Monochromatic Clique Decompositions of Graphs

Henry Liu
Centro de Matemática e Aplicações
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa
Campus de Caparica, 2829-516 Caparica, Portugal
h.liu@fct.unl.pt
Oleg Pikhurko
Mathematics Institute and DIMAP
University of Warwick
Coventry CV4 7AL, United Kingdom
http://homepages.warwick.ac.uk/staff/0.Pikhurko
Teresa Sousa
Departamento de Matemática and Centro de Matemática e Aplicações
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa
Campus de Caparica, 2829-516 Caparica, Portugal
tmjs@fct.unl.pt

January 23, 2014

Abstract

Let G be a graph whose edges are coloured with k colours, and $\mathcal{H}=$ $\left(H_{1}, \ldots, H_{k}\right)$ be a k-tuple of graphs. A monochromatic \mathcal{H}-decomposition of G is a partition of the edge set of G such that each part is either a single edge or forms a monochromatic copy of H_{i} in colour i, for some $1 \leq i \leq k$. Let $\phi_{k}(n, \mathcal{H})$ be the smallest number ϕ, such that, for every order- n graph and every k-edge-colouring, there is a monochromatic \mathcal{H}-decomposition with at most ϕ elements. Extending the previous results of Liu and Sousa ["Monochromatic K_{r}-decompositions of graphs", to appear in Journal of Graph Theory], we solve this problem when each graph in \mathcal{H} is a clique and $n \geq n_{0}(\mathcal{H})$ is sufficiently large.

Keywords: Monochromatic graph decomposition; Turán Number; Ramsey Number

1 Introduction

All graphs in this paper are finite, undirected and simple. For standard graphtheoretic terminology the reader is referred to [3].

Given two graphs G and H, an H-decomposition of G is a partition of the edge set of G such that each part is either a single edge or forms a subgraph isomorphic to H. Let $\phi(G, H)$ be the smallest possible number of parts in an H-decomposition of G. It is easy to see that, if H is non-empty, we have $\phi(G, H)=e(G)-\nu_{H}(G)(e(H)-1)$, where $\nu_{H}(G)$ is the maximum number of pairwise edge-disjoint copies of H that can be packed into G. Dor and Tarsi [4] showed that if H has a component with at least 3 edges then it is NP-complete to determine if a graph G admits a partition into copies of H. Thus, it is NP-hard to compute the function $\phi(G, H)$ for such H. Nonetheless, many exact results were proved about the extremal function

$$
\phi(n, H)=\max \{\phi(G, H) \mid v(G)=n\},
$$

which is the smallest number such that any graph G of order n admits an H decomposition with at most $\phi(n, H)$ elements.

This function was first studied, in 1966, by Erdős, Goodman and Pósa [6], who proved that $\phi\left(n, K_{3}\right)=t_{2}(n)$, where K_{s} denotes the complete graph (clique) of order s, and $t_{r-1}(n)$ denotes the number of edges in the Turán graph $T_{r-1}(n)$, which is the unique ($r-1$)-partite graph on n vertices that has the maximum number of edges. A decade later, Bollobás [2] proved that $\phi\left(n, K_{r}\right)=t_{r-1}(n)$, for all $n \geq r \geq 3$.

Recently Pikhurko and Sousa [13] studied $\phi(n, H)$ for arbitrary graphs H. Their result is the following.

Theorem 1.1. [13] Let H be any fixed graph of chromatic number $r \geq 3$. Then,

$$
\phi(n, H)=t_{r-1}(n)+o\left(n^{2}\right) .
$$

Let $\operatorname{ex}(n, H)$ denote the maximum number of edges in a graph on n vertices not containing H as a subgraph. The result of Turán [20] states that $T_{r-1}(n)$ is the unique extremal graph for $\operatorname{ex}\left(n, K_{r}\right)$. The function $\operatorname{ex}(n, H)$ is usually called the Turán function for H. Pikhurko and Sousa [13] also made the following conjecture.

Conjecture 1.2. [13] For any graph H of chromatic number $r \geq 3$, there exists $n_{0}=n_{0}(H)$ such that $\phi(n, H)=\operatorname{ex}(n, H)$ for all $n \geq n_{0}$.

A graph H is edge-critical if there exists an edge $e \in E(H)$ such that $\chi(H)>$ $\chi(H-e)$, where $\chi(H)$ denotes the chromatic number of H. For $r \geq 4$, a cliqueextension of order r is a connected graph that consists of a K_{r-1} plus another vertex, say v, adjacent to at most $r-2$ vertices of K_{r-1}. Conjecture 1.2 has been verified by Sousa for some edge-critical graphs, namely, clique-extensions of order $r \geq 4(n \geq r)$
[18] and the cycles of length $5(n \geq 6)$ and $7(n \geq 10)$ [17, 19]. Later, Özkahya and Person [12] verified the conjecture for all edge-critical graphs with chromatic number $r \geq 3$. Their result is the following.

Theorem 1.3 (See Theorem 3 from [12]). For any edge-critical graph H with chromatic number $r \geq 3$, there exists $n_{0}=n_{0}(H)$ such that $\phi(n, H)=\operatorname{ex}(n, H)$, for all $n \geq n_{0}$. Moreover, the only graph attaining $\operatorname{ex}(n, H)$ is the Turán graph $T_{r-1}(n)$.

Recently, as an extension of Özkahya and Person's work, Allen, Böttcher, and Person [1] improved the error term obtained by Pikhurko and Sousa in Theorem 1.1. In fact, they proved that the error term $o\left(n^{2}\right)$ can be replaced by $O\left(n^{2-\alpha}\right)$ for some $\alpha>0$. Furthermore, they also showed that this error term has the correct order of magnitude. Their result is indeed an extension of Theorem 1.3 since the error term $O\left(n^{2-\alpha}\right)$ that they obtained vanishes for every edge-critical graph H.

Motivated by the recent work about H-decompositions of graphs, a natural problem to consider is the Ramsey (or coloured) version of this problem. More precisely, let G be a graph on n vertices whose edges are coloured with k colours, for some $k \geq 2$ and let $\mathcal{H}=\left(H_{1}, \ldots, H_{k}\right)$ be a k-tuple of fixed graphs, where repetition is allowed. A monochromatic \mathcal{H}-decomposition of G is a partition of its edge set such that each part is either a single edge, or forms a monochromatic copy of H_{i} in colour i, for some $1 \leq i \leq k$. Let $\phi_{k}(G, \mathcal{H})$ be the smallest number, such that, for any k-edge-colouring of G, there exists a monochromatic \mathcal{H}-decomposition of G with at most $\phi_{k}(G, \mathcal{H})$ elements. Our goal is to study the function

$$
\phi_{k}(n, \mathcal{H})=\max \left\{\phi_{k}(G, \mathcal{H}) \mid v(G)=n\right\}
$$

which is the smallest number ϕ such that, any k-edge-coloured graph of order n admits a monochromatic \mathcal{H}-decomposition with at most ϕ elements. In the case when $H_{i} \cong H$ for every $1 \leq i \leq k$, we simply write $\phi_{k}(G, H)=\phi_{k}(G, \mathcal{H})$ and $\phi_{k}(n, H)=\phi_{k}(n, \mathcal{H})$.

The function $\phi_{k}\left(n, K_{r}\right)$, for $k \geq 2$ and $r \geq 3$, has been studied by Liu and Sousa [11], who obtained results involving the Ramsey numbers and the Turán numbers. Recall that for $k \geq 2$ and integers $r_{1}, \ldots, r_{k} \geq 3$, the Ramsey number for $K_{r_{1}}, \ldots, K_{r_{k}}$, denoted by $R\left(r_{1}, \ldots, r_{k}\right)$, is the smallest value of s, such that, for every k-edge-colouring of K_{s}, there exists a monochromatic $K_{r_{i}}$ in colour i, for some $1 \leq i \leq k$. For the case when $r_{1}=\cdots=r_{k}=r$, for some $r \geq 3$, we simply write $R_{k}(r)=R\left(r_{1}, \ldots, r_{k}\right)$. Since $R\left(r_{1}, \ldots, r_{k}\right)$ does not change under any permutation of r_{1}, \ldots, r_{k}, without loss of generality, we assume throughout that $3 \leq r_{1} \leq \cdots \leq r_{k}$. The Ramsey numbers are notoriously difficult to calculate, even though, it is known that their values are finite [15]. To this date, the values of $R\left(3, r_{2}\right)$ have been determined exactly only for $3 \leq r_{2} \leq 9$, and these are shown in the following table [14].

r_{2}	3	4	5	6	7	8	9
$R\left(3, r_{2}\right)$	6	9	14	18	23	28	36

The remaining Ramsey numbers that are known exactly are $R(4,4)=18, R(4,5)=$ 25 , and $R(3,3,3)=17$. The gap between the lower bound and the upper bound for other Ramsey numbers is generally quite large.

For the case $R(3,3)=6$, it is easy to see that the only 2-edge-colouring of K_{5} not containing a monochromatic K_{3} is the one where each colour induces a cycle of length 5. From this 2-edge-colouring, observe that we may take a 'blow-up' to obtain a 2-edge-colouring of the Turán graph $T_{5}(n)$, and easily deduce that $\phi_{2}\left(n, K_{3}\right) \geq t_{5}(n)$. See Figure 1.

Figure 1. The 2-edge-colouring of K_{5}, and its blow-up

This example was the motivation for Liu and Sousa [11] to study K_{r}-monochromatic decompositions of graphs, for $r \geq 3$ and $k \geq 2$. They have recently proved the following result.

Theorem 1.4. [11]
(a) $\phi_{k}\left(n, K_{3}\right)=t_{R_{k}(3)-1}(n)+o\left(n^{2}\right)$;
(b) $\phi_{k}\left(n, K_{3}\right)=t_{R_{k}(3)-1}(n)$ for $k=2,3$ and n sufficiently large;
(c) $\phi_{k}\left(n, K_{r}\right)=t_{R_{k}(r)-1}(n)$, for $k \geq 2, r \geq 4$ and n sufficiently large.

Moreover, the only graph attaining $\phi_{k}\left(n, K_{r}\right)$ in cases (b) and (c) is the Turán graph $T_{R_{k}(r)-1}(n)$.

They also made the following conjecture.
Conjecture 1.5. [11] Let $k \geq 4$. Then $\phi_{k}\left(n, K_{3}\right)=t_{R_{k}(3)-1}(n)$ for $n \geq R_{k}(3)$.

Here, we will study an extension of the monochromatic K_{r}-decomposition problem when the clique K_{r} is replaced by a fixed k-tuple of cliques $\mathcal{C}=\left(K_{r_{1}}, \ldots, K_{r_{k}}\right)$. Our main result, stated in Theorem 1.6, is clearly an extension of Theorem 1.4. Also, it verifies Conjecture 1.5 for sufficiently large n.

Theorem 1.6. Let $k \geq 2,3 \leq r_{1} \leq \cdots \leq r_{k}$, and $R=R\left(r_{1}, \ldots, r_{k}\right)$. Let $\mathcal{C}=$ $\left(K_{r_{1}}, \ldots, K_{r_{k}}\right)$. Then, there is an $n_{0}=n_{0}\left(r_{1}, \ldots, r_{k}\right)$ such that, for all $n \geq n_{0}$, we have

$$
\phi_{k}(n, \mathcal{C})=t_{R-1}(n)
$$

Moreover, the only order-n graph attaining $\phi_{k}(n, \mathcal{C})$ is the Turán graph $T_{R-1}(n)$ (with a k-edge-colouring that does not contain a colour-i copy of $K_{r_{i}}$ for every $1 \leq$ $i \leq k$).

The upper bound of Theorem 1.6 is proved in Section 2. The lower bound follows easily by the definition of the Ramsey number. Indeed, take a k-edge-colouring f^{\prime} of the complete graph K_{R-1} without a monochromatic $K_{r_{i}}$ in colour i, for all $1 \leq$ $i \leq k$. Let u_{1}, \ldots, u_{R-1} be the vertices of the K_{R-1}. Now, consider the Turán graph $T_{R-1}(n)$ with a k-edge-colouring f which is a 'blow-up' of f^{\prime}. That is, if $T_{R-1}(n)$ has partition classes V_{1}, \ldots, V_{R-1}, then for $v \in V_{j}$ and $w \in V_{\ell}$ with $j \neq \ell$, we define $f(v w)=f^{\prime}\left(u_{j} u_{\ell}\right)$. Then, $T_{R-1}(n)$ with this k-edge-colouring has no monochromatic $K_{r_{i}}$ in colour i, for every $1 \leq i \leq k$. Therefore, $\phi_{k}(n, \mathcal{C}) \geq \phi_{k}\left(T_{R-1}(n), \mathcal{C}\right)=t_{R-1}(n)$ and the lower bound in Theorem 1.6 follows.

In particular, when all the cliques in \mathcal{C} are equal, Theorem 1.6 completes the results obtained previously by Liu and Sousa in Theorem 1.4. In fact, we get the following direct corollary from Theorem 1.6.

Corollary 1.7. Let $k \geq 2, r \geq 3$ and n be sufficiently large. Then,

$$
\phi_{k}\left(n, K_{r}\right)=t_{R_{k}(r)-1}(n) .
$$

Moreover, the only order-n graph attaining $\phi_{k}\left(n, K_{r}\right)$ is the Turán graph $T_{R_{k}(r)-1}(n)$ (with a k-edge-colouring that does not contain a monochromatic copy of K_{r}).

2 Proof of Theorem 1.6

In this section we will prove the upper bound in Theorem 1.6. Before presenting the proof we need to introduce the tools. Throughout this section, let $k \geq 2,3 \leq$ $r_{1} \leq \cdots \leq r_{k}$ be an increasing sequence of integers, $R=R\left(r_{1}, \ldots, r_{k}\right)$ be the Ramsey number for $K_{r_{1}}, \ldots, K_{r_{k}}$, and $\mathcal{C}=\left(K_{r_{1}}, \ldots, K_{r_{k}}\right)$ be a fixed k-tuple of cliques.

We first recall the following stability theorem of Erdős and Simonovits [5, 16].

Theorem 2.1 (Stability Theorem [5, 16]). Let $r \geq 3$, and G be a graph on n vertices with $e(G) \geq t_{r-1}(n)+o\left(n^{2}\right)$ and not containing K_{r} as a subgraph. Then, there exists an $(r-1)$-partite graph G^{\prime} on n vertices with partition classes V_{1}, \ldots, V_{r-1}, where $\left|V_{i}\right|=\frac{n}{r-1}+o(n)$ for $1 \leq i \leq r-1$, that can be obtained from G by adding and subtracting o $\left(n^{2}\right)$ edges.

Next, we recall the following result of Győri $[7,8]$ about the existence of edgedisjoint copies of K_{r} in graphs on n vertices with more than $t_{r-1}(n)$ edges.

Theorem 2.2. [7, 8] Let $r \geq 3$, and G be a graph on n vertices, with $e(G)=t_{r-1}(n)+$ m, where $m=o\left(n^{2}\right)$. Then G contains at least $m+O\left(\frac{m^{2}}{n^{2}}\right)=(1+o(1)) m$ edge-disjoint copies of K_{r}.

Now, we will consider coverings and packings of cliques in graphs. Let $r \geq 3$ and G be a graph. Let \mathcal{K} be the set of all K_{r}-subgraphs of G. A K_{r}-cover a set of edges of G meeting all elements in \mathcal{K}, that is, the removal of a K_{r}-cover results in a K_{r}-free graph. A K_{r}-packing in G is a set of pairwise edge-disjoint copies of K_{r}. The K_{r}-covering number of G, denoted by $\tau_{r}(G)$, is the minimum size of a K_{r}-cover of G, and the K_{r}-packing number of G, denoted by $\nu_{r}(G)$, is the maximum size of a K_{r}-packing of G. Next, a fractional K_{r}-cover of G is a function $f: E(G) \rightarrow \mathbb{R}_{+}$, such that $\sum_{e \in E(H)} f(e) \geq 1$ for every $H \in \mathcal{K}$, that is, for every copy of K_{r} in G the sum of the values of f on its edges is at least 1. A fractional K_{r}-packing of G is a function $p: \mathcal{K} \rightarrow \mathbb{R}_{+}$such that $\sum_{H \in \mathcal{K}: e \in E(H)} p(H) \leq 1$ for every $e \in E(G)$, that is, the total weight of K_{r} 's that cover any edge is at most 1 . Here, \mathbb{R}_{+}denotes the set of non-negative real numbers. The fractional K_{r}-covering number of G, denoted by $\tau_{r}^{*}(G)$, is the minimum of $\sum_{e \in E(G)} f(e)$ over all fractional K_{r}-covers f, and the fractional K_{r}-packing number of G, denoted by $\nu_{r}^{*}(G)$, is the maximum of $\sum_{H \in \mathcal{K}} p(H)$ over all fractional K_{r}-packings p.

One can easily observe that

$$
\nu_{r}(G) \leq \tau_{r}(G) \leq\binom{ r}{2} \nu_{r}(G)
$$

For $r=3$, we have $\tau_{3}(G) \leq 3 \nu_{3}(G)$. A long-standing conjecture of Tuza [21] from 1981 states that this inequality is not optimal.

Conjecture 2.3. [21] For every graph G, we have $\tau_{3}(G) \leq 2 \nu_{3}(G)$.
Conjecture 2.3 remains open although many partial results have been proved. By using the earlier results of Krivelevich [10], and Haxell and Rödl [9], Yuster [22] proved the following theorem which will be crucial to the proof of Theorem 1.6. In the case $r=3$, it is an asymptotic solution of Tuza's conjecture.

Theorem 2.4. [22] Let $r \geq 3$ and G be a graph on n vertices. Then

$$
\begin{equation*}
\tau_{r}(G) \leq\left\lfloor\frac{r^{2}}{4}\right\rfloor \nu_{r}(G)+o\left(n^{2}\right) . \tag{2.1}
\end{equation*}
$$

We now prove the following lemma which states that a graph G with n vertices and at least $t_{R-1}(n)+\Omega\left(n^{2}\right)$ edges falls quite short of being optimal.

Lemma 2.5. For every $k \geq 2$ and $c_{0}>0$ there are $c_{1}>0$ and n_{0} such that for every graph G of order $n \geq n_{0}$ with at least $t_{R-1}(n)+c_{0} n^{2}$ edges, we have $\phi_{k}(G, \mathcal{C}) \leq$ $t_{R-1}(n)-c_{1} n^{2}$.

Proof. Suppose that the lemma is false, that is, there is $c_{0}>0$ such that for some increasing sequence of n there is a graph G on n vertices with $e(G) \geq t_{R-1}(n)+c_{0} n^{2}$ and $\phi_{k}(G, \mathcal{C}) \geq t_{R-1}(n)+o\left(n^{2}\right)$. Fix a k-edge-colouring of G and let G_{i} be the subgraph of G on n vertices that contains all edges with colour i, with $1 \leq i \leq k$.

Let $m=e(G)-t_{R-1}(n)$, and let $s \in\{0, \ldots, k\}$ be the maximum such that

$$
r_{1}=\cdots=r_{s}=3
$$

Let us very briefly recall the argument from [11] that shows $\phi_{k}(G, \mathcal{C}) \leq t_{R-1}(n)+$ $o\left(n^{2}\right)$, adopted to our purposes. If we remove a $K_{r_{i}}$-cover from G_{i} for every $1 \leq i \leq k$, then we destroy all copies of K_{R} in G. By Turán's theorem, at most $t_{R-1}(n)$ edges remain. Thus,

$$
\begin{equation*}
\sum_{i=1}^{k} \tau_{r_{i}}\left(G_{i}\right) \geq m \tag{2.2}
\end{equation*}
$$

By Theorem 2.4, if we remove a maximum $K_{r_{i}}$-packing from each G_{i}, we conclude that

$$
\begin{align*}
\phi_{k}(G, \mathcal{C}) & \leq e(G)-\sum_{i=1}^{k}\left(\binom{r_{i}}{2}-1\right) \nu_{r_{i}}\left(G_{i}\right) \\
& \leq t_{R-1}(n)+m-\sum_{i=1}^{k} \frac{\binom{r_{i}}{2}-1}{\left\lfloor r_{i}^{2} / 4\right\rfloor} \tau_{r_{i}}\left(G_{i}\right)+o\left(n^{2}\right) \tag{2.3}\\
& \leq t_{R-1}(n)+m-\sum_{i=1}^{k} \tau_{r_{i}}\left(G_{i}\right)-\frac{1}{4} \sum_{i=s+1}^{k} \tau_{r_{i}}\left(G_{i}\right)+o\left(n^{2}\right) \leq t_{R-1}(n)+o\left(n^{2}\right) .
\end{align*}
$$

Let us derive a contradiction from this by looking at the properties of our hypothetical counterexample G. First, all inequalities that we saw have to be equalities
within an additive term $o\left(n^{2}\right)$. In particular, the slack in (2.2) is $o\left(n^{2}\right)$, that is,

$$
\begin{equation*}
\sum_{i=1}^{k} \tau_{r_{i}}\left(G_{i}\right)=m+o\left(n^{2}\right) \tag{2.4}
\end{equation*}
$$

Also, $\sum_{i=s+1}^{k} \tau_{r_{i}}\left(G_{i}\right)=o\left(n^{2}\right)$. In particular, we have that $s \geq 1$. To simplify the later calculations, let us re-define G by removing a maximum $K_{r_{i}}$-packing from G_{i} for each $i \geq s+1$. The new graph is still a counterexample to the lemma if we decrease c_{0} slightly.

Suppose that we remove, for each $i \leq s$, an arbitrary (not necessarily minimum) K_{3}-cover F_{i} from G_{i} such that

$$
\begin{equation*}
\sum_{i=1}^{s}\left|F_{i}\right| \leq m+o\left(n^{2}\right) \tag{2.5}
\end{equation*}
$$

Let $G^{\prime} \subseteq G$ be the obtained K_{R}-free graph. (Recall that we assumed that G_{i} is $K_{r_{i}}$-free for all $i \geq s+1$.) Let $G_{i}^{\prime} \subseteq G_{i}$ be the colour classes of G^{\prime}. We know by (2.5) that $e\left(G^{\prime}\right) \geq t_{R-1}(n)+o\left(n^{2}\right)$. Since G^{\prime} is K_{R}-free, we conclude by the Stability Theorem (Theorem 2.1) that there is a partition $V(G)=V\left(G^{\prime}\right)=V_{1} \dot{\cup} \ldots \dot{U} V_{R-1}$ such that

$$
\begin{equation*}
\forall i \in\{1, \ldots, R-1\}, \quad\left|V_{i}\right|=\frac{n}{R-1}+o(n) \quad \text { and } \quad\left|E(T) \backslash E\left(G^{\prime}\right)\right|=o\left(n^{2}\right) \tag{2.6}
\end{equation*}
$$

where T is the complete $(R-1)$-partite graph with parts V_{1}, \ldots, V_{R-1}.
Next, we essentially expand the proof of (2.1) for $r=3$ and transform it into an algorithm that produces K_{3}-coverings F_{i} of G_{i}, with $1 \leq i \leq s$, in such a way that (2.5) holds but (2.6) is impossible whatever V_{1}, \ldots, V_{R-1} we take, giving the desired contradiction.

Let H be an arbitrary graph of order n. By the LP duality, we have that

$$
\begin{equation*}
\tau_{r}^{*}(H)=\nu_{r}^{*}(H) \tag{2.7}
\end{equation*}
$$

By the result of Haxell and Rödl [9] we have that

$$
\begin{equation*}
\nu_{r}^{*}(H)=\nu_{r}(H)+o\left(n^{2}\right) \tag{2.8}
\end{equation*}
$$

Krivelevich [10] showed that

$$
\begin{equation*}
\tau_{3}(H) \leq 2 \tau_{3}^{*}(H) \tag{2.9}
\end{equation*}
$$

Thus, $\tau_{3}(H) \leq 2 \nu_{3}(H)+o\left(n^{2}\right)$ giving (2.1) for $r=3$.
The proof of Krivelevich [10] of (2.9) is based on the following result.

Lemma 2.6. Let H be an arbitrary graph and $f: E(H) \rightarrow \mathbb{R}_{+}$be a minimum fractional K_{3}-cover. Then $\tau_{3}(H) \leq \frac{3}{2} \tau_{3}^{*}(H)$ or there is $x y \in E(H)$ with $f(x y)=0$ that belongs to at least one triangle of H.

Proof. If there is an edge $x y \in E(H)$ that does not belong to a triangle, then necessarily $f(x y)=0$ and $x y$ does not belong to any optimal integer K_{3}-cover. We can remove $x y$ from $E(H)$ without changing the validity of the lemma. Thus, we can assume that every edge of H belongs to a triangle.

Suppose that $f(x y)>0$ for every edge $x y$ of H, for otherwise we are done. Take a maximum fractional K_{3}-packing p. Recall that it is a function that assigns a weight $p(x y z) \in \mathbb{R}_{+}$to each triangle $x y z$ of H such that for every edge $x y$ the sum of weights over all K_{3} 's of H containing $x y$ is at most 1 , that is,

$$
\begin{equation*}
\sum_{z \in \Gamma(x) \cap \Gamma(y)} p(x y z) \leq 1, \tag{2.10}
\end{equation*}
$$

where $\Gamma(v)$ denotes the set of neighbours of the vertex v in H.
This is the dual LP to the minimum fractional K_{3}-cover problem. By the complementary slackness condition (since f and p are optimal solutions), we have equality in (2.10) for every $x y \in E(H)$. This and the LP duality imply that

$$
\tau_{3}^{*}(H)=\nu_{3}^{*}(G)=\sum_{x y z} p(x y z)=\frac{1}{3} \sum_{x y \in E(H)} \sum_{z \in \Gamma(x) \cap \Gamma(y)} p(x y z)=\frac{1}{3} e(H)
$$

On the other hand $\tau_{3}(H) \leq \frac{1}{2} e(H)$: take a bipartite subgraph of H with at least half of edges; then the remaining edges form a K_{3}-cover. Putting the last two inequalities together, we obtain the required result.

Let $1 \leq i \leq s$. We now describe an algorithm for finding a K_{3}-cover F_{i} in G_{i}. Initially, let $H=G_{i}$ and $F_{i}=\emptyset$. Repeat the following.

Take a minimum fractional K_{3}-cover f of H. If the first alternative of Lemma 2.6 is true, pick a K_{3}-cover of H of size at most $\frac{3}{2} \tau_{3}^{*}(H)$, add it to F_{i} and stop. Otherwise, fix some edge $x y \in E(H)$ returned by Lemma 2.6. Let F^{\prime} consist of all pairs $x z$ and $y z$ over $z \in \Gamma(x) \cap \Gamma(y)$. Add F^{\prime} to F_{i} and remove F^{\prime} from $E(H)$. Repeat the whole step (with the new H and f).

Consider any moment during this algorithm, when we had $f(x y)=0$ for some edge $x y$ of H. Since f is a fractional K_{3}-cover, we have that $f(x z)+f(y z) \geq 1$ for every $z \in \Gamma(x) \cap \Gamma(y)$. Thus, if H^{\prime} is obtained from H by removing 2ℓ such pairs, where $\ell=|\Gamma(x) \cap \Gamma(y)|$, then $\tau_{3}^{*}\left(H^{\prime}\right) \leq \tau_{3}^{*}(H)-\ell$ because f when restricted to $E\left(H^{\prime}\right)$ is still
a fractional cover (although not necessarily an optimal one). Clearly, $\left|F_{i}\right|$ increases by 2ℓ during this operation. Thus, indeed we obtain, at the end, a K_{3}-cover F_{i} of G_{i} of size at most $2 \tau_{3}^{*}\left(G_{i}\right)$.

Also, by (2.7) and (2.8) we have that

$$
\sum_{i=1}^{s}\left|F_{i}\right| \leq 2 \sum_{i=1}^{s} \nu_{3}\left(G_{i}\right)+o\left(n^{2}\right)
$$

Now, since all slacks in (2.3) are $o\left(n^{2}\right)$, we conclude that

$$
\sum_{i=1}^{s} \nu_{3}\left(G_{i}\right) \leq \frac{m}{2}+o\left(n^{2}\right)
$$

and (2.5) holds. In fact, (2.5) is equality by (2.4).
Recall that G_{i}^{\prime} is obtained from G_{i} by removing all edges of F_{i} and G^{\prime} is the edgedisjoint union of the graphs G_{i}^{\prime}. Suppose that there exist V_{1}, \ldots, V_{R-1} satisfying (2.6). Let $M=E(T) \backslash E\left(G^{\prime}\right)$ consist of missing edges. Thus, $|M|=o\left(n^{2}\right)$.

Fix small $c_{2}>0$. Let

$$
X=\left\{x \in V(T) \mid \operatorname{deg}_{M}(x) \geq c_{2} n\right\}
$$

Clearly,

$$
|X| \leq 2|M| / c_{2} n=o(n)
$$

Observe that, for every $1 \leq i \leq s$, if the first alternative of Lemma 2.6 holds at some point, then the remaining graph H satisfies $\tau_{3}^{*}(H)=o\left(n^{2}\right)$. Indeed, otherwise by $\tau_{3}\left(G_{i}\right) \leq 2 \tau_{3}^{*}\left(G_{i}\right)-\tau_{3}^{*}(H) / 2+o\left(n^{2}\right)$ we get a strictly smaller constant than 2 in (2.9) and thus a gap of $\Omega\left(n^{2}\right)$ in (2.3), a contradiction. Therefore, all but $o\left(n^{2}\right)$ edges in F_{i} come from some parent edge $x y$ that had f-weight 0 at some point.

When our algorithm adds pairs $x z$ and $y z$ to F_{i} with the same parent $x y$, then it adds the same number of pairs incident to x as those incident to y. Let \mathcal{P} consist of pairs $x y$ that are disjoint from X and were a parent edge during the run of the algorithm. Since the total number of pairs in F_{i} incident to X is at most $n|X|=o\left(n^{2}\right)$, there are $\left|F_{i}\right|-o\left(n^{2}\right)$ pairs in F_{i} such that their parent is in \mathcal{P}.

Let us show that y_{0} and y_{1} belong to different parts V_{j} for every pair $y_{0} y_{1} \in \mathcal{P}$. Suppose on the contrary that, say, $y_{0}, y_{1} \in V_{1}$. For each $2 \leq j \leq R-1$ pick an arbitrary $y_{j} \in V_{j} \backslash\left(\Gamma_{M}(x) \cup \Gamma_{M}(y)\right)$. Since $y_{0}, y_{1} \notin X$, the possible number of choices for y_{j} is at least

$$
\frac{n}{R-1}-2 c_{2} n+o(n) \geq \frac{n}{R-1}-3 c_{2} n .
$$

Let

$$
Y=\left\{y_{0}, \ldots, y_{R-1}\right\}
$$

By the above, we have at least $\left(\frac{n}{R-1}-3 c_{2} n\right)^{R-2}$ choices of Y. Note that by the definition, all edges between $\left\{y_{0}, y_{1}\right\}$ and the rest of Y are present in $E\left(G^{\prime}\right)$. Thus, the number of sets Y containing at least one edge of M different from $y_{0} y_{1}$ is at most

$$
|M| \times n^{R-4}=o\left(n^{R-2}\right)
$$

This is $o(1)$ times the number of choices of Y. Thus, for almost every $Y, H=G^{\prime}[Y]$ is a clique (except perhaps the pair $y_{0} y_{1}$). In particular, there is at least one such choice of Y; fix it. Adding back the pair $y_{0} y_{1}$ coloured i to H (if it is not there already), we obtain a k-edge-colouring of the complete graph H of order R. By the definition of $R=R\left(r_{1}, \ldots, r_{k}\right)$, there must be a monochromatic triangle on $a b c$ of colour $h \leq s$. (Recall that we assumed at the beginning that G_{j} is $K_{r_{j}}$-free for each $j>s$.) But $a b c$ has to contain an edge from the K_{3}-cover F_{h}, say $a b$. This edge $a b$ is not in G^{\prime} (it was removed from G). If a, b lie in different parts V_{j}, then $a b \in M$, a contradiction to the choice of Y. The only possibility is that $a b=y_{0} y_{1}$. Then $h=i$. Since both $y_{0} c$ and $y_{1} c$ are in G_{i}^{\prime}, they were never added to the K_{3}-cover F_{i} by our algorithm. Therefore, $y_{0} y_{1}$ was never a parent, which is the desired contradiction.

Thus, every $x y \in \mathcal{P}$ connects two different parts V_{j}. For every such parent $x y$, the number of its children in M is at least half of all the children. Indeed, for every pair of children $x z$ and $y z$, at least one connects two different parts; this child necessarily belongs to M. Thus,

$$
\left|F_{i} \cap M\right| \geq \frac{1}{2}\left|F_{i}\right|+o\left(n^{2}\right)
$$

Recall that parent edges that intersect X produce at most $2 n|X|=o\left(n^{2}\right)$ children. Therefore,

$$
|M| \geq \frac{1}{2} \sum_{i=1}^{s}\left|F_{i}\right|+o\left(n^{2}\right) \geq \frac{m}{2}+o\left(n^{2}\right)=\Omega\left(n^{2}\right)
$$

contradicting (2.6). This contradiction proves Lemma 2.5.
We are now able to prove Theorem 1.6.
Proof of the upper bound in Theorem 1.6. Let $n_{0}=n_{0}\left(r_{1}, \ldots, r_{k}\right)$ be sufficiently large to satisfy all the inequalities we will encounter. Let G be a k-edge-coloured graph on $n \geq n_{0}$ vertices. We will show that $\phi_{k}(G, \mathcal{C}) \leq t_{R-1}(n)$ with equality if and only if $G=T_{R-1}(n)$, and G does not contain a monochromatic copy of $K_{r_{i}}$ in colour i for every $1 \leq i \leq k$.

Let $e(G)=t_{R-1}(n)+m$, where m is an integer. If $m<0$, we can decompose G into single edges and there is nothing to prove.

Let $m=0$. If G contains a monochromatic copy of $K_{r_{i}}$ in colour i for some $1 \leq i \leq k$, then G admits a monochromatic \mathcal{C}-decomposition with at most $t_{R-1}(n)-$ $\binom{r_{i}}{2}+1<t_{R-1}(n)$ parts and we are done. Otherwise, the definition of R implies that G does not contain a copy of K_{R}. Therefore, $G=T_{R-1}(n)$ by Turán's theorem and $\phi_{k}(G, \mathcal{C})=t_{R-1}(n)$ as required.

Now, let $m>0$. If there exists a constant $c_{0}>0$ such that $m \geq c_{0} n^{2}$, then we have $\phi_{k}(G, \mathcal{C})<t_{R-1}(n)$ by Lemma 2.5. Otherwise, we have $m=o\left(n^{2}\right)$. In this case, by Theorem 2.2 with $r=R$, the graph G contains at least $m+O\left(\frac{m^{2}}{n^{2}}\right)>\frac{m}{2}$ edge-disjoint copies of K_{R}. Since each K_{R} contains a monochromatic copy of $K_{r_{i}}$ in the colour- i graph G_{i}, for some $1 \leq i \leq k$, this implies that $\sum_{i=1}^{k} \nu_{3}\left(G_{i}\right)>\frac{m}{2}$, so that $\sum_{i=1}^{k}\left(\binom{r_{i}}{2}-1\right) \nu_{3}\left(G_{i}\right) \geq \sum_{i=1}^{k} 2 \nu_{3}\left(G_{i}\right)>m$. We have

$$
\phi_{k}(G, \mathcal{C})=e(G)-\sum_{i=1}^{k}\binom{r_{i}}{2} \nu_{3}\left(G_{i}\right)+\sum_{i=1}^{k} \nu_{3}\left(G_{i}\right)<t_{R-1}(n)
$$

giving the required.
Remark. By analysing the above argument, one can also derive the following stability property for every fixed family \mathcal{C} of cliques as $n \rightarrow \infty$: every graph G on n vertices with $\phi_{k}(G, \mathcal{C})=t_{R-1}(n)+o\left(n^{2}\right)$ is $o\left(n^{2}\right)$-close to the Turán graph $T_{R-1}(n)$ in the edit distance.

Acknowledgements

Henry Liu and Teresa Sousa acknowledge the support from FCT - Fundação para a Ciência e a Tecnologia (Portugal), through the projects PTDC/MAT/113207/2009 and PEst-OE/MAT/UI0297/2011 (CMA). Oleg Pikhurko was supported by ERC grant 306493 and EPSRC grant EP/K012045/1.

References

[1] P. Allen, J. Böttcher, and Y. Person. An improved error term for minimum H-decompositions of graphs. Submitted.
[2] B. Bollobás. On complete subgraphs of different orders. Math. Proc. Cambridge Philos. Soc., 79(1):19-24, 1976.
[3] B. Bollobás. Modern graph theory, volume 184 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1998.
[4] D. Dor and M. Tarsi. Graph decomposition is NP-complete: a complete proof of Holyer's conjecture. SIAM J. Comput., 26(4):1166-1187, 1997.
[5] P. Erdős. Some recent results on extremal problems in graph theory. (Results). Theory Graphs, Int. Symp. Rome 1966, 117-123 (English), 124-130 (French), 1967.
[6] P. Erdős, A. W. Goodman, and L. Pósa. The representation of a graph by set intersections. Canad. J. Math., 18:106-112, 1966.
[7] E. Győri. On the number of edge-disjoint triangles in graphs of given size. In Combinatorics (Eger, 1987), volume 52 of Colloq. Math. Soc. János Bolyai, pages 267-276. North-Holland, Amsterdam, 1988.
[8] E. Győri. On the number of edge disjoint cliques in graphs of given size. Combinatorica, 11(3):231-243, 1991.
[9] P. E. Haxell and V. Rödl. Integer and fractional packings in dense graphs. Combinatorica, 21(1):13-38, 2001.
[10] M. Krivelevich. On a conjecture of Tuza about packing and covering of triangles. Discrete Math., 142(1-3):281-286, 1995.
[11] H. Liu and T. Sousa. Monochromatic K_{r}-decompositions of graphs. J. Graph Theory, to appear.
[12] L. Özkahya and Y. Person. Minimum H-decompositions of graphs: edge-critical case. J. Combin. Theory Ser. B, 102(3):715-725, 2012.
[13] O. Pikhurko and T. Sousa. Minimum H-decompositions of graphs. J. Combin. Theory Ser. B, 97(6):1041-1055, 2007.
[14] S. P. Radziszowski. Small Ramsey numbers. Electron. J. Comb., DS01:research paper ds1, 27, 1996.
[15] F. P. Ramsey. On a problem of formal logic. Proc. London Math. Soc., 30:264286, 1930.
[16] M. Simonovits. A method for solving extremal problems in graph theory, stability problems. In Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 279-319. Academic Press, New York, 1968.
[17] T. Sousa. Decompositions of graphs into 5-cycles and other small graphs. Electron. J. Combin., 12:Research Paper 49, 7 pp. (electronic), 2005.
[18] T. Sousa. Decompositions of graphs into a given clique-extension. Ars Combin., 100:465-472, 2011.
[19] T. Sousa. Decompositions of graphs into cycles of length seven and single edges. Ars Combin., to appear.
[20] P. Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok, 48:436-452, 1941.
[21] Zs. Tuza. In Finite and Infinite Sets, volume 37 of Colloquia Mathematica Societatis János Bolyai, page 888. North-Holland Publishing Co., Amsterdam, 1984.
[22] R. Yuster. Dense graphs with a large triangle cover have a large triangle packing. Combin. Probab. Comput., 21:952-962, 2012.

