ T ∗ | P̂ (E)× {E} ⊂ E∗ } if E∗ 6= S∗

S∗ if E∗ = S∗

This definition implies that K∗E∗ = K∗(E∗ ∩ T ∗) ⊂ T ∗ for all E∗ 6= S∗, that K∗T ∗ = T ∗,

K∗S∗ = S∗, and K∗E∗ = ∅ whenever E∗ ⊂ F ∗. Also, whenever E ⊂ S satisfies P̂ (E) 6= ∅

one has K∗(E×{E}) = P̂ (E)×{E}, implying that the agent knows when the fix is E, and

knows also that the state s must satisfy E ∈ P̃ (s). Furthermore, P ∗(s,E) = K∗(E × {E})

whenever (s,E) ∈ T ∗.

Finally, define the extended indistinguishability relation ∼∗ on T ∗ by

(s,E) ∼∗ (s′, E′) ⇐⇒ (s′, E′) ∈ P ∗(s,E) ⇐⇒ E = E′

where the last equivalence follows from the fact that E ∈ P̃ (s) and E′ ∈ P̃ (s′) for all

(s,E), (s′, E′) ∈ T ∗. The relation ∼∗ is an exact representation of the agent’s ignorance;

if (s,E) 6∼∗ (s′, E′) when both (s,E) and (s′, E′) ∈ T ∗, this can only be because E 6= E′,
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in which case the agent should be able to distinguish between the two fixes or epistemic

states. Moreover, the relation ∼∗ is clearly an equivalence relation that partitions T ∗ into

indistinguishability classes or information sets. Thus, by modelling the agent’s knowledge

explicitly in the simplest possible way, one is able to construct a rather obvious information

partition.

The above constructions require only the existence of the correspondence P̃ : S→→ 2S .

Such unrestricted information patterns actually apply better to models of belief which,

unlike models of knowledge, do not require each possible fix to include the true state.

Models of knowledge, on the other hand, should satisfy the additional axiom:

(P̃2) s ∈ E for all E ∈ P̃ (s)

In this case it is natural to redefine the extended space S∗ so that it becomes

S∗ := { (s,E) ∈ S × 2S | s ∈ E }

Thus, the new S∗ consists entirely of state/fix pairs with the property that the state is

consistent with the fix. Provided that the original possibility correspondence P : S→→S

satisfies (P̃2), its graph T ∗ is still a subset of the new S∗, so all the previous constructions

still apply.

9. Concluding Remarks

The above results should not be surprising. When the true state is s ∈ S, each possible

fix E ∈ P̃ (s) is allowed by the information pattern. Any such fix is supposed to represent

exactly what the agent knows. An agent who is always fully aware of this fix will always

know what he or she knows and does not know. So there will be an information partition

in the relevant extended space of state/fix pairs.

Recently Modica and Rustichini (1994, 1999) have discussed an “awareness” axiom

which is close to (K4) or (P4). In the second paper, they also introduced “unawareness”

in a model of epistemic logic. Translating this condition into set-theoretic language, they

allow knowledge operators which violate the logical omniscience axiom (K1), even in its

weaker finitistic version. In particular, even when both KE and E ⊂ E′, the agent may

still remain totally “unaware” of event E′. Such unawareness requires that neither KE′
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nor ¬KE′ be true. It remains to be seen what implications their model has for information

patterns. However, the results of this paper suggest that, if there is to be an interesting

departure from the partition model of information, even on an enriched state space, then

the agent had better have no information pattern at all. There must be more vagueness

about what is known than information patterns allow, and/or more significant departures

from logical omniscience.
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