CUTTING AND PASTING

LIBERTÉ, EGALITÉ, HOMOLOGIE!

1. Heegaard splittings

- Making 3-manifolds from solid handlebodies

- Surface homeomorphisms

 Gluing manifolds together along their boundaries
- 3. Surgery– Cutting and pasting
- 4. Homology spheres

- If it looks like a sphere... it might not be.

1. HEEGAARD SPLITTINGS

n-manifold: Compact, connected, Hausdorff topological space M^n , each point of which has a neighbourhood homeomorphic to \mathbb{R}^n .

... with boundary: Also allow neighbourhoods homeomorphic to \mathbb{R}^n_+ .

boundary, $\partial \mathbf{M}$: The bit consisting of points with neighbourhoods homeomorphic to \mathbb{R}^n_+ .

Genus-*n* handlebody: Compact subset of \mathbb{R}^3 bounded by a genus-*n* surface (a 2-sphere with *n* hollow handles).

A genus-3 handlebody

Now:

1. Take two identical copies M_1, M_2 of the genus-n handlebody.

2. Choose a homeomorphism $f : \partial M_1 \to \partial M_2$.

3. Form the quotient space $M = M_1 \coprod_f M_2$: Take the disjoint union $M_1 \coprod M_2$ and identify $x \in M_1$ with its image $f(x) \in M_2$.

This is a **Heegaard splitting** (of genus n) of the 3-manifold M.

THEOREM

A 3-manifold formed in this way is orientable. Furthermore, any orientable 3-manifold can be presented thusly.

EXAMPLES

- 1. Genus-0: The 3-sphere S^3 . Two copies of \mathcal{B}^3 glued together along their boundaries ($\cong S^2$). Analogous to $S^1 = \mathcal{D}^1 \cup \mathcal{D}^1$ and $S^2 = \mathcal{D}^2 \cup \mathcal{D}^2$. The 'North' and 'South' poles of S^3 are the centres of the \mathcal{B}^3 s
- 2. Genus-1: The 3-sphere S^3 (again). Can also split S^3 as two solid tori ($D^2 \times S^1$):

5

3. $S^2 \times S^1$.

Glue α_1 to α_2 and β_1 to β_2 .

4. Projective space \mathbb{RP}^3 .

Glue each meridian α_i to a (1,2) torus knot on the surface of the other solid torus.

5. Lens spaces $\mathcal{L}_{p,q}$.

Glue each meridian α_1 and α_2 to a (q, p) torus knot on the surface of the other torus. This is one construction of the **lens space** $\mathcal{L}_{p,q}$. In particular,

$$\begin{array}{l} \mathcal{L}_{1,q} \cong \mathcal{S}^3, \\ \mathcal{L}_{0,1} \cong \mathcal{S}^2 \times \mathcal{S}^1, \\ \text{and } \mathcal{L}_{2,1} \cong \mathbb{R}\mathcal{P}^3. \\ \text{Also, } \mathcal{L}_{p,q} \cong \mathcal{L}_{p,q'} \text{ iff } \pm q' \equiv q^{\pm 1} \pmod{p}, \\ \text{and } \mathcal{L}_{p,q} \approx \mathcal{L}_{p,q'} \text{ iff } q \equiv m^2 q' \pmod{p}. \\ \text{For example: } \mathcal{L}_{7,1} \text{ and } \mathcal{L}_{7,2} \text{ have the same homotopy type, but are not homeomorphic.} \end{array}$$

HOMEOMORPHISMS OF SURFACES

Heegaard splittings of a given genus are determined by the gluing homeomorphism.

Want a description of such in terms of suitable elementary operations.

DEHN TWISTS

Cut the surface around a meridional curve, twist, and glue back together again.

THEOREM (DEHN-LICKORISH)

Any orientation-preserving homeomorphism of an oriented 2-manifold (without boundary) is isotopic to a composition of Dehn twists.

COROLLARY

Any orientable 3-manifold can be constructed by cutting out a collection of unknotted solid tori from S^3 and gluing them back in along different boundary homeomorphisms.

COROLLARY (ROKHLIN'S THEOREM) Every orientable 3-manifold (without boundary) is the boundary of a 4-manifold. That is, $\Omega_3 \cong 0$.

RATIONAL SURGERY

Take S^3 , cut out an unknotted solid torus with meridian α and longitude β . Then glue it back in by identifying α with the curve $p\alpha + q\beta$, where p and q are coprime (this is a (q, p) torus knot).

This surgery is determined completely by the rational number $r = \frac{p}{q}$, which we call the **framing index** of the unknotted torus.

EXAMPLES

1. $\bigcirc^0 \cong S^1 \times S^2$. This is a **torus switch**

2.
$$\bigcirc^{\frac{p}{q}} \cong \mathcal{L}_{p,q}$$
.

3.
$$\bigcirc^{\pm \frac{1}{n}} \cong S^3$$
.

4.
$$\bigcirc^r = \bigcirc^{\frac{1}{\pm n + \frac{1}{r}}}$$

LINKING NUMBERS

To generalise to nontrivial knots, we need to be a bit more careful when choosing the longitude.

Given two curves J and K in S^3 , define their **link**ing number lk(J, K) to be the sum, over all the crossings τ , of $\varepsilon(\tau)$:

Crossings which don't involve two different components of the link have $\varepsilon = 0$.

 $\mathsf{lk}(J,K) = \mathsf{lk}(K,J).$

If $lk(J, K) \neq 0$ then J and K are linked. The converse isn't true in general, though.

The linking number is invariant under the Reidemeister moves: It's independent of the isotopy class of the link. Now, given a knot J, choose a meridian α on its tubular neighbourhood such that $lk(\alpha, J) = +1$, and a longitude β which is codirected with J such that $lk(\beta, J) = 0$.

INTEGER SURGERY

We can now do rational surgery on nontrivial links. It turns out, though, that integer surgery is enough:

THEOREM

Any compact, orientable 3-manifold without boundary can be obtained by integer surgery on a link in S^3 .

EQUIVALENT SURGERIES

Surgery on S^3 along different framed links can produce homeomorphic manifolds. Two such surgeries are said to be **equivalent**.

THE KIRBY CALCULUS

An \mathcal{O}_1 -move consists of adding or deleting an unlinked trivial knot with framing ± 1 :

An \mathcal{O}_2 -move consists of a **handle-slide**:

THEOREM (KIRBY)

Two links in S^3 with integer framings produce the same 3-manifold iff they can be obtained from each other by a finite sequence of Kirby moves and isotopies.

FENN-ROURKE MOVES

A **Fenn-Rourke** move is as follows:

(If the circle has framing -1, then the kinks go the other way.)

THEOREM (FENN-ROURKE)

A framed link L_1 can be transformed by Kirby moves into the framed link L_2 iff this can be done by Fenn-Rourke moves.

The fundamental group π_1

The **fundamental group** of a topological space X, denoted $\pi_1(X)$ is essentially a way of counting the (1-dimensional) holes in X. Its elements are the homotopy classes of based loops (maps $S^1 \to X$) in X, with the multiplication operation being given by concatenation and the identity being the loop which can be shrunk down to the basepoint.

For example: $\pi_1(\mathcal{B}^3) \cong 0$, because every loop can be shrunk down to the basepoint. But $\pi_1(\mathcal{S}^1 \times \mathcal{D}^2) \cong \mathbb{Z}$, homotopy classes of loops being determined by the number of times they wind around the central hole. And $\pi_1(\mathcal{L}_{p,q}) \cong \mathbb{Z}_p$.

Homology groups H_n

The **homology groups** $H_n(X)$ are another way of counting the *n*-dimensional holes in *X*.

In particular, part of Hurewicz' theorem says that, if X is path-connected:

PROPOSITION $H_1(X) \cong \pi_1(X) / [\pi_1(X), \pi_1(X)].$ That is, the first homology of X is the same as the abelianisation of the fundamental group. HOMOLOGY 3-SPHERES

A homology 3-sphere is a compact, pathconnected 3-manifold M^3 (without boundary), which has the same series of homology groups as S^3 :

 $H_0(M) \cong H_3(M) \cong \mathbb{Z}$ $H_1(M) \cong H_2(M) \cong 0.$

Or (by Poincaré duality and the UCT): $H_1(M)$ is trivial.

Or (by the above fragment of Hurewicz' theorem): $\pi_1(M)$ coincides with its commutator subgroup

$$[\pi_1(M), \pi_1(M)] = \{aba^{-1}b^{-1} \mid a, b \in \pi_1(M)\}$$

CONJECTURE (POINCARÉ) Every homology 3-sphere is homeomorphic to S^3 . This is false, leading Poincaré to suggest:

CONJECTURE (POINCARÉ) Every homotopy 3-sphere is homeomorphic to S^3 .

POINCARÉ'S HOMOLOGY 3-SPHERE This is a 3-manifold P^3 with trivial H_1 but nontrivial π_1 (and is hence not homeomorphic to S^3).

Many different constructions... (cf. Kirby and Scharlemann: *Eight faces of the Poincaré homology 3-sphere*)

DODECAHEDRAL SPACE

Take a solid dodecahedron and identify opposite faces with a $\frac{2\pi}{10}$ twist.

SURGERY ON THE TREFOIL Do surgery on S^3 along the right trefoil K with framing +1.

This gives a manifold P which isn't homeomorphic to S^3 , because $\pi_1(P)$ is nontrivial.

Calculation of $\pi_1(P)$

First, calculate the fundamental group of the complement $S^3 \setminus K$. This is generated by three loops x, y, z

17

subject to the relations xy = yz = zx:

giving a presentation

$$\langle x, y \mid xyx = yxy \rangle$$

When we glue in the solid torus, we attach its meridional disk to the longitude of the tubular neighbourhood of the (removed) trefoil, with framing +1.

Thus, $\pi_1(P)$ is the quotient of $\pi_1(S^3 \setminus K)$ obtained by killing the word $x^{-2}yxz = x^{-2}yx^2yx^{-1}$ corresponding to this longitude:

$$\pi_1(P) = I = \langle x, y \mid xyx = yxy, yx^2y = x^3 \rangle$$

By substituting a = x, b = xy, we get the neater form:

$$I \cong \langle a, b \mid a^5 = b^3 = (ba)^2 \rangle$$

This group (the **binary icosahedral group**) is nontrivial (it has order 120 and is the isometry group of the icosahedron), hence $P \not\cong S^3$, but it has trivial abelianisation.

SURGERY ON THE WHITEHEAD LINK

SURGERY ON THE BORROMEAN RINGS

