EXERCISE SHEET 4

Let X be a compact complex manifold. We write

$$
h^{i, j}(X):=h^{j}\left(X, \Omega_{X}^{i}\right), \quad b_{i}(X):=h^{i}(X, \mathbb{C}), \quad e(X):=\sum(-1)^{i} b_{i}(X) .
$$

Problem 0.1. Let X be a compact complex manifold. Show that $h^{1,0} \leq b_{1} / 2$.
Problem 0.2. Let ω be a holomorphic ($n-1$)-form on a complex manifold X of dimension n. Show that $d \omega=0$.

Problem 0.3. Let X be a compact complex surface. Show that

$$
2 h^{1,0} \leq b_{1} \leq h^{0,1}+h^{1,0} \leq 2 h^{0,1}
$$

Problem 0.4. Let X be a K3 surface in the sense of Exercise sheet 3. Compute $e(X), h^{i, j}$ and b_{i}. (Without using the fact X is Kähler. Hint: Use the above 3 problems.)

Problem 0.5. Let $X:=\left(\mathbb{C}^{n} \backslash\{0\}\right) / \Gamma$ be the quotient, where the group $\Gamma=\mathbb{Z}=\langle\gamma\rangle$ acts on \mathbb{C}^{n} by

$$
\gamma \cdot\left(z_{1}, \ldots, z_{n}\right)=\left(2 z_{1}, \ldots 2 z_{n}\right)
$$

- Show that X is a compact complex manifold diffeomorphic to $S^{1} \times S^{2 n-1}$.
- Compute b_{1} (or all b_{i}). Is X Kähler?

Problem 0.6. Let X be a compact complex surface. Prove the following formulas by using the Hirzebruch-Riemann-Roch formula;

$$
\begin{aligned}
& h^{0,0}-h^{0,1}+h^{0,2}=\frac{1}{12}\left(c_{1}(X)^{2}+c_{2}(X)\right), \\
& h^{1,0}-h^{1,1}+h^{1,2}=\frac{1}{6}\left(c_{1}(X)^{2}-5 c_{2}(X)\right), \\
& h^{2,0}-h^{2,1}+h^{2,2}=\frac{1}{12}\left(c_{1}(X)^{2}+c_{2}(X)\right) .
\end{aligned}
$$

Problem 0.7. Let X be the example given in Problem 0.5 and assume $n=2$. Compute $h^{i, j}(X)$ by using 0.6.

References

[1] S. Kobayashi, Complex geometry (in Japanese), Iwanami shoten.

