Metadynamics for transition paths in irreversible dynamics

T. Grafke, A. Laio, Multiscale Modeling & Simulation, Vol. 22, Iss. 1 (2024)

Abstract

Stochastic systems often exhibit multiple viable metastable states that are long-lived. Over very long timescales, fluctuations may push the system to transition between them, drastically changing its macroscopic configuration. In realistic systems, these transitions can happen via multiple physical mechanisms, corresponding to multiple distinct transition channels for a pair of states. In this paper, we use the fact that the transition path ensemble is equivalent to the invariant measure of a gradient flow in pathspace, which can be efficiently sampled via metadynamics. We demonstrate how this pathspace metadynamics, previously restricted to reversible molecular dynamics, is in fact very generally applicable to metastable stochastic systems, including irreversible and time-dependent ones, and allows to estimate rigorously the relative probability of competing transition paths. We showcase this approach on the study of a stochastic partial differential equation describing magnetic field reversal in the presence of advection.


doi:10.1137/23M1563025

arXiv

Optimal Transition Paths for AMOC Collapse and Recovery in a Stochastic Box Model

Jelle Soons, Tobias Grafke, Henk A. Dijkstra

Abstract

The present-day Atlantic Meridional Overturning Circulation (AMOC) is considered to be in a bi-stable regime and hence it is important to determine probabilities and pathways for noise-induced transitions between its equilibrium states. Here, using Large Deviation Theory (LDT), the most probable transition pathways for the collapse and recovery of the AMOC are computed in a stochastic box model of the World Ocean. This allows us to determine the physical mechanisms of noise-induced AMOC transitions. We show that the most likely path of an AMOC collapse starts paradoxically with a strengthening of the AMOC followed by an immediate drop within a couple of years due to a short but relatively strong freshwater pulse. The recovery on the other hand is a slow process, where the North Atlantic needs to be gradually salinified over a course of 20 years. The proposed method provides several benefits, including an estimate of probability ratios of collapse between various freshwater noise scenarios, showing that the AMOC is most vulnerable to freshwater forcing into the Atlantic thermocline region.

arXiv

Saddle avoidance of noise-induced transitions in multiscale systems

Reyk Börner, Ryan Deeley, Raphael Römer, Tobias Grafke, Valerio Lucarini, Ulrike Feudel

Abstract

In multistable dynamical systems driven by weak Gaussian noise, transitions between competing states are often assumed to pass via a saddle on the separating basin boundary. In contrast, we show that timescale separation can cause saddle avoidance in non-gradient systems. Using toy models from neuroscience and ecology, we study cases where sample transitions deviate strongly from the instanton predicted by Large Deviation Theory, even for weak finite noise. We attribute this to a flat quasipotential and propose an approach based on the Onsager-Machlup action to aptly predict transition paths.

arXiv

Nano-Monsterwellen in hauchdünnen Flüssigkeitsfilmen

Monsterwellen können dutzende Meter hoch werden. Doch die seltenen Mega-Wogen treten auch im Allerkleinsten auf - und sind dort sogar wichtiger: Sie steuern das Verhalten hauchdünner Flüssigkeitsfilme.

Link

Scalable Methods for Computing Sharp Extreme Event Probabilities in Infinite-Dimensional Stochastic Systems

T. Schorlepp, S. Tong, T. Grafke, and G. Stadler, Statistics and Computing 33 (2023), 137

Abstract

We introduce and compare computational techniques for sharp extreme event probability estimates in stochastic differential equations with small additive Gaussian noise. In particular, we focus on strategies that are scalable, i.e. their efficiency does not degrade upon spatial and temporal refinement. For that purpose, we extend algorithms based on the Laplace method for estimating the probability of an extreme event to infinite dimensions. The method estimates the limiting exponential scaling using a single realization of the random variable, the large deviation minimizer. Finding this minimizer amounts to solving an optimization problem governed by a differential equation. The probability estimate becomes sharp when it additionally includes prefactor information, which necessitates computing the determinant of a second derivative operator to evaluate a Gaussian integral around the minimizer. We present an approach in infinite dimensions based on Fredholm determinants, and develop numerical algorithms to compute these determinants efficiently for the high-dimensional systems that arise upon discretization. We also give an interpretation of this approach using Gaussian process covariances and transition tubes. An example model problem, for which we also provide an open-source python implementation, is used throughout the paper to illustrate all methods discussed. To study the performance of the methods, we consider examples of stochastic differential and stochastic partial differential equations, including the randomly forced incompressible three-dimensional Navier-Stokes equations.


doi:10.1007/s11222-023-10307-2

arXiv

Rogue nanowaves: A route to film rupture

J. E. Sprittles, J. Liu, D. A. Lockerby, and T. Grafke, Phys. Rev. Fluids 8 (2023), L092001

Abstract

Sufficiently thin liquid films on solid surfaces are often unstable to intermolecular forces and it is commonly assumed that their rupture occurs via a linear instability mechanism in the so-called spinodal regime. Here, a theoretical framework is created for the experimentally observed thermal regime, in which fluctuation-induced nanowaves rupture linearly stable films. Molecular simulations in a quasi-2D geometry identify these regimes and are accurately reproduced by stochastic simulations based on fluctuating hydrodynamics. Rare-event theory is then applied to, and developed for, this field to provide exceptional computational efficiency and accuracy that allows us to extend calculations deep into the thermal regime. Analysis of the rare-event theory reveals a picture of how and when “rogue nanowaves” are able to provide a route to film rupture. Finally, future applications of the new theoretical framework and experimental verification is discussed.


doi:10.1103/PhysRevFluids.8.L092001

Symmetries and Zero Modes in Sample Path Large Deviations

T. Schorlepp, T. Grafke, and R. Grauer, J Stat Phys 190 (2023), 50

Abstract

Sharp large deviation estimates for stochastic differential equations with small noise, based on minimizing the Freidlin-Wentzell action functional under appropriate boundary conditions, can be obtained by integrating certain matrix Riccati differential equations along the large deviation minimizers or instantons, either forward or backward in time. Previous works in this direction often rely on the existence of isolated minimizers with positive definite second variation. By adopting techniques from field theory and explicitly evaluating the large deviation prefactors as functional determinant ratios using Forman's theorem, we extend the approach to general systems where degenerate submanifolds of minimizers exist. The key technique for this is a boundary-type regularization of the second variation operator. This extension is particularly relevant if the system possesses continuous symmetries that are broken by the instantons. We find that removing the vanishing eigenvalues associated with the zero modes is possible within the Riccati formulation and amounts to modifying the initial or final conditions and evaluation of the Riccati matrices. We apply our results in multiple examples including a dynamical phase transition for the average surface height in short-time large deviations of the one-dimensional Kardar-Parisi-Zhang equation with flat initial profile.


doi:10.1007/s10955-022-03051-w

arXiv

Mechanism for turbulence proliferation in subcritical flows

A. Frishman and T.Grafke, Proc. R. Soc. A 478 (2022) 2265

Abstract

The subcritical transition to turbulence, as occurs in pipe flow, is believed to generically be a phase transition in the directed percolation universality class. At its heart is a balance between the decay rate and proliferation rate of localized turbulent structures, called puffs in pipe flow. Here we propose the first-ever dynamical mechanism for puff proliferation---the process by which a puff splits into two. In the first stage of our mechanism, a puff expands into a slug. In the second stage, a laminar gap is formed within the turbulent core. The notion of a split-edge state, mediating the transition from a single puff to a two puff state, is introduced and its form is predicted. The role of fluctuations in the two stages of the transition, and how splits could be suppressed with increasing Reynolds number, are discussed. Using numerical simulations, the mechanism is validated within the stochastic Barkley model. Concrete predictions to test the proposed mechanism in pipe and other wall bounded flows, and implications for the universality of the directed percolation picture, are discussed.


doi:https://doi.org/10.1098/rspa.2022.0218

arXiv

Extreme events and instantons in Lagrangian passive scalar turbulence models

M. Alqahtani, L. Grigorio, and T. Grafke, Phys. Rev. E 106 (2022) 015101

Abstract

The advection and mixing of a scalar quantity by fluid flow is an important problem in engineering and natural sciences. If the fluid is turbulent, the statistics of the passive scalar exhibit complex behavior. This paper is concerned with two Lagrangian scalar turbulence models based on the recent fluid deformation model that can be shown to reproduce the statistics of passive scalar turbulence for a range of Reynolds numbers. For these models, we demonstrate how events of extreme passive scalar gradients can be recovered by computing the instanton, i.e., the saddle-point configuration of the associated stochastic field theory. It allows us to both reproduce the heavy-tailed statistics associated with passive scalar turbulence, and recover the most likely mechanism leading to such extreme events. We further demonstrate that events of large negative strain in these models undergo spontaneous symmetry breaking.


doi:10.1103/PhysRevE.106.015101

arXiv

Enormous 'rogue waves' can appear out of nowhere. Math is revealing their secrets.

Once considered a maritime myth, these towering waves can pose serious risks to ships in the open sea. Now scientists are developing ways to predict them before they strike.

Link