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Abstract

Let G be a graph whose edges are coloured with k& colours, and H =
(Hy,...,Hy) be a k-tuple of graphs. A monochromatic H-decomposition of
G is a partition of the edge set of G such that each part is either a single edge
or forms a monochromatic copy of H; in colour 4, for some 1 < i < k. Let
or(n, H) be the smallest number ¢, such that, for every order-n graph and ev-
ery k-edge-colouring, there is a monochromatic H-decomposition with at most
¢ elements. Extending the previous results of Liu and Sousa [“Monochromatic
K,-decompositions of graphs”, to appear in Journal of Graph Theory], we solve
this problem when each graph in H is a clique and n > ng(#) is sufficiently large.

Keywords: Monochromatic graph decomposition; Turdn Number; Ramsey Num-
ber



1 Introduction

All graphs in this paper are finite, undirected and simple. For standard graph-
theoretic terminology the reader is referred to [3].

Given two graphs G and H, an H-decomposition of G is a partition of the edge set
of G such that each part is either a single edge or forms a subgraph isomorphic to H.
Let ¢(G, H) be the smallest possible number of parts in an H-decomposition of G. It
is easy to see that, if H is non-empty, we have ¢(G, H) = e(G) — vy(G)(e(H) — 1),
where vy (G) is the maximum number of pairwise edge-disjoint copies of H that can
be packed into G. Dor and Tarsi [4] showed that if H has a component with at least 3
edges then it is NP-complete to determine if a graph GG admits a partition into copies
of H. Thus, it is NP-hard to compute the function ¢(G, H) for such H. Nonetheless,
many exact results were proved about the extremal function

¢(n, H) = max{¢(G, H) | v(G) = n},

which is the smallest number such that any graph G of order n admits an H-
decomposition with at most ¢(n, H) elements.

This function was first studied, in 1966, by Erdés, Goodman and Pésa [6], who
proved that ¢(n, K3) = ta(n), where K, denotes the complete graph (clique) of order
s, and t,_1(n) denotes the number of edges in the Turdn graph T,_1(n), which is the
unique (r — 1)-partite graph on n vertices that has the maximum number of edges. A
decade later, Bollobas [2] proved that ¢(n, K,.) =t,_1(n), for all n > r > 3.

Recently Pikhurko and Sousa [13] studied ¢(n, H) for arbitrary graphs H. Their
result is the following.

Theorem 1.1. [13] Let H be any fized graph of chromatic number r > 3. Then,

¢(n, H) = t,_1(n) + o(n?).

Let ex(n, H) denote the maximum number of edges in a graph on n vertices not
containing H as a subgraph. The result of Turdn [20] states that 7,_;(n) is the
unique extremal graph for ex(n, K,). The function ex(n, H) is usually called the
Turdn function for H. Pikhurko and Sousa [13] also made the following conjecture.

Conjecture 1.2. [13] For any graph H of chromatic number r > 3, there exists
no = no(H) such that ¢(n, H) = ex(n, H) for all n > ny.

A graph H is edge-critical if there exists an edge e € F(H) such that x(H) >
X(H — e), where x(H) denotes the chromatic number of H. For r > 4, a clique-
extension of order r is a connected graph that consists of a K,._; plus another vertex,
say v, adjacent to at most r — 2 vertices of K,_;. Conjecture 1.2 has been verified by
Sousa for some edge-critical graphs, namely, clique-extensions of order r >4 (n > r)
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(18] and the cycles of length 5 (n > 6) and 7 (n > 10) [17, 19]. Later, Ozkahya and
Person [12] verified the conjecture for all edge-critical graphs with chromatic number
r > 3. Their result is the following.

Theorem 1.3 (See Theorem 3 from [12]). For any edge-critical graph H with chro-
matic number r > 3, there exists ng = no(H) such that ¢(n, H) = ex(n, H), for all
n > ng. Moreover, the only graph attaining ex(n, H) is the Turdn graph T,_1(n).

Recently, as an extension of Ozkahya and Person’s work, Allen, Bottcher, and
Person [1] improved the error term obtained by Pikhurko and Sousa in Theorem 1.1.
In fact, they proved that the error term o(n?) can be replaced by O(n?*~?) for some
a > 0. Furthermore, they also showed that this error term has the correct order of
magnitude. Their result is indeed an extension of Theorem 1.3 since the error term
O(n*=*) that they obtained vanishes for every edge-critical graph H.

Motivated by the recent work about H-decompositions of graphs, a natural prob-
lem to consider is the Ramsey (or coloured) version of this problem. More precisely,
let G be a graph on n vertices whose edges are coloured with k colours, for some k£ > 2
and let H = (Hy,..., Hy) be a k-tuple of fixed graphs, where repetition is allowed.
A monochromatic H-decomposition of GG is a partition of its edge set such that each
part is either a single edge, or forms a monochromatic copy of H; in colour ¢, for some
1 <1< k. Let ¢x(G,H) be the smallest number, such that, for any k-edge-colouring
of G, there exists a monochromatic H-decomposition of G with at most ¢x(G,H)
elements. Our goal is to study the function

¢(n, M) = max{gw(G, H) | v(G) = n},

which is the smallest number ¢ such that, any k-edge-coloured graph of order n admits
a monochromatic H-decomposition with at most ¢ elements. In the case when H; = H
for every 1 < i < k, we simply write ¢y (G, H) = ¢p(G,H) and ¢(n, H) = ¢r(n, H).

The function ¢x(n, K,.), for k > 2 and r > 3, has been studied by Liu and
Sousa [11], who obtained results involving the Ramsey numbers and the Turdn num-
bers. Recall that for £ > 2 and integers rq,...,ry > 3, the Ramsey number for
K, ,..., K, denoted by R(ry,...,7t), is the smallest value of s, such that, for ev-
ery k-edge-colouring of K, there exists a monochromatic K, in colour ¢, for some

1 < i < k. For the case when ry = --- = r, = r, for some r > 3, we simply write
Ri(r) = R(r1,...,7k). Since R(ry,...,r) does not change under any permutation of
r1,...,Tr, without loss of generality, we assume throughout that 3 < ry < ... < rg.

The Ramsey numbers are notoriously difficult to calculate, even though, it is known
that their values are finite [15]. To this date, the values of R(3,73) have been deter-
mined exactly only for 3 < ry <9, and these are shown in the following table [14].

ro |3[4][5[67]8]9
R(3,r5) | 69|14 18|23 2836




The remaining Ramsey numbers that are known exactly are R(4,4) = 18, R(4,5) =
25, and R(3,3,3) = 17. The gap between the lower bound and the upper bound for
other Ramsey numbers is generally quite large.

For the case R(3,3) = 6, it is easy to see that the only 2-edge-colouring of K5 not
containing a monochromatic K3 is the one where each colour induces a cycle of length
5. From this 2-edge-colouring, observe that we may take a ‘blow-up’ to obtain a 2-
edge-colouring of the Turdn graph Tj(n), and easily deduce that ¢o(n, K3) > t5(n).
See Figure 1.

Figure 1. The 2-edge-colouring of K3, and its blow-up

This example was the motivation for Liu and Sousa [11] to study K,-monochromatic
decompositions of graphs, for » > 3 and k > 2. They have recently proved the follow-
ing result.

Theorem 1.4. [11]

(a) ¢r(n, K3) = try3-1(n) +o(n?);
(b) dr(n, K3) = tr,(3)-1(n) for k =2,3 and n sufficiently large;

(¢) ¢r(n, K,) =tr,-1(n), for k>2, r >4 and n sufficiently large.

Moreover, the only graph attaining ¢x(n, K,) in cases (b) and (c) is the Turdn
graph Tg, (»-1(n).

They also made the following conjecture.

Conjecture 1.5. [11] Let k > 4. Then ¢i(n, K3) = tg,(3)-1(n) for n > Ry(3).



Here, we will study an extension of the monochromatic K,-decomposition problem
when the clique K, is replaced by a fixed k-tuple of cliques C = (K,,,..., K,,). Our
main result, stated in Theorem 1.6, is clearly an extension of Theorem 1.4. Also, it
verifies Conjecture 1.5 for sufficiently large n.

Theorem 1.6. Let k > 2,3 < r; < --- <1y, and R = R(ry,...,1;). Let C =
(Kyyy-. .y Ky,). Then, there is an ng = ng(ry,...,r,) such that, for all n > ng, we
have

¢k(n, C) = tR_l(TL>.

Moreover, the only order-n graph attaining ¢r(n,C) is the Turdn graph Tr_1(n)
(with a k-edge-colouring that does not contain a colour-i copy of K., for every 1 <
i <k)

The upper bound of Theorem 1.6 is proved in Section 2. The lower bound follows
easily by the definition of the Ramsey number. Indeed, take a k-edge-colouring f’
of the complete graph Kpr_; without a monochromatic K, in colour ¢, for all 1 <
1 < k. Let uq,...,ugr_1 be the vertices of the Kr_;. Now, consider the Turan graph
Tr_1(n) with a k-edge-colouring f which is a ‘blow-up’ of f’. That is, if Tp_1(n)
has partition classes Vi,...,Vg_1, then for v € V; and w € V; with j # ¢, we define
flow) = f'(ujug). Then, Tr_1(n) with this k-edge-colouring has no monochromatic
K,, in colour i, for every 1 < i < k. Therefore, ¢r(n,C) > ¢r(Tr-1(n),C) = tg_1(n)
and the lower bound in Theorem 1.6 follows.

In particular, when all the cliques in C are equal, Theorem 1.6 completes the results
obtained previously by Liu and Sousa in Theorem 1.4. In fact, we get the following
direct corollary from Theorem 1.6.

Corollary 1.7. Let k > 2, r > 3 and n be sufficiently large. Then,

¢k(n> KT) = tRk(r)—l(n)-

Moreover, the only order-n graph attaining ¢y (n, K,) is the Turdn graph Tg, (;)—1(n)
(with a k-edge-colouring that does not contain a monochromatic copy of K, ).

2 Proof of Theorem 1.6

In this section we will prove the upper bound in Theorem 1.6. Before presenting
the proof we need to introduce the tools. Throughout this section, let k > 2, 3 <
ry < --- <1 be an increasing sequence of integers, R = R(r1,...,r) be the Ramsey
number for K, ,..., K, , and C = (K,,,..., K,,) be a fixed k-tuple of cliques.

We first recall the following stability theorem of Erdés and Simonovits [5, 16].
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Theorem 2.1 (Stability Theorem [5, 16]). Let r > 3, and G be a graph on n vertices
with e(G) > t,_1(n) + o(n?) and not containing K, as a subgraph. Then, there exists
an (r — 1)-partite graph G' on n vertices with partition classes Vi,...,V,_1, where
Vil = 25 +o(n) for 1 < i < r—1, that can be obtained from G by adding and
subtracting o(n?) edges.

Next, we recall the following result of Gydri [7, 8] about the existence of edge-
disjoint copies of K, in graphs on n vertices with more than ¢,_1(n) edges.

Theorem 2.2. [7, 8] Let r > 3, and G be a graph on n vertices, with e(G) = t,_1(n)+
m, where m = o(n?). Then G contains at least m+O(T;—22) = (14+o0(1))m edge-disjoint
copies of K,.

Now, we will consider coverings and packings of cliques in graphs. Let r > 3
and G be a graph. Let I be the set of all K,-subgraphs of G. A K,-cover a set of
edges of G meeting all elements in K, that is, the removal of a K,-cover results in
a K,-free graph. A K,-packing in G is a set of pairwise edge-disjoint copies of K,.
The K,-covering number of G, denoted by 7,.(G), is the minimum size of a K,-cover
of G, and the K,-packing number of G, denoted by v,(G), is the maximum size of
a K,-packing of G. Next, a fractional K,.-cover of G is a function f : E(G) — Ry,
such that ZeeE(H) f(e) > 1 for every H € K, that is, for every copy of K, in G the
sum of the values of f on its edges is at least 1. A fractional K,-packing of G is
a function p : K — Ry such that >y .cpy) P(H) < 1 for every e € E(G), that
is, the total weight of K,’s that cover any edge is at most 1. Here, R, denotes the
set of non-negative real numbers. The fractional K,-covering number of GG, denoted
by 77(G), is the minimum of 3 .5 f(e) over all fractional K,-covers f, and the
fractional K,-packing number of G, denoted by v;(G), is the maximum of ), p(H)
over all fractional K,-packings p.

One can easily observe that

r

1 (G) < 7 (G) < (2) 7 (G).

For r = 3, we have 73(G) < 3v3(G). A long-standing conjecture of Tuza [21] from
1981 states that this inequality is not optimal.

Conjecture 2.3. [21] For every graph G, we have 13(G) < 2v3(G).

Conjecture 2.3 remains open although many partial results have been proved. By
using the earlier results of Krivelevich [10], and Haxell and Rodl [9], Yuster [22] proved
the following theorem which will be crucial to the proof of Theorem 1.6. In the case
r = 3, it is an asymptotic solution of Tuza’s conjecture.



Theorem 2.4. [22] Let r > 3 and G be a graph on n vertices. Then

2

m(G) < | 7| (@) + o). (2.1)

We now prove the following lemma which states that a graph G with n vertices
and at least tg_1(n) + Q(n?) edges falls quite short of being optimal.

Lemma 2.5. For every k > 2 and ¢y > 0 there are ¢; > 0 and ng such that for
every graph G of order n > ng with at least tr_1(n) + con?® edges, we have ¢,(G,C) <
tr_1(n) — cin?.

Proof. Suppose that the lemma is false, that is, there is ¢y > 0 such that for some
increasing sequence of n there is a graph G on n vertices with e(G) > tz_1(n) + con?
and ¢(G,C) > tr_1(n) + o(n?). Fix a k-edge-colouring of G' and let G; be the
subgraph of G on n vertices that contains all edges with colour 7, with 1 < < k.

Let m = e(G) —tgr_1(n), and let s € {0,...,k} be the maximum such that

r=r=Tg=3.

Let us very briefly recall the argument from [11] that shows ¢x(G,C) < tg_1(n) +
o(n?), adopted to our purposes. If we remove a K, -cover from G; for every 1 <i < k,
then we destroy all copies of Kg in G. By Turdn’s theorem, at most tg_1(n) edges
remain. Thus,

Z 7, (G) > m. (2.2)

By Theorem 2.4, if we remove a maximum K, -packing from each G;, we conclude
that

(G.C) < e(G)—i((’;)—Q e (Go)

) =1 6+ o) (2.3)

< tnaln) +m— 307, (G - LS 5 (G +on?) < tra(n) + o(n?)

Note that ((3) —1)/[r?/4] > 5/4 for r > 4 and is equal to 1 for r = 3.

Let us derive a contradiction from this by looking at the properties of our hypo-
thetical counterexample G. First, all inequalities that we saw have to be equalities
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within an additive term o(n?). In particular, the slack in (2.2) is o(n?), that is,
k
N 7(Gi) = m + o(n?). (2.4)
i=1

Also, Zfst 7..(G;) = o(n?). In particular, we have that s > 1. To simplify the
later calculations, let us re-define G' by removing a maximum K, -packing from G; for
each i > s + 1. The new graph is still a counterexample to the lemma if we decrease

co slightly.

Suppose that we remove, for each i < s, an arbitrary (not necessarily minimum)
Ks-cover F; from G; such that

Z\m < m + o(n?). (2.5)

Let G’ C G be the obtained Kg-free graph. (Recall that we assumed that G; is
K,,-free for all i > s+ 1.) Let G} C G; be the colour classes of G'. We know by
(2.5) that e(G') > tgr_1(n) + o(n?). Since G’ is K pg-free, we conclude by the Stability
Theorem (Theorem 2.1) that there is a partition V(G) = V(G') = ViU ... UVz_,4
such that

Vie{l,...,R—1}, |V;|=%—I—o(n) and  |E(T)\ E(G")| = o(n?), (2.6)

where T is the complete (R — 1)-partite graph with parts Vi,..., Vg_1.

Next, we essentially expand the proof of (2.1) for r = 3 and transform it into an
algorithm that produces Kj-coverings F; of G;, with 1 < ¢ < s, in such a way that
(2.5) holds but (2.6) is impossible whatever Vi, ..., Vr_1 we take, giving the desired
contradiction.

Let H be an arbitrary graph of order n. By the LP duality, we have that
T (H) =vi(H). (2.7)

T

By the result of Haxell and Rédl [9] we have that
vi(H) = v.(H) + o(n?). (2.8)

r

Krivelevich [10] showed that
3(H) < 275 (H). (2.9)

Thus, 73(H) < 2v3(H) + o(n?) giving (2.1) for r = 3.
The proof of Krivelevich [10] of (2.9) is based on the following result.
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Lemma 2.6. Let H be an arbitrary graph and f : E(H) — Ry be a minimum
fractional Ks-cover. Then t5(H) < 375(H) or there is zy € E(H) with f(zy) =0
that belongs to at least one triangle of H.

Proof. 1f there is an edge xy € E(H) that does not belong to a triangle, then nec-
essarily f(xy) = 0 and zy does not belong to any optimal integer K3-cover. We can
remove xy from E(H) without changing the validity of the lemma. Thus, we can
assume that every edge of H belongs to a triangle.

Suppose that f(zy) > 0 for every edge xy of H, for otherwise we are done. Take a
maximum fractional Kj-packing p. Recall that it is a function that assigns a weight
p(zyz) € Ry to each triangle zyz of H such that for every edge xy the sum of weights
over all K3’s of H containing xy is at most 1, that is,

. playr) <1, (2.10)

zel'(z)NT'(y)

where I'(v) denotes the set of neighbours of the vertex v in H.

This is the dual LP to the minimum fractional K3-cover problem. By the comple-
mentary slackness condition (since f and p are optimal solutions), we have equality
in (2.10) for every zy € F(H). This and the LP duality imply that

HH) = 3@ =Y pm) =5 S Y playz) = el

ryz myEE(H) z€l'(z)NT'(y)

On the other hand 73(H) < 1e(H): take a bipartite subgraph of H with at
least half of edges; then the remaining edges form a Kj3-cover. Putting the last two
inequalities together, we obtain the required result. ]

Let 1 < i < s. We now describe an algorithm for finding a Kjs-cover F; in G;.
Initially, let H = G; and F; = (). Repeat the following.

Take a minimum fractional Ks-cover f of H. If the first alternative of Lemma 2.6
is true, pick a Ks-cover of H of size at most % 75 (H), add it to F; and stop. Otherwise,
fix some edge xy € E(H) returned by Lemma 2.6. Let F’ consist of all pairs zz and
yz over z € I'(z) NT'(y). Add F’ to F; and remove F’ from E(H). Repeat the whole
step (with the new H and f).

Consider any moment during this algorithm, when we had f(zy) = 0 for some edge
xy of H. Since f is a fractional Kj-cover, we have that f(zz) 4+ f(yz) > 1 for every
z € I'(z) NT'(y). Thus, if H' is obtained from H by removing 2¢ such pairs, where
¢ =1T'(x)NT(y)|, then 75 (H') < 75(H) — ¢ because f when restricted to E(H') is still
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a fractional cover (although not necessarily an optimal one). Clearly, |F;| increases
by 2¢ during this operation. Thus, indeed we obtain, at the end, a Kj-cover F; of G;
of size at most 275 (G;).

Also, by (2.7) and (2.8) we have that
IR <2) vs(Gy) + o(n?).
i=1 i=1

Now, since all slacks in (2.3) are o(n?), we conclude that

s

v3(Gy) <

i=1

and (2.5) holds. In fact, (2.5) is equality by (2.4).

= +o(n?)

Recall that G is obtained from G; by removing all edges of F; and G’ is the edge-
disjoint union of the graphs G. Suppose that there exist Vi, ..., Vg_; satisfying (2.6).
Let M = E(T) \ E(G'") consist of missing edges. Thus, |M| = o(n?).

Fix small ¢5 > 0. Let

X ={z e V(T) | degy(z) > con}.

Clearly,
| X| < 2|M|/can = o(n).

Observe that, for every 1 < i < s, if the first alternative of Lemma 2.6 holds at
some point, then the remaining graph H satisfies 75(H) = o(n?). Indeed, otherwise
by 73(G;) < 275(G;) — 75(H)/2 + o(n?) we get a strictly smaller constant than 2 in
(2.9) and thus a gap of Q(n?) in (2.3), a contradiction. Therefore, all but o(n?) edges
in F; come from some parent edge xy that had f-weight 0 at some point.

When our algorithm adds pairs xz and yz to F; with the same parent zy, then
it adds the same number of pairs incident to x as those incident to y. Let P consist
of pairs zy that are disjoint from X and were a parent edge during the run of the
algorithm. Since the total number of pairs in F} incident to X is at most n|X| = o(n?),
there are |F;| — o(n?) pairs in F} such that their parent is in P.

Let us show that yo and y; belong to different parts V; for every pair yoy; € P.
Suppose on the contrary that, say, yo,y1 € V4. For each 2 < j < R — 1 pick an
arbitrary y; € V; \ (I'nm(x) UL (y)). Since yo,y1 € X, the possible number of choices
for y; is at least

o 2con + o(n) > % — 3eon.

R-1
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Let
Y = {y07 cee ayR—l}-

By the above, we have at least (75 — 3con)*"? choices of Y. Note that by the
definition, all edges between {yo,y1} and the rest of Y are present in E(G’). Thus,
the number of sets Y containing at least one edge of M different from oy, is at most

|M| x nf=* = o(nf2).

This is o(1) times the number of choices of Y. Thus, for almost every Y, H = G'[Y] is
a clique (except perhaps the pair yoy;). In particular, there is at least one such choice
of Y fix it. Adding back the pair yoy; coloured i to H (if it is not there already), we
obtain a k-edge-colouring of the complete graph H of order R. By the definition of
R = R(ry,...,71), there must be a monochromatic triangle on abc of colour h < s.
(Recall that we assumed at the beginning that G is K, -free for each j > s.) But abc
has to contain an edge from the K3-cover Fy, say ab. This edge ab is not in G’ (it was
removed from G). If a,b lie in different parts V;, then ab € M, a contradiction to the
choice of Y. The only possibility is that ab = yoy;. Then h = 7. Since both yyc and
yic are in G}, they were never added to the Ks-cover F; by our algorithm. Therefore,
Yoy1 was never a parent, which is the desired contradiction.

Thus, every xy € P connects two different parts V;. For every such parent zy, the
number of its children in M is at least half of all the children. Indeed, for every pair
of children zz and yz, at least one connects two different parts; this child necessarily
belongs to M. Thus,

1
[N M| > 3 |E5| + o(n?).

Recall that parent edges that intersect X produce at most 2n|X| = o(n?) children.
Therefore,

|M|> = Z|F!+0 >——|—0( %) =Q(n?),
contradicting (2.6). This contradlctlon proves Lemma 2.5. O
We are now able to prove Theorem 1.6.

Proof of the upper bound in Theorem 1.6. Let ng = ng(r1, ..., 7x) be sufficiently large
to satisfy all the inequalities we will encounter. Let G be a k-edge-coloured graph on
n > ng vertices. We will show that ¢x(G,C) < tg_1(n) with equality if and only if
G = Tgr-1(n), and G does not contain a monochromatic copy of K, in colour i for
every 1 <1 < k.
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Let e(G) = tr_1(n) + m, where m is an integer. If m < 0, we can decompose G
into single edges and there is nothing to prove.

Let m = 0. If G contains a monochromatic copy of K,, in colour ¢ for some
1 <i <k, then G admits a monochromatic C-decomposition with at most tg_1(n) —
(%) +1 < tg_1(n) parts and we are done. Otherwise, the definition of R implies that
G does not contain a copy of Kg. Therefore, G = Tr_1(n) by Turdn’s theorem and
or(G,C) = tgr_1(n) as required.

Now, let m > 0. If there exists a constant ¢y > 0 such that m > con?, then we
have ¢(G,C) < tgp_1(n) by Lemma 2.5. Otherwise, we have m = o(n?). In this
case, by Theorem 2.2 with r = R, the graph G contains at least m + O(’T’Z—;) > 2
edge-disjoint copies of Kp. Since each K contains a monochromatic copy of K, in
the colour-i graph G, for some 1 < ¢ < k, this implies that Ele v3(G;) > 7, so that

25:1((2) — Dis(Gs) > Zle 2v3(G;) > m. We have

ok(G,C) =e(G) — Z (Z) v3(Gi) + Z v3(Gi) < tp_1(n),

i=1 i=1

giving the required. [l
Remark. By analysing the above argument, one can also derive the following stability
property for every fixed family C of cliques as n — oo: every graph G on n vertices

with ¢4 (G,C) = tg_1(n) + o(n?) is o(n?)-close to the Turdn graph Tx_1(n) in the edit
distance.
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