Cutting and Pasting

Liberté, Egalité, Homologie!

1. Heegaard splittings
 - Making 3-manifolds from solid handlebodies

2. Surface homeomorphisms

- Gluing manifolds together along their boundaries

3. Surgery

- Cutting and pasting

4. Homology spheres

- If it looks like a sphere... it might not be.

1. Heegaard Splittings

n-manifold: Compact, connected, Hausdorff topological space M^{n}, each point of which has a neighbourhood homeomorphic to \mathbb{R}^{n}.
... with boundary: Also allow neighbourhoods homeomorphic to \mathbb{R}_{+}^{n}. boundary, $\partial \mathrm{M}$: The bit consisting of points with neighbourhoods homeomorphic to \mathbb{R}_{+}^{n}.

Genus- n handlebody: Compact subset of \mathbb{R}^{3} bounded by a genus- n surface (a 2 -sphere with n hollow handles).

A genus-3 handlebody

Now:

1. Take two identical copies M_{1}, M_{2} of the genus- n handlebody.
2. Choose a homeomorphism $f: \partial M_{1} \rightarrow \partial M_{2}$.
3. Form the quotient space $M=M_{1} \amalg_{f} M_{2}$: Take the disjoint union $M_{1} \amalg M_{2}$ and identify $x \in M_{1}$ with its image $f(x) \in M_{2}$.

This is a Heegaard splitting (of genus n) of the 3-manifold M.

Theorem

A 3-manifold formed in this way is orientable.
Furthermore, any orientable 3-manifold can be presented thusly.

Examples

1. Genus-0: The 3-sphere \mathcal{S}^{3}.

Two copies of \mathcal{B}^{3} glued together along their boundaries ($\cong \mathcal{S}^{2}$).
Analogous to $\mathcal{S}^{1}=\mathcal{D}^{1} \cup \mathcal{D}^{1}$
and $\mathcal{S}^{2}=\mathcal{D}^{2} \cup \mathcal{D}^{2}$.
The 'North' and 'South' poles of \mathcal{S}^{3} are the centres of the $\mathcal{B}^{3} \mathrm{~s}$
2. Genus-1: The 3 -sphere \mathcal{S}^{3} (again).

Can also split \mathcal{S}^{3} as two solid tori $\left(\mathcal{D}^{2} \times \mathcal{S}^{1}\right)$:

3. $\mathcal{S}^{2} \times \mathcal{S}^{1}$.

Glue α_{1} to α_{2} and β_{1} to β_{2}.
4. Projective space $\mathbb{R} \mathcal{P}^{3}$.

Glue each meridian α_{i} to a $(1,2)$ torus knot on the surface of the other solid torus.
5. Lens spaces $\mathcal{L}_{p, q}$.

Glue each meridian α_{1} and α_{2} to a (q, p) torus knot on the surface of the other torus. This is one construction of the lens space $\mathcal{L}_{p, q}$.
In particular,
$\mathcal{L}_{1, q} \cong \mathcal{S}^{3}$,
$\mathcal{L}_{0,1} \cong \mathcal{S}^{2} \times \mathcal{S}^{1}$,
and $\mathcal{L}_{2,1} \cong \mathbb{R} \mathcal{P}^{3}$.
Also, $\mathcal{L}_{p, q} \cong \mathcal{L}_{p, q^{\prime}}$ iff $\pm q^{\prime} \equiv q^{ \pm 1}(\bmod p)$,
and $\mathcal{L}_{p, q} \approx \mathcal{L}_{p, q^{\prime}}$ iff $q \equiv m^{2} q^{\prime}(\bmod p)$.
For example: $\mathcal{L}_{7,1}$ and $\mathcal{L}_{7,2}$ have the same homotopy type, but are not homeomorphic.

HOMEOMORPHISMS OF SURFACES
Heegaard splittings of a given genus are determined by the gluing homeomorphism.
Want a description of such in terms of suitable elementary operations.

Dehn twists
Cut the surface around a meridional curve, twist, and glue back together again.

THEOREM (DEHN-LICKORISH)
Any orientation-preserving homeomorphism of an oriented 2-manifold (without boundary) is isotopic to a composition of Dehn twists.

Corollary
Any orientable 3-manifold can be constructed by cutting out a collection of unknotted solid tori from \mathcal{S}^{3} and gluing them back in along different boundary homeomorphisms.

Corollary (Rokhlin's Theorem)

Every orientable 3-manifold (without boundary) is the boundary of a 4-manifold. That is, $\Omega_{3} \cong 0$.

Rational surgery
Take \mathcal{S}^{3}, cut out an unknotted solid torus with meridian α and longitude β. Then glue it back in by identifying α with the curve $p \alpha+q \beta$, where p and q are coprime (this is a (q, p) torus knot).

This surgery is determined completely by the rational number $r=\frac{p}{q}$, which we call the framing index of the unknotted torus.

EXAMPLES

1. $\bigcirc^{0} \cong \mathcal{S}^{1} \times \mathcal{S}^{2}$. This is a torus switch
2. $\bigcirc^{\frac{p}{q}} \cong \mathcal{L}_{p, q}$.
3. $\bigcirc^{ \pm \frac{1}{n}} \cong \mathcal{S}^{3}$.
4. $\bigcirc^{r}=\bigcirc^{\frac{1}{ \pm n+\frac{1}{r}}}$

LINKING NUMBERS

To generalise to nontrivial knots, we need to be a bit more careful when choosing the longitude.

Given two curves J and K in \mathcal{S}^{3}, define their linking number $\operatorname{lk}(J, K)$ to be the sum, over all the crossings τ, of $\varepsilon(\tau)$:

$\varepsilon=+1$

$\varepsilon=-1$

Crossings which don't involve two different components of the link have $\varepsilon=0$.
$\operatorname{Ik}(J, K)=\operatorname{Ik}(K, J)$.

If $\operatorname{Ik}(J, K) \neq 0$ then J and K are linked. The converse isn't true in general, though.

The linking number is invariant under the Reidemeister moves: It's independent of the isotopy class of the link.

Now, given a knot J, choose a meridian α on its tubular neighbourhood such that $\operatorname{Ik}(\alpha, J)=+1$, and a longitude β which is codirected with J such that $\operatorname{lk}(\beta, J)=0$.

INTEGER SURGERY
We can now do rational surgery on nontrivial links. It turns out, though, that integer surgery is enough:

Theorem

Any compact, orientable 3-manifold without boundary can be obtained by integer surgery on a link in \mathcal{S}^{3}.

Equivalent surgeries
Surgery on \mathcal{S}^{3} along different framed links can produce homeomorphic manifolds. Two such surgeries are said to be equivalent.

The Kirby calculus
An \mathcal{O}_{1}-move consists of adding or deleting an unlinked trivial knot with framing ± 1 :

An \mathcal{O}_{2}-move consists of a handle-slide:

Theorem (Kirby)
Two links in \mathcal{S}^{3} with integer framings produce the same 3-manifold iff they can be obtained from each other by a finite sequence of Kirby moves and isotopies.

Fenn-Rourke moves

A Fenn-Rourke move is as follows:

(If the circle has framing -1 , then the kinks go the other way.)

Theorem (Fenn-Rourke)
A framed link L_{1} can be transformed by Kirby moves into the framed link L_{2} iff this can be done by FennRourke moves.

The fundamental group π_{1}
The fundamental group of a topological space X, denoted $\pi_{1}(X)$ is essentially a way of counting the (1-dimensional) holes in X. Its elements are the homotopy classes of based loops (maps $\mathcal{S}^{1} \rightarrow X$) in X, with the multiplication operation being given by concatenation and the identity being the loop which can be shrunk down to the basepoint.

For example: $\pi_{1}\left(\mathcal{B}^{3}\right) \cong 0$, because every loop can be shrunk down to the basepoint.
But $\pi_{1}\left(\mathcal{S}^{1} \times \mathcal{D}^{2}\right) \cong \mathbb{Z}$, homotopy classes of loops being determined by the number of times they wind around the central hole.
And $\pi_{1}\left(\mathcal{L}_{p, q}\right) \cong \mathbb{Z}_{p}$.
Homology groups H_{n}
The homology groups $H_{n}(X)$ are another way of counting the n-dimensional holes in X.

In particular, part of Hurewicz' theorem says that, if X is path-connected:

Proposition $H_{1}(X) \cong \pi_{1}(X) /\left[\pi_{1}(X), \pi_{1}(X)\right]$.
That is, the first homology of X is the same as the abelianisation of the fundamental group.

Homology 3-spheres
A homology 3-sphere is a compact, pathconnected 3-manifold M^{3} (without boundary), which has the same series of homology groups as \mathcal{S}^{3} :

$$
\begin{aligned}
& H_{0}(M) \cong H_{3}(M) \cong \mathbb{Z} \\
& H_{1}(M) \cong H_{2}(M) \cong 0 .
\end{aligned}
$$

Or (by Poincaré duality and the UCT):
$H_{1}(M)$ is trivial.

Or (by the above fragment of Hurewicz' theorem):
$\pi_{1}(M)$ coincides with its commutator subgroup

$$
\left[\pi_{1}(M), \pi_{1}(M)\right]=\left\{a b a^{-1} b^{-1} \mid a, b \in \pi_{1}(M)\right\}
$$

Conjecture (Poincaré)
Every homology 3 -sphere is homeomorphic to \mathcal{S}^{3}.

This is false, leading Poincaré to suggest:
Conjecture (Poincaré)
Every homotopy 3 -sphere is homeomorphic to \mathcal{S}^{3}.
Poincaré's homology 3-sphere
This is a 3-manifold P^{3} with trivial H_{1} but nontrivial π_{1} (and is hence not homeomorphic to \mathcal{S}^{3}).

Many different constructions...
(cf. Kirby and Scharlemann: Eight faces of the
Poincaré homology 3-sphere)
Dodecahedral space
Take a solid dodecahedron and identify opposite faces with a $\frac{2 \pi}{10}$ twist.

SURGERY ON THE TREFOIL
Do surgery on \mathcal{S}^{3} along the right trefoil K with framing +1 .

This gives a manifold P which isn't homeomorphic to \mathcal{S}^{3}, because $\pi_{1}(P)$ is nontrivial.

Calculation of $\pi_{1}(P)$
First, calculate the fundamental group of the complement $\mathcal{S}^{3} \backslash K$. This is generated by three loops x, y, z

subject to the relations $x y=y z=z x$:

giving a presentation

$$
\langle x, y \mid x y x=y x y\rangle
$$

When we glue in the solid torus, we attach its meridional disk to the longitude of the tubular neighbourhood of the (removed) trefoil, with framing +1 .

Thus, $\pi_{1}(P)$ is the quotient of $\pi_{1}\left(\mathcal{S}^{3} \backslash K\right)$ obtained by killing the word $x^{-2} y x z=x^{-2} y x^{2} y x^{-1}$ corresponding to this longitude:

$$
\pi_{1}(P)=I=\left\langle x, y \mid x y x=y x y, y x^{2} y=x^{3}\right\rangle
$$

By substituting $a=x, b=x y$, we get the neater form:

$$
I \cong\left\langle a, b \mid a^{5}=b^{3}=(b a)^{2}\right\rangle
$$

This group (the binary icosahedral group) is nontrivial (it has order 120 and is the isometry group of the icosahedron), hence $P \nsubseteq \mathcal{S}^{3}$, but it has trivial abelianisation.

Surgery on the Whitehead link

Surgery on the Borromean rings

