CUTTING AND PASTING

LIBERTÉ, ÉGALITÉ, HOMOLOGIE!
1. Heegaard splittings
 – Making 3-manifolds from solid handlebodies

2. Surface homeomorphisms
 – Gluing manifolds together along their boundaries

3. Surgery
 – Cutting and pasting

4. Homology spheres
 – If it looks like a sphere... it might not be.
1. Heegaard Splittings

\textit{n-manifold}: Compact, connected, Hausdorff topological space M^n, each point of which has a neighbourhood homeomorphic to \mathbb{R}^n.

\ldots with boundary: Also allow neighbourhoods homeomorphic to \mathbb{R}^n_+. \\
\textit{boundary}, ∂M: The bit consisting of points with neighbourhoods homeomorphic to \mathbb{R}^n_+.

\textbf{Genus-}n \textbf{handlebody}: Compact subset of \mathbb{R}^3 bounded by a genus-n surface (a 2-sphere with n hollow handles).

A genus-3 handlebody
Now:
1. Take two identical copies M_1, M_2 of the genus-n handlebody.
2. Choose a homeomorphism $f : \partial M_1 \to \partial M_2$.
3. Form the quotient space $M = M_1 \amalg_f M_2$: Take the disjoint union $M_1 \amalg M_2$ and identify $x \in M_1$ with its image $f(x) \in M_2$.

This is a **Heegaard splitting** (of genus n) of the 3-manifold M.

Theorem
A 3-manifold formed in this way is orientable. Furthermore, any orientable 3-manifold can be presented thusly.
EXAMPLES

1. Genus-0: The 3-sphere S^3.
 Two copies of B^3 glued together along their boundaries ($\cong S^2$).
 Analogous to $S^1 = D^1 \cup D^1$
 and $S^2 = D^2 \cup D^2$.
 The ‘North’ and ‘South’ poles of S^3 are the centres of the B^3's

2. Genus-1: The 3-sphere S^3 (again).
 Can also split S^3 as two solid tori ($D^2 \times S^1$):
3. $S^2 \times S^1$.
 Glue α_1 to α_2 and β_1 to β_2.

4. Projective space \mathbb{RP}^3.
 Glue each meridian α_i to a $(1, 2)$ torus knot on the surface of the other solid torus.

5. Lens spaces $L_{p,q}$.
 Glue each meridian α_1 and α_2 to a (q, p) torus knot on the surface of the other torus. This is one construction of the lens space $L_{p,q}$.
 In particular,
 $L_{1,q} \cong S^3$,
 $L_{0,1} \cong S^2 \times S^1$,
 and $L_{2,1} \cong \mathbb{RP}^3$.
 Also, $L_{p,q} \cong L_{p,q'}$ iff $\pm q' \equiv q^{\pm 1} \pmod{p}$,
 and $L_{p,q} \cong L_{p,q'}$ iff $q \equiv m^2 q' \pmod{p}$.
 For example: $L_{7,1}$ and $L_{7,2}$ have the same homotopy type, but are not homeomorphic.
HOMEOMORPHISMS OF SURFACES
Heegaard splittings of a given genus are determined by the gluing homeomorphism. Want a description of such in terms of suitable elementary operations.

DEHN TWISTS
Cut the surface around a meridional curve, twist, and glue back together again.

THEOREM (DEHN-LICKORISH)
Any orientation-preserving homeomorphism of an oriented 2-manifold (without boundary) is isotopic to a composition of Dehn twists.
Corollary

Any orientable 3-manifold can be constructed by cutting out a collection of unknotted solid tori from S^3 and gluing them back in along different boundary homeomorphisms.

Corollary (Rokhlin’s Theorem)

Every orientable 3-manifold (without boundary) is the boundary of a 4-manifold. That is, $\Omega_3 \cong 0$.
RATIONAL SURGERY
Take S^3, cut out an unknotted solid torus with meridian α and longitude β. Then glue it back in by identifying α with the curve $p\alpha + q\beta$, where p and q are coprime (this is a (q, p) torus knot).

This surgery is determined completely by the rational number $r = \frac{p}{q}$, which we call the **framing index** of the unknotted torus.

EXAMPLES

1. $\bigcirc^0 \cong S^1 \times S^2$. This is a **torus switch**

2. $\bigcirc_{\frac{p}{q}} \cong L_{p, q}$.

3. $\bigcirc^{\pm \frac{1}{n}} \cong S^3$.

4. $\bigcirc^r = \bigcirc^{\pm n + \frac{1}{r}}$

LINKING NUMBERS

To generalise to nontrivial knots, we need to be a bit more careful when choosing the longitude.

Given two curves J and K in S^3, define their linking number $\text{lk}(J, K)$ to be the sum, over all the crossings τ, of $\varepsilon(\tau)$:

Crossings which don’t involve two different components of the link have $\varepsilon = 0$.

$\text{lk}(J, K) = \text{lk}(K, J)$.

If $\text{lk}(J, K) \neq 0$ then J and K are linked. The converse isn’t true in general, though.

The linking number is invariant under the Reidemeister moves: It’s independent of the isotopy class of the link.
Now, given a knot J, choose a meridian α on its tubular neighbourhood such that $\text{lk}(\alpha, J) = 1$, and a longitude β which is codirected with J such that $\text{lk}(\beta, J) = 0$.

INTEGER SURGERY

We can now do rational surgery on nontrivial links. It turns out, though, that integer surgery is enough:

THEOREM

Any compact, orientable 3-manifold without boundary can be obtained by integer surgery on a link in S^3.

EQUIVALENT SURGERIES

Surgery on S^3 along different framed links can produce homeomorphic manifolds. Two such surgeries are said to be **equivalent**.

THE KIRBY CALCULUS

An O_1-move consists of adding or deleting an unlinked trivial knot with framing ± 1:

An O_2-move consists of a **handle-slide**:
Theorem (Kirby)
Two links in S^3 with integer framings produce the same 3-manifold iff they can be obtained from each other by a finite sequence of Kirby moves and isotopies.

Fenn-Rourke moves
A Fenn-Rourke move is as follows:

(If the circle has framing -1, then the kinks go the other way.)

Theorem (Fenn-Rourke)
A framed link L_1 can be transformed by Kirby moves into the framed link L_2 iff this can be done by Fenn-Rourke moves.
THE FUNDAMENTAL GROUP π_1

The **fundamental group** of a topological space X, denoted $\pi_1(X)$ is essentially a way of counting the (1-dimensional) holes in X. Its elements are the homotopy classes of based loops (maps $S^1 \to X$) in X, with the multiplication operation being given by concatenation and the identity being the loop which can be shrunk down to the basepoint.

For example: $\pi_1(B^3) \cong 0$, because every loop can be shrunk down to the basepoint. But $\pi_1(S^1 \times D^2) \cong \mathbb{Z}$, homotopy classes of loops being determined by the number of times they wind around the central hole. And $\pi_1(L_{p,q}) \cong \mathbb{Z}_p$.

HOMOLOGY GROUPS H_n

The **homology groups** $H_n(X)$ are another way of counting the n-dimensional holes in X.

In particular, part of Hurewicz’ theorem says that, if X is path-connected:

PROPOSITION

$H_1(X) \cong \pi_1(X)/[\pi_1(X), \pi_1(X)]$.

That is, the first homology of X is the same as the abelianisation of the fundamental group.
Homology 3-spheres

A **homology 3-sphere** is a compact, path-connected 3-manifold M^3 (without boundary), which has the same series of homology groups as S^3:

$$H_0(M) \cong H_3(M) \cong \mathbb{Z},$$
$$H_1(M) \cong H_2(M) \cong 0.$$

Or (by Poincaré duality and the UCT):

$H_1(M)$ is trivial.

Or (by the above fragment of Hurewicz’ theorem):

$\pi_1(M)$ coincides with its commutator subgroup

$$[\pi_1(M), \pi_1(M)] = \{aba^{-1}b^{-1} \mid a, b \in \pi_1(M)\}$$

Conjecture (Poincaré)

Every homology 3-sphere is homeomorphic to S^3.
This is false, leading Poincaré to suggest:

Conjecture (Poincaré)

Every *homotopy* 3-sphere is homeomorphic to S^3.

Poincaré’s Homology 3-Sphere

This is a 3-manifold P^3 with trivial H_1 but nontrivial π_1 (and is hence not homeomorphic to S^3).

Many different constructions...

(cf. Kirby and Scharlemann: *Eight faces of the Poincaré homology 3-sphere*)

Dodecahedral Space

Take a solid dodecahedron and identify opposite faces with a $\frac{2\pi}{10}$ twist.
Surgery on the trefoil
Do surgery on S^3 along the right trefoil K with framing $+1$.

This gives a manifold P which isn’t homeomorphic to S^3, because $\pi_1(P)$ is nontrivial.

Calculation of $\pi_1(P)$
First, calculate the fundamental group of the complement $S^3 \setminus K$. This is generated by three loops x, y, z
subject to the relations $xy = yz = zx$:

\[
\begin{array}{c}
\begin{array}{c}
\text{z} \\
\text{x} \\
\text{y}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\text{y} \\
\text{x} \\
\text{z}
\end{array}
\end{array}
\]

giving a presentation

\[
\langle x, y \mid xyx = yxy \rangle
\]

When we glue in the solid torus, we attach its meridional disk to the longitude of the tubular neighbourhood of the (removed) trefoil, with framing +1.

Thus, $\pi_1(P)$ is the quotient of $\pi_1(S^3 \setminus K)$ obtained by killing the word $x^{-2}yxz = x^{-2}yx^2yx^{-1}$ corresponding to this longitude:

\[
\pi_1(P) = I = \langle x, y \mid xyx = yxy, yx^2y = x^3 \rangle
\]
By substituting $a = x, b = xy$, we get the neater form:

$$I \cong \langle a, b \mid a^5 = b^3 = (ba)^2 \rangle$$

This group (the **binary icosahedral group**) is non-trivial (it has order 120 and is the isometry group of the icosahedron), hence $P \not\cong S^3$, but it has trivial abelianisation.

Surgery on the Whitehead Link

![Diagram of the Whitehead Link]

Surgery on the Borromean Rings

![Diagram of the Borromean Rings]