Conductors

The fundamental Dirichlet serie

Computation of $f_{\alpha_0}(b)$

Final form of the Dirichlet series

Asymptotic formulas

Examples

Counting cubic extensions with given quadratic resolvent

Anna Morra (joint work with Henri Cohen)

Université Bordeaux 1

Warwick, May 27th 2008

Definitions and notation

Introduction

- Galois theory
- Conductors
- The fundamental Dirichlet series
- Computation of $f_{\alpha_0}(b)$
- Final form of the Dirichlet series
- Asymptotic formulas
- Examples

- Given k ⊂ K two number fields, we denote by ∂(K/k) the relative discriminant ideal of the extension.
- We define

$$N_{k,n}(X) = \sharp\{K | [K:k] = n, \mathcal{N}_{k/\mathbb{Q}}\mathfrak{d}(K/k) \leq X\} / \sim$$

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

Two main themes in the subject :

- Asymptotics as $X \to \infty$;
- Algorithmics.

Asymptotic results

Introduction

- Galois theory
- Conductors
- The fundamental Dirichlet series
- Computation of $f_{\alpha_0}(b)$
- Final form of the Dirichlet series
- Asymptotic formulas
- Examples

- Asymptotic for relative quadratic extensions : Wright, Cohen-Diaz y Diaz-Olivier;
- Asymptotics for cubic extensions : Davenport-Heilbronn (k = Q) Datskovsky-Wright (k arbitrary);

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

• Asymptotics for n = 4, 5 and $k = \mathbb{Q}$: Bhargava.

Galois theory

Conductors

The fundamental Dirichlet serie:

Computation of $f_{\alpha_0}(\mathfrak{b})$

Final form o the Dirichlet series

Asymptotic formulas

Examples

Let us focus on the case n = 3.

We may ask some more specific questions:

• How many Galois (cyclic) extensions ?

Then answer is given by Cohn for the rational case and by Cohen-Diaz y Diaz-Oliver for the general case.

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

e How many non-Galois extensions with a fixed quadratic resolvent K₂?

We are going to answer to this question in this talk.

Let k be a number field, and fix K_2 a quadratic extension of k.

Introduction

Galois theory

Conductors

The fundamental Dirichlet serie

Computation of $f_{\alpha_0}(\mathfrak{b})$

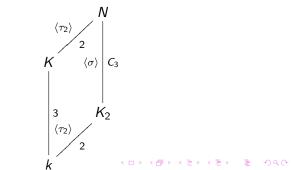
Final form of the Dirichlet series

Asymptotic formulas

Examples

We define $\mathcal{F}(K_2)$ the set of cubic extensions K of k (modulo k-isomorphism) whose Galois closure N contains K_2 as quadratic subextension.

If we allow $[K_2 : k] = 1$ we can also describe cyclic cubic extensions.



Our goal

We look for an asymptotic formula for

Introduction Galois theory

Conductors

The fundamental Dirichlet series

Computation of $f_{\alpha_0}(\mathfrak{b})$

Final form of the Dirichlet series

Asymptotic formulas

Examples

$$N(K_2/k,X) = |\{K \in \mathcal{F}(K_2), \ \mathcal{N}_{k/\mathbb{Q}}(\mathfrak{d}(K/k)) \leq X\}|$$
.

The conductor of the cyclic extension N/K_2 is of the form $f(N/K_2) = f(K/k)\mathbb{Z}_{K_2}$, where f(K/k) is an ideal of k. Since

$$\mathfrak{d}(K/k) = \mathfrak{d}(K_2/k)\mathfrak{f}(K/k)^2,$$

then we can reduce to study $M(K_2/k, X)$ where

 $M(K_2/k,X) = |\{K \in \mathcal{F}(K_2), \ \mathcal{N}_{k/\mathbb{Q}}(\mathfrak{f}(K/k)) \leq X\}|$

ldea

Introduction

Galois theory

Conductors

The fundamental Dirichlet series

Computation of $f_{\alpha_0}(b)$

Final form of the Dirichlet series

Asymptotic formulas

Examples

We can study the fundamental Dirichlet series:

$$\Phi(s) = rac{1}{2} + \sum_{K \in \mathcal{F}(K_2)} rac{1}{\mathcal{N}_{k/\mathbb{Q}}(\mathfrak{f}(K/k))^s} \; ,$$

and thanks to a Tauberian theorem we can deduct asymptotic formulas for $M(K_2/k, X)$.

Introduction

Galois theory

Conductors

The fundamental Dirichlet series

Computation of $f_{\alpha_0}(\mathfrak{b})$

Final form of the Dirichlet series

Asymptotic formulas

Examples

Galois structure of the extensions (Kummer theory)

Introduction

- Galois theory
- Conductors
- The fundamental Dirichlet serie
- Computation of $f_{\alpha_0}(b)$
- Final form of the Dirichlet series
- Asymptotic formulas
- Examples

Galois structure of the extensions (Kummer theory)

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

Onductor of the extensions (Hecke's Theorem)

Introduction

- Galois theory
- Conductors
- The fundamental Dirichlet serie:
- Computation of $f_{\alpha_0}(\mathfrak{b})$
- Final form of the Dirichlet series
- Asymptotic formulas
- Examples

Galois structure of the extensions (Kummer theory)

- Onductor of the extensions (Hecke's Theorem)
- Study of the fundamental Dirichlet series

Introduction

- Galois theory
- Conductors
- The fundamental Dirichlet series
- Computation of $f_{\alpha_0}(b)$
- Final form or the Dirichlet series
- Asymptotic formulas
- Examples

Q Galois structure of the extensions (Kummer theory)

- Onductor of the extensions (Hecke's Theorem)
- Study of the fundamental Dirichlet series
- Asymptotic formulas.

Galois theory

Introductior

Galois theory

Conductors

The fundamental Dirichlet series

Computation of $f_{\alpha_0}(\mathfrak{b})$

Final form of the Dirichlet series

Asymptotic formulas

Examples

Let $\rho = \zeta_3$ a primitive cube root of unity. Set $L = K_2(\rho)$ and $k_z = k(\rho)$. Let

- τ be a generator of Gal(L/K_2),
- τ_2 a generator of $Gal(K_2/k)$
- σ be a generator of the cyclic group of order 3 Gal $(N/K_2) \simeq$ Gal (N_z/L) , where $N_z = N(\rho)$.

We have the following relations:

$$\tau^2 = \tau_2^2 = 1 , \quad \tau \tau_2 = \tau_2 \tau , \quad \tau \sigma = \sigma \tau$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Galois theory

Conductors

The fundamental Dirichlet serie:

Computation of $f_{\alpha_0}(\mathfrak{b})$

Final form o the Dirichlet series

Asymptotic formulas

Examples

Five possible situations

- K/k cyclic and $\rho \in k \Rightarrow \tau = \tau_2 = 1$.
- $\ \, {\it O} \ \, {\it K}/k \ \, {\it cyclic and} \ \, \rho \not\in k \Rightarrow \tau_2 = 1, \ \, \tau(\rho) = \rho^{-1}.$
- K/k non-cyclic and $\rho \in k \Rightarrow \tau = 1$ and $\tau_2(\rho) = \rho$.
- K/k non-cyclic and $\rho \in K_2 \setminus k \Rightarrow \tau = 1$ and $\tau_2(\rho) = \rho^{-1}$.
- K/k non-cyclic and $\rho \notin K_2 \Rightarrow \tau(\rho) = \rho^{-1}$ and $\tau_2(\rho) = \rho$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

Galois theory

Conductors

The fundamental Dirichlet series

Computation of $f_{\alpha_0}(\mathfrak{b})$

Final form or the Dirichlet series

Asymptotic formulas

Examples

• In cases (1) to (5) above, we set $T = \emptyset$, $\{\tau + 1\}$, $\{\tau_2 + 1\}$, $\{\tau_2 - 1\}$, $\{\tau + 1, \tau_2 + 1\}$, respectively, where T is considered as a subset of the group ring $\mathbb{Z}[Gal(L/k)]$ or of $\mathbb{F}_3[Gal(L/k)]$.

- Introduction
- Galois theory
- Conductors
- The fundamental Dirichlet series
- Computation of $f_{\alpha_0}(\mathfrak{b})$
- Final form of the Dirichlet series
- Asymptotic formulas
- Examples

• In cases (1) to (5) above, we set $T = \emptyset$, $\{\tau + 1\}$, $\{\tau_2 + 1\}$, $\{\tau_2 - 1\}$, $\{\tau + 1, \tau_2 + 1\}$, respectively, where T is considered as a subset of the group ring $\mathbb{Z}[Gal(L/k)]$ or of $\mathbb{F}_3[Gal(L/k)]$.

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

• We define $\iota(\tau \pm 1) = \tau \mp 1$ and $\iota(\tau_2 \pm 1) = \tau_2 \mp 1$.

- Introduction
- Galois theory
- Conductors
- The fundamental Dirichlet series
- Computation of $f_{\alpha_0}(\mathfrak{b})$
- Final form or the Dirichlet series
- Asymptotic formulas
- Examples

- In cases (1) to (5) above, we set $T = \emptyset$, $\{\tau + 1\}$, $\{\tau_2 + 1\}$, $\{\tau_2 1\}$, $\{\tau + 1, \tau_2 + 1\}$, respectively, where T is considered as a subset of the group ring $\mathbb{Z}[Gal(L/k)]$ or of $\mathbb{F}_3[Gal(L/k)]$.
- We define $\iota(\tau\pm 1)=\tau\mp 1$ and $\iota(\tau_2\pm 1)=\tau_2\mp 1.$
- For any group *M* on which *T* acts, we denote by *M*[*T*] the subgroup of elements of *M* annihilated by all the elements of *T*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Introduction
- Galois theory
- Conductors
- The fundamental Dirichlet series
- Computation of $f_{\alpha_0}(\mathfrak{b})$
- Final form o the Dirichlet series
- Asymptotic formulas
- Examples

- In cases (1) to (5) above, we set $T = \emptyset$, $\{\tau + 1\}$, $\{\tau_2 + 1\}$, $\{\tau_2 1\}$, $\{\tau + 1, \tau_2 + 1\}$, respectively, where T is considered as a subset of the group ring $\mathbb{Z}[Gal(L/k)]$ or of $\mathbb{F}_3[Gal(L/k)]$.
- We define $\iota(\tau\pm 1)=\tau\mp 1$ and $\iota(\tau_2\pm 1)=\tau_2\mp 1.$
- For any group *M* on which *T* acts, we denote by *M*[*T*] the subgroup of elements of *M* annihilated by all the elements of *T*.

Lemma 2

Let *M* be an $\mathbb{F}_3[Gal(L/k)]$ -module. For any $t \in T$ we have $M[t] = \iota(t)(M)$, and conversely $M[\iota(t)] = t(M)$.

イロト 不得 トイヨト イヨト ヨー ろくで

Galois theory

Conductors

- The fundamental Dirichlet series
- Computation of $f_{\alpha_0}(\mathfrak{b})$
- Final form o the Dirichlet series
- Asymptotic formulas
- Examples

Proposition 3

- **O** There exists a bijection between :
 - isomorphism classes of extensions K/k having quadratic resolvent isomorphic to K_2 (i. e. elements of $\mathcal{F}(K_2)$), and
 - elements a ∈ (L*/L*3)[T], a ≠ 1, modulo the equivalence relation identifying with its inverse.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If α ∈ L* is some representative of ᾱ, the extension K/k corresponding to α is the fixed field under Gal(L/k) of the field N_z = L(³√α).

Galois theory

Conductors

The fundamental Dirichlet series

 $\begin{array}{l} \mathsf{Computation} \\ \mathsf{of} \ f_{\alpha_0}(\mathfrak{b}) \end{array}$

Final form of the Dirichlet series

Asymptotic formulas

Examples

Definition 4

We denote by $V_3(L)$ the group of 3-virtual units of L, in other words the group of $u \in L^*$ such that $u\mathbb{Z}_L = q^3$ for some ideal q of L. We define the 3-Selmer group $S_3(L)$ of L by $S_3(L) = V_3(L)/L^{*3}$.

Proposition 5

Introduction

Galois theory

Conductors

The fundamental Dirichlet series

Computation of $f_{\alpha_0}(\mathfrak{b})$

Final form o the Dirichlet series

Asymptotic formulas

Examples

- There exists a bijection between isomorphism classes of cubic extensions K/k with given quadratic resolvent field K₂ and equivalence classes of triples (a₀, a₁, u
) such that
 - The a_i are coprime integral squarefree ideals of L such that a₀a²₁ ∈ Cl(L)³ and a₀a²₁ ∈ (I/I³)[T], where I is the group of fractionals ideals of L.
 - $@ \ \overline{u} \in S_3(L)[T], \text{ and } \overline{u} \neq 1 \text{ when } \mathfrak{a}_0 = \mathfrak{a}_1 = \mathbb{Z}_L.$

modulo the equivalence relation $(\mathfrak{a}_0,\mathfrak{a}_1,\overline{u})\sim (\mathfrak{a}_1,\mathfrak{a}_0,1/\overline{u})$

If (a₀, a₁) is a pair of ideals satisfying (1.1) there exist an ideal q₀ and an element α₀ of L such that a₀a₁²q₀³ = α₀Z_L with α₀ ∈ (L*/L*³)[T]. The cubic extensions K/k corresponding to such a pair (a₀, a₁) are given as follows: for any ū ∈ S₃(L)[T] the extension is the cubic subextension of N_z = L(³√α₀u) (for any lift u of ū).

Galois theory

Lemma 6

Conductors

The fundamental Dirichlet serie

Computation of $f_{\alpha_0}(b)$

Final form of the Dirichlet series

Asymptotic formulas

Examples

• The condition $\mathfrak{a}_0\mathfrak{a}_1^2 \in (I/I^3)[T]$ is equivalent to $\mathfrak{a}_1 = \tau(\mathfrak{a}_0), \ \mathfrak{a}_1 = \tau_2(\mathfrak{a}_0), \ \mathfrak{a}_0 = \tau_2(\mathfrak{a}_0) \text{ and } \mathfrak{a}_1 = \tau_2(\mathfrak{a}_1), \text{ and}$ $\mathfrak{a}_1 = \tau(\mathfrak{a}_0) = \tau_2(\mathfrak{a}_0) \text{ in cases } (2), \ (3), \ (4), \text{ and } (5),$ respectively.

Galois theory

Lemma 6

Conductors

- The fundamental Dirichlet series
- Computation of $f_{\alpha_0}(\mathfrak{b})$
- Final form or the Dirichlet series
- Asymptotic formulas
- Examples

- The condition $\mathfrak{a}_0\mathfrak{a}_1^2 \in (I/I^3)[T]$ is equivalent to $\mathfrak{a}_1 = \tau(\mathfrak{a}_0), \ \mathfrak{a}_1 = \tau_2(\mathfrak{a}_0), \ \mathfrak{a}_0 = \tau_2(\mathfrak{a}_0) \text{ and } \mathfrak{a}_1 = \tau_2(\mathfrak{a}_1), \text{ and}$ $\mathfrak{a}_1 = \tau(\mathfrak{a}_0) = \tau_2(\mathfrak{a}_0) \text{ in cases } (2), \ (3), \ (4), \text{ and } (5),$ respectively.
- The ideal a₀a₁ of L comes from an ideal a_α of K₂ (in other words a₀a₁ = a_αZ_L), and in cases (1), (2), and (3) it comes from an ideal of k, while in cases (4) and (5), a_α is an ideal of K₂ invariant by τ₂.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conductors

Introduction

Galois theory

Conductors

The fundamental Dirichlet series

 $\mathsf{Computation}$ of $f_{lpha_0}(\mathfrak{b})$

Final form of the Dirichlet series

Asymptotic formulas

Examples

Definition 7

Let $\overline{\alpha} \in (L^*/L^{*3})[T]$ as above, let p be an ideal of k above 3, let p be an ideal of K_2 above p, let p_z be an ideal of L above p, and denote by C_k the congruence $x^3/\alpha \equiv 1 \pmod{p_z^k}$ in L. If this congruence is soluble for $k = 3e(p_z/3)/2$ we set $A_{\alpha}(p) = 3e(p_z/3)/2 + 1$. Otherwise, if $k < 3e(p_z/3)/2$ is the largest exponent for which it has a solution, we set $A_{\alpha}(p) = k$. In both cases we set

$$\mathsf{a}_lpha(p) = rac{\mathcal{A}_lpha(p)-1}{e(\mathfrak{p}_Z/p)} \; .$$

Galois theory

Conductors

The fundamental Dirichlet series

Computation of $f_{\alpha_0}(\mathfrak{b})$

Final form of the Dirichlet series

Asymptotic formulas

Examples

Theorem 8

Let N correspond to α as above, write uniquely $\alpha \mathbb{Z}_L = \mathfrak{a}_0 \mathfrak{a}_1^2 \mathfrak{q}^3$ with \mathfrak{a}_0 and \mathfrak{a}_1 integral coprime squarefree ideals, and let \mathfrak{a}_α be the ideal of K_2 such that $\mathfrak{a}_0\mathfrak{a}_1 = \mathfrak{a}_\alpha \mathbb{Z}_L$. Then

$$(N/\mathcal{K}_2) = \frac{3\mathfrak{a}_{\alpha} \prod_{p \mid 3\mathbb{Z}_k} (p\mathbb{Z}_{\mathcal{K}_2})^{e(p/3)/2} \prod_{\substack{p \mid 3\mathbb{Z}_k \\ e(\mathfrak{p}/3) \text{ odd}}} (p\mathbb{Z}_{\mathcal{K}_2})^{1/2}}{\prod_{p \mid 3\mathbb{Z}_k} (p\mathbb{Z}_{\mathcal{K}_2})^{\lceil a_{\alpha}(p)e(\mathfrak{p}/p)\rceil/e(\mathfrak{p}/p)}} .$$

Galois theory

Conductors

The fundamental Dirichlet series

Computation of $f_{\alpha_0}(b)$

Final form of the Dirichlet series

Asymptotic formulas

Examples

Definition 9

- If \mathfrak{a} is an ideal of k, we set $\mathcal{N}(\mathfrak{a}) = \mathcal{N}_{k/\mathbb{Q}}(\mathfrak{a})$,
- if a is an ideal of K_2 , we set $\mathcal{N}(\mathfrak{a}) = \mathcal{N}_{K_2/\mathbb{Q}}(\mathfrak{a})^{1/[K_2:k]}$.

Remark

This notation is consistent, in fact if \mathfrak{a} is an ideal of k we have $\mathcal{N}(\mathfrak{a}) = \mathcal{N}(\mathfrak{a}\mathbb{Z}_{K_2}).$

The fundamental Dirichlet series is defined by

$$\Phi(s) = rac{1}{2} + \sum_{K \in \mathcal{F}(K_2)} rac{1}{\mathcal{N}(\mathfrak{f}(K/k))^s}$$

By the fundamental bijection

$$\Phi(s) = rac{1}{2} \sum_{(\mathfrak{a}_0,\mathfrak{a}_1)\in J} \sum_{\overline{u}\in S_3(L)[T]} rac{1}{\mathcal{N}(\mathfrak{f}(N/\mathcal{K}_2))^s} \; ,$$

Examples

The fundamental Dirichlet series

> where *J* is the set of pairs $(\mathfrak{a}_0, \mathfrak{a}_1)$ of coprime integral squarefree ideals of *L* such that $\mathfrak{a}_0\mathfrak{a}_1^2 \in (I/I^3)[T]$ and $\overline{\mathfrak{a}_0\mathfrak{a}_1^2} \in CI(L)^3$, and where $\mathfrak{f}(N/K_2)$ is the conductor of the extension N/K_2 corresponding to the triple $(\mathfrak{a}_0, \mathfrak{a}_1, \overline{u})$.

So from the theorem above,

Colois theory

Conductors

The fundamental Dirichlet series

Computation of $f_{\alpha_0}(b)$

Final form of the Dirichlet series

Asymptotic formulas

Examples

$$\Phi(s) = \frac{1}{2 \cdot 3^{(3/2)[k:\mathbb{Q}]s} \prod_{\substack{p \mid 3\mathbb{Z}_k, \\ e(\mathfrak{p}/3) \text{ odd}}} \mathcal{N}(p)^{s/2}} \sum_{\substack{(\mathfrak{a}_0, \mathfrak{a}_1) \in J}} \frac{S_{\alpha_0}(s)}{\mathcal{N}(\mathfrak{a}_\alpha)^s},$$

where

$$S_{\alpha_0}(s) = \sum_{\overline{u} \in S_3(L)[T]} \prod_{\substack{p \mid 3\mathbb{Z}_k \\ p \nmid \mathfrak{a}_{\alpha}}} \mathcal{N}(p)^{\lceil a_{\alpha_0 u}(p) e(\mathfrak{p}/p) \rceil s/e(\mathfrak{p}/p)} ,$$

and where α_0 is any element of L such that there exists an ideal \mathfrak{q}_0 such that $\mathfrak{a}_0\mathfrak{a}_1^2\mathfrak{q}_0^3 = \alpha_0\mathbb{Z}_L$ and $\alpha_0 \in (L^*/L^{*3})[\mathcal{T}]$.

Introduction

Galois theory

Conductors

The fundamental Dirichlet series

Computation of $f_{\alpha_0}(b)$

Final form of the Dirichlet series

Asymptotic formulas

Examples

For $\alpha_0 \in L^*$ and \mathfrak{b} an ideal of K_2 we introduce the function $f_{\alpha_0}(\mathfrak{b}) = |\{\overline{u} \in S_3(L)[T], x^3/(\alpha_0 u) \equiv 1 \pmod{*\mathfrak{b}\mathbb{Z}_l} \text{ soluble in } L\}$

with the convention that $f_{\alpha_0}(\mathfrak{b}) = 0$ if $\mathfrak{b}\mathbb{Z}_L \nmid 3\sqrt{-3}$.

There exist a set \mathcal{B}' of ideals $\mathfrak{b} = \prod_{\mathfrak{p}_i \mid 3\mathbb{Z}_{K_2}} \mathfrak{p}_i^{b_i}$ of K_2 (where $b_i \in \mathbb{Z}$ or sometimes $b_i \in \mathbb{Z}/2$ if \mathfrak{p}_i ramifies in L/K_2) such that

$$\sum_{(\mathfrak{a}_0,\mathfrak{a}_1)\in J}\frac{S_{\alpha_0}(s)}{\mathcal{N}(\mathfrak{a}_{\alpha})^s}=\sum_{\mathfrak{b}\in \mathcal{B}'}\lceil \mathcal{N}\rceil(\mathfrak{b})^s P_{\mathfrak{b}}(s)\sum_{(\mathfrak{a}_0,\mathfrak{a}_1)\in J'}\frac{f_{\alpha_0}(\mathfrak{b})}{\mathcal{N}(\mathfrak{a}_{\alpha})^s},$$

where J' is "some" subset of J, $P_{\mathfrak{b}}(s)$ is "some" (totally explicit) function with values in \mathbb{Q} , and $\lceil \mathcal{N} \rceil(\mathfrak{b}) = \prod_{\mathfrak{p}_i \mid 3\mathbb{Z}_{K_2}} \mathcal{N}\left(\mathfrak{p}_i^{\lceil b_i \rceil}\right).$

Computation of $f_{\alpha_0}(b)$

Introduction

Galois theory

Conductors

The fundamental Dirichlet series

Computation of $f_{\alpha_0}(\mathfrak{b})$

Final form of the Dirichlet series

Asymptotic formulas

Examples

Let $\mathfrak{b} \in \mathcal{B}'$, $\mathfrak{b}_z = \mathfrak{b}\mathbb{Z}_L$ and $Cl_{\mathfrak{b}}(L)$ the ray class group.

Definition 12

 $S_{\mathfrak{b}}(L)[T] = \{\overline{u} \in S_3(L)[T], x^3 \equiv u \pmod{*\mathfrak{b}_z} \text{ soluble} \}$, where u is any lift of \overline{u} coprime to \mathfrak{b}_z , and the congruence is in L.

Lemma 13

Let a_0, a_1 as in condition (1) of Proposition 5. Then

$$f_{lpha_0}(\mathfrak{b}) = egin{cases} |S_\mathfrak{b}(L)[T]| & \textit{if } \overline{\mathfrak{a}_0 \mathfrak{a}_1^2} \in \mathit{Cl}_\mathfrak{b}(L)^3 \ 0 & \textit{otherwise.} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

The

Dirichlet serie

Computation of $f_{\alpha_0}(\mathfrak{b})$

Final form of the Dirichlet series

Asymptotic formulas

Examples

Lemma 14

Set
$$Z_{\mathfrak{b}} = (\mathbb{Z}_L/\mathfrak{b}_z)^*$$
. Then

$$|S_{\mathfrak{b}}(L)[T]| = \frac{|(U(L)/U(L)^3)[T]||(Cl_{\mathfrak{b}}(L)/Cl_{\mathfrak{b}}(L)^3)[T]|}{|(Z_{\mathfrak{b}}/Z_{\mathfrak{b}}^3)[T]|} .$$

Remark 15

We can compute explicitly $|(U(L)/U(L)^3)[T]|$ and $|(Z_{\mathfrak{b}}/Z_{\mathfrak{b}}^3)[T]|$, but we can't compute $|(Cl_{\mathfrak{b}}(L)/Cl_{\mathfrak{b}}(L)^3)[T]|$. Luckily it is not necessary, because this term will disappear in subsequent computations.

Final form of the Dirichlet series

Theorem 16

We have

Galois theory

Conductors

The fundamental Dirichlet serie

Computation of $f_{\alpha_0}(\mathfrak{b})$

Final form of the Dirichlet series

Asymptotic formulas

Examples

$$\Phi(s) = \frac{|(U(L)/U(L)^3)[T]|}{2 \cdot 3^{(3/2)[k:\mathbb{Q}]s} \prod_{\substack{p \mid 3\mathbb{Z}_k, \\ e(\mathfrak{p}/3) \text{ odd}}} \mathcal{N}(p)^{s/2}} \cdot \sum_{\mathfrak{b} \in \mathcal{B}'} \left(\frac{\lceil \mathcal{N} \rceil(\mathfrak{b})}{\mathcal{N}(\mathfrak{r}^e(\mathfrak{b}))} \right)^s \frac{P_{\mathfrak{b}}(s)}{|(Z_{\mathfrak{b}}/Z_{\mathfrak{b}}^3)[T]|} \sum_{\chi \in \widehat{G_{\mathfrak{b}}}} F(\mathfrak{b}, \chi, s) .$$

Where

$$G_{\mathfrak{b}} = (Cl_{\mathfrak{b}}(L)/Cl_{\mathfrak{b}}(L)^{3})[T], \quad \mathfrak{r}^{e}(\mathfrak{b}) = \prod_{\substack{\mathfrak{p} \mid 3\mathbb{Z}_{K_{2}}, \mathfrak{p} \nmid \mathfrak{b} \\ e(\mathfrak{p}/3) \text{ even}}} \mathfrak{p}.$$

. .

The fundamental Dirichlet serie

Computation of $f_{\alpha_0}(\mathfrak{b})$

Final form or the Dirichlet series

Asymptotic formulas

Examples

Thanks to the theorem, we can now expand $\Phi(s)$ around the pole s = 1:

$$\Phi(s) = \frac{C(K_2/k)}{(s-1)^2} + \frac{C(K_2/k)D(K_2/k)}{(s-1)} + O(1),$$

While in the other cases we get

$$\Phi(s)=\frac{C(K_2/k)}{(s-1)}+O(1),$$

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

where the formulas for $C(K_2/k)$ and $D(K_2/k)$ are totally explicit.

Asymptotic formulas

Introduction

Galois theory

Conductors

The fundamental Dirichlet series

Computation of $f_{\alpha_0}(\mathfrak{b})$

Final form o the Dirichlet series

Asymptotic formulas

Examples

Thanks to a Tauberian theorem we get In cases (1) and (4) :

$$M(K_2/k, X) = C(K_2/k)X(\log(X) + D(K_2/k) - 1) + O(X^{1/2 + \varepsilon}).$$

In the other cases :

 $M(K_2/k,X) = C(K_2/k)X + O(X^{1/2+\varepsilon}).$

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

Examples

Cyclic cubic extensions of $\ensuremath{\mathbb{Q}}$

In this case we obtain

Introduction

Galois theory

Conductors

The fundamental Dirichlet serie

Computation of $f_{\alpha_0}(\mathfrak{b})$

Final form of the Dirichlet series

Asymptotic formulas

Examples

$$\sum_{K/\mathbb{Q} \text{ cyclic cubic}} \frac{1}{f(K)^s} = -\frac{1}{2} + \frac{1}{2} \left(1 + \frac{2}{3^{2s}} \right)_{p \equiv 1} \prod_{(\text{mod } 3)} \left(1 + \frac{2}{p^s} \right),$$

and so
$$M(\mathbb{Q}, X) = C(\mathbb{Q})X + O(X^{1/2+\varepsilon}),$$

with

$$C(\mathbb{Q}) = \frac{11\sqrt{3}}{36\pi} \prod_{p \equiv 1 \pmod{3}} \left(1 - \frac{2}{p(p+1)}\right)$$

= 0.1585282583961420602835078203575...

Galois theory

Conductors

The fundamental Dirichlet series

Computation of $f_{\alpha_0}(b)$

Final form or the Dirichlet series

Asymptotic formulas

Examples

Pure cubic fields over \mathbb{Q}

Case (4) : $K_2 = \mathbb{Q}(\rho)$ and $L = K_2$, so K/\mathbb{Q} is a pure cubic field i. e. $K = \mathbb{Q}(\sqrt[3]{m})$. We get

$$\sum_{K/\mathbb{Q} \text{ pure cubic}} \frac{1}{f(K)^s} = -\frac{1}{2} + \frac{1}{6} \left(1 + \frac{2}{3^s} + \frac{6}{3^{2s}} \right) \prod_{p \neq 3} \left(1 + \frac{2}{p^s} \right) \\ + \frac{1}{3} \prod_{p \equiv \pm 1 \pmod{9}} \left(1 + \frac{2}{p^s} \right) \prod_{p \not\equiv \pm 1 \pmod{9}} \left(1 - \frac{1}{p^s} \right)$$

and so

$$M(\mathbb{Q}(\sqrt{-3}),X) = C \cdot X \cdot (\log(X) + D - 1) + O(X^{1/2+\varepsilon}),$$

where

The fundamental Dirichlet series

Computation of $f_{\alpha_0}(b)$

Final form of the Dirichlet series

Asymptotic formulas

Examples

 $C = C(\mathbb{Q}(\sqrt{-3})) = \frac{7}{30} \prod_{p} \left(1 - \frac{3}{p^2} + \frac{2}{p^3} \right)$ = 0.066907733301378371291841632984295... $D = D(\mathbb{Q}(\sqrt{-3})) = 2\gamma - \frac{16}{35} \log(3) + 6 \sum_{p} \frac{\log(p)}{p^2 + p - 2}$

 $= 3.450222797830591962790711919671110\ldots,$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

and γ is Euler's constant.

Case (5) : $K_2 = \mathbb{Q}(\sqrt{D})$ with $D \neq -3$ There exists a function $\phi_D(s)$ holomorphic for $\operatorname{Re}(s) > 1/2$ such that

$$\sum_{\mathcal{K}\in\mathcal{F}(\mathcal{K}_2)}\frac{1}{f(\mathcal{K})^s}=\phi_D(s)+\frac{3^{r_2(D)}}{6}L_3(s)\prod_{\left(\frac{-3D}{p}\right)=1}\left(1+\frac{2}{p^s}\right),$$

where

Asymptotic formulas

Examples

$$L_3(s) = \begin{cases} 1+2/3^{2s} & \text{if } 3 \nmid D, \\ 1+2/3^s & \text{if } D \equiv 3 \pmod{9}, \\ 1+2/3^s + 6/3^{2s} & \text{if } D \equiv 6 \pmod{9}. \end{cases}$$

 $r_2(D) = 1$ for D < 0, $r_2(D) = 0$ otherwise.

Set D' = -3D if $3 \nmid D$ and D' = -D/3 if $3 \mid D$, and denote as usual by $\chi_{D'}$ the character $\left(\frac{D'}{\cdot}\right)$. Then if $D \neq -3$ is a fundamental discriminant, for all $\varepsilon > 0$ we have

$$M(\mathbb{Q}(\sqrt{D}),X) = C(\mathbb{Q}(\sqrt{D}))X + O(X^{1/2+\varepsilon}),$$

with

 $C(\mathbb{Q}(\sqrt{D})) = \frac{3^{r_2(D)}\ell_3 L(\chi_{D'}, 1)}{\pi^2} \prod_{p \mid D'} \left(1 - \frac{1}{p+1}\right) \cdot \prod_{\left(\frac{D'}{p}\right) = 1} \left(1 - \frac{2}{p(p+1)}\right), \text{ where}$ $\ell_3 = \begin{cases} 11/9 & \text{if } 3 \nmid D, \\ 5/3 & \text{if } D \equiv 3 \pmod{9}, \\ 7/5 & \text{if } D \equiv 6 \pmod{9} \end{cases}$

Introduction

Galois theor

Conductors

The fundamental Dirichlet serie:

Computation of $f_{\alpha_0}(b)$

Final form o the Dirichlet series

Asymptotic formulas

Examples