Hodge Theory reading seminar: exercise sheet 2 .

Exercise taken from the following books:

- Complex Geometry (D. Huybrechts);
- Hodge Theory and Complex Algebraic Geometry, I (C. Voisin)
- Period Mappings and Period Domains (J. Carlson, S. Müller-Stach, C.Peters)

Exercise 1. Let $Y \subset X$ a smooth hypersurface in a complex manifold X of dimension n and let α be a meromorphic section of K_{X} with at most simple poles along Y. Locally one can write $\alpha=h \cdot \frac{d z_{1}}{z_{1}} \wedge d z_{2} \wedge \ldots \wedge d z_{n}$, with z_{1} defining Y. One sets $\operatorname{Res}_{Y}(\alpha)=\left.\left(h \cdot d z_{2} \wedge \ldots \wedge d z_{n}\right)\right|_{Y}$.

- Show that $\operatorname{Res}_{Y}(\alpha)$ is well-defined and that it yields an element in $H^{0}\left(Y, K_{Y}\right)$;
- Consider α as an element in $H^{0}\left(K_{X} \otimes \mathcal{O}(Y)\right)$ and compare the definition of the residue with the adjunction formula $\left.K_{Y} \cong\left(K_{X} \otimes \mathcal{O}(Y)\right)\right|_{Y}$;
- Consider a smooth hypersurface $Y \subset \mathbb{P}^{n}$ defined by a homogeneous polynomial $f \in H^{0}\left(\mathbb{P}^{n}, \mathcal{O}(n+1)\right)$, and let $\alpha:=\sum(-1)^{i} \frac{z_{i}}{f} d z_{0} \wedge \ldots \wedge \hat{d z_{i}} \wedge \ldots \wedge d z_{n}$ a meromorphic section of $K_{\mathbb{P}^{n}}$ with simple poles along Y. Show that $\operatorname{Res}_{Y}(\alpha) \in H^{0}\left(Y, K_{Y}\right)$ defines a trivializing section of K_{Y}.

Exercise 2. Show that the canonical bundle K_{X} of a complete intersection $X=V\left(f_{1}\right) \cap \ldots \cap V\left(f_{n}\right) \subset \mathbb{P}^{n}$ is isomorphic to $\left.\mathcal{O}\left(\sum \operatorname{deg}\left(f_{i}\right)-n-1\right)\right)\left.\right|_{X}$.

Exercise 3. Show that the surface $\Sigma_{n}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n)\right)$ is isomorphic to the hypersurface $V\left(x_{0}^{n} y_{1}-x_{1}^{n} y_{2}\right) \subset$ $\mathbb{P}^{1} \times \mathbb{P}^{2}$, where $\left[x_{0}, x_{1}\right]$ and $\left[y_{0}, y_{1}, y_{2}\right]$ are homogeneous coordinates of (respectively) \mathbb{P}^{1} and \mathbb{P}^{2}.

Exercise 4. Are there holomorphic vector field on \mathbb{P}^{n}, i.e. global section of $\mathcal{T}_{\mathbb{P}^{n}}$, which vanish only in a finite number of points? If yes, how many?
Exercise 5. Show that $h^{n}\left(\mathbb{P}^{n}, \mathcal{O}(k)\right)=0$ if $k>-n-1$, while if $k \leq-n-1, h^{n}\left(\mathbb{P}^{n}, \mathcal{O}(k)\right)=\binom{-k-1}{-n-k-1}$.
Exercise 6. Let X a connected, compact complex manifold of dimension n, and let L an holomorphic line bundle on X. Suppose that there exists some integer $N>0$ such that $H^{0}\left(X, L^{\otimes N}\right) \neq 0$. Show that if $H^{n}\left(X, L \otimes K_{X}\right) \neq 0$, the line bundle L is trivial.

Exercise 7. Let L an holomorphic line bundle of degree $d>2 g(C)-2$ on a compact curve C, where we have that the genus $g(C)$ satisfies deg $\left(K_{C}\right)=2 g-2$. Show that $H^{1}(C, L)=0$, and deduce that $H^{1}\left(C, K_{C} \otimes L\right)=0$ for any line bundle L with $\operatorname{deg}(L)>0$.

