Explicit Arithmetic for Modular Curves

Exercises

(A) Let E / K be an elliptic curve and suppose E has a K-rational 3-isogeny. Show that there is a quadratic twist E^{\prime} that has a point of order 3 .
(B) Let K be a field complete with respect to a non-archimedean valuation $|\cdot|$ (e.g. $K=\mathbb{Q}_{p}$). Let $q \in K^{*}$ satisfy $|q|<1$. Let E_{q} be the Tate elliptic curve with parameter q (for this exercise you don't need to know what that is). Tate showed that there is an analytic isomorphism

$$
\phi: E_{q}(\bar{K}) \rightarrow \bar{K}^{*} / q^{\mathbb{Z}}
$$

that respects the action of $G_{K}=\operatorname{Gal}(\bar{K} / K)$. Use this to show that

$$
\bar{\rho}_{E, N} \sim\left(\begin{array}{cc}
\chi_{N} & * \\
0 & 1
\end{array}\right) .
$$

(C) Let E be an elliptic curve over \mathbb{Q}, and let $p \geq 7$ be a prime of potentially multiplicative reduction. Show that the image of $\bar{\rho}_{E, p}$ is not exceptional. (Hint: E has potentially multiplicative reduction at p means that E / \mathbb{Q}_{p} is a twist of a Tate curve. You may suppose that $\chi_{p}: G_{p} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{*}$ is surjective, where $G_{p}=\operatorname{Gal}\left(\overline{\mathbb{Q}_{p}} / \mathbb{Q}_{p}\right)$ is the decomposition subgroup of $\left.G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})\right)$.

