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What is knot theory?

Knot theory . . .

is the study of knots from a mathematically-rigorous
perspective.

is an attempt to classify knots in 1–dimensional string (and
higher-dimensional objects).

is pure mathematics.

is a branch of topology.
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Topology: The bridges of Königsberg

Königsberg, Prussia (now Kaliningrad, Russia) had seven bridges:

Question

Is there a route which crosses every bridge exactly once?
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Topology: The bridges of Königsberg

Answer (Leonhard Euler (1736))

No.

Leonhard Euler (1707–1783)

Swiss, although spent much of his
career in St Petersburg and Berlin

Entered University of Basel in 1720
(doctorate 1726)

One of the greatest mathematicians of
the last few centuries . . .

. . . certainly one of the most prolific:
collected works run to 82 volumes
(with more being edited)
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Topology: The bridges of Königsberg

Observation 1

Exact distances and areas don’t matter, only the connections, so
rearrange into more convenient diagram

, join up regions, and throw
away the original picture.

Observation 2

Each node must be visited an even number of times, except
(perhaps) for the first and last (which must have the same parity).
We can’t do this in (18th century) Königsberg.
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Topology: The bridges of Königsberg
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The Great Bear

Original sketch 1931 by Harry Beck (1903–1974)
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The Great Bear

1933 version
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The Great Bear

2008 version
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The Great Bear

Geographically correct version
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Topology

Topology . . .

is the study of properties of (mathematical) objects which
remain invariant under continuous deformation.

was originally known as Geometria Situs or Analysis Situs.

←→

A topologist is a person who does not know the difference between
a doughnut and a coffee cup. – John L Kelley

Nicholas Jackson The Mathematics of Knots



Topology

Topology . . .

is the study of properties of (mathematical) objects which
remain invariant under continuous deformation.

was originally known as Geometria Situs or Analysis Situs.

←→

A topologist is a person who does not know the difference between
a doughnut and a coffee cup. – John L Kelley

Nicholas Jackson The Mathematics of Knots



Topology

Topology . . .

is the study of properties of (mathematical) objects which
remain invariant under continuous deformation.

was originally known as Geometria Situs or Analysis Situs.

←→

A topologist is a person who does not know the difference between
a doughnut and a coffee cup. – John L Kelley

Nicholas Jackson The Mathematics of Knots



Topology

Topology . . .

is the study of properties of (mathematical) objects which
remain invariant under continuous deformation.

was originally known as Geometria Situs or Analysis Situs.

←→

A topologist is a person who does not know the difference between
a doughnut and a coffee cup. – John L Kelley

Nicholas Jackson The Mathematics of Knots



Topology

Johann Benedict Listing (1808–1882)

Student of Carl Friedrich Gauss

Professor of Physics, Göttingen (1839)

Contributions to physiological optics:
Beiträge zur physiologischen Optik
(1845)

Vorstudien zur Topologie (1847)

Discovered the Möbius strip (1858)

Nearly declared bankrupt
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Topology

Jules Henri Poincaré (1854–1912)

Mathematician, theoretical physicist and philosopher of science:
“The Last Universalist”.

Work on electromagnetism, non-Euclidean geometry, number
theory, dynamics (the three-body problem), relativity, . . .

Pioneered algebraic topology (analysis situs) – use of algebraic
(group theoretic) methods to solve topological problems.
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Topology

Geometric topology

graph theory

knot theory

3–manifolds, 4–manifolds, n–manifolds

Differential topology

Questions about ‘smooth’ structures and deformations.

Algebraic topology

Use algebraic (group theoretic, categorical) machinery to answer
topological questions

fundamental group π1(X )

higher homotopy groups πn(X )

homology and cohomology groups Hn(X ) and Hn(X )

the Poincaré Conjecture
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The Gordian Knot

Ancient Phrygian prophecy: whoever unties the knot will
become king of Asia Minor.

333BC: Alexander the Great cuts the knot with his sword.

Hellenic IV Army Corps: “Solve the knot with the sword”
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Mathematical knots

One version of the legend says that the rope’s ends were woven
together, preventing the knot from being untied.

This is the sort of knot that mathematicians study.

(More precisely: “ambient isotopy classes of embeddings S1 ↪→ S3”)
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Links

Generalisation: consider more than one (knotted, linked) circle.
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Prime and composite knots

Some knots are really just two simpler knots combined.

This
operation is called the connected sum:

−→
K1 K2 K1#K2

For example, the reef knot and the granny knot:

Reef knot Granny knot
31#31 31#31
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Vortex atoms

Conjecture (William Thomson, 1875)

Atoms are knots in the field lines of the æther.

William Thomson (1824–1907)

Irish mathematical physicist and
engineer

Studied at Glasgow (1834–1841) and
Peterhouse, Cambridge (1841–1845)

Professor of Natural Philosophy,
Glasgow (1846)

President of the Royal Society
(1890–1895)

1st Baron Kelvin of Largs (1892)
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Enumeration of knots

Kelvin’s theory of vortex atoms inspired serious attempts at
classifying and enumerating knots.

Peter Guthrie Tait Thomas Penyngton Kirkman
(1831–1901) (1806–1895)

Also Charles Newton Little (1858–1923). Between them, they
produced tables of all knots with up to eleven crossings.
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Collapse of the Vortex Atom theory

Kelvin’s theory collapsed due to the Michelson–Morley experiment
(which disproved the existence of the æther) and the lack of any
clear correlation between Tait, Kirkman and Little’s knot tables and
Mendeleev’s periodic table.

Albert Michelson Edward Morley Dmitri Mendeleev
(1852–1931) (1838–1923) (1834–1907)
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Diagrams of knots

3–dimensional knots aren’t so easy to work with, so we represent
them as 2–dimensional diagrams:

Knot (1075) ←→ Diagram

allowed manipulations ←→ allowed moves

ambient isotopy ←→ Reidemeister moves
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Reidemeister moves

Theorem (Reidemeister (1927))

Diagrams representing equivalent knots
are related by a finite sequence of moves
of the following types:

type I

type II type III

Kurt Reidemeister
(1893–1971)

1921 PhD, Hamburg

1927 Professor, Königsberg

1933 ‘politically unsound’
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The unknot

It isn’t always clear when a knot is trivial:

'

(Possible application: a trap for vampires.)
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The Perko Pair

It also isn’t always easy to tell whether two knots are the same or
different:

'

Believed distinct by Tait, Kirkman, Little, Conway, Rolfsen, . . .

1974: Kenneth A Perko Jr showed they’re the same.

We need something to do the hard work for us. . .
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Knot invariants

We want something that can be (relatively) easily calculated from a
knot diagram, but which isn’t changed by Reidemeister moves.
This is called an invariant.

More precisely:

Given two knot diagrams D1 and D2 (representing two knots K1 and
K2) and an invariant f , then

f (D1) = f (D2)

if K1 and K2 are equivalent (that is, if D1 and D2 are related by a
finite sequence of Reidemeister moves).

We haven’t yet said what kind of object f is.
In practice, it might be a number, a polynomial (eg z2 − 1 or
t2 − 1 + t−2) or something more sophisticated (a group, a rack or
quandle, a sequence of graded homology modules, . . . ).
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3–colouring

A knot diagram can be 3–coloured if we can colour each arc such
that

each arc is assigned a single colour

exactly three colours are used

at each crossing, either all the arcs have the same colour, or
arcs of all three colours meet
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3–colouring the trefoil

The trefoil (31) can be 3–coloured:

−→

as can 61: and 818:

but the figure-eight knot (41) can’t:
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n–colouring

Generalise 3–colouring:

a

b
c

Take a knot diagram and label (‘colour’) each arc with a number,
such that, at each crossing,

a + b ≡ 2c (mod n).

If we can consistently (and nontrivially) label the entire diagram like
this, then the knot is n–colourable, or has colouring number n.
Colouring numbers are invariant under Reidemeister moves.
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The determinant

Related to the colouring numbers is the determinant: Label each arc
and crossing:

1 2

3
ab

c

Construct a matrix

a b c

1 −1 −1 2
2 2 −1 −1
3 −1 2 −1

−→ A+ =

−1 −1 2
2 −1 −1
−1 2 −1


and delete one column and one row (it doesn’t matter which):

A =

[
−1 −1
2 −1

]
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The determinant

Then for any knot K , we define det(K ) := | det(A)|.
So

det(31) =
∣∣−1 −1

2 −1

∣∣ = |(−1)× (−1)− (−1)(2)| = 3.

This is:

independent of the choice of labelling

independent of the choice of deleted row and column

invariant under Reidemeister moves

defined up to multiplication by ±1

Theorem

A knot K is n–colourable if hcf(n, det(K )) > 1.

Theorem

det(K1#K2) = det(K1) det(K2)
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The Alexander polynomial

James Waddell Alexander II (1888–1971)

Pioneer of algebraic topology

Princeton, Institute for Advanced Study

Keen mountaineer

’Politically unsound’

The Alexander polynomial ∆K (t) of a knot K is defined up to
multiplication by ±tn, and is invariant under Reidemeister moves.

Example

∆31(t) = t − 1 + t−1

This is an extension of the determinant:

Theorem

|∆K (−1)| = det(K )
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Reflection and reversion

Some knots K are equivalent to their mirror image K – we call
these amphicheiral or achiral.

41 = ' = 41

Some (oriented) knots K are equivalent to their orientation inverse
−K – we call these invertible or reversible.

817 = 6' = −817
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The Alexander polynomial

Theorem

∆K (t) = ∆K (t−1) = ∆−K (t−1)

So, the Alexander polynomial can’t always tell the difference
between a knot and its mirror image or orientation inverse:

Example

∆ can’t distinguish the right- and left-handed trefoils:

∆31(t) = t − 1 + t−1 = ∆31
(t−1)

31 = 6' = 31
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The Conway polynomial

John Conway (1937–)

Cambridge, Princeton

Number theory, group
theory, knot theory,
cellular automata (‘Life’),
game theory, . . .

Monstrous Moonshine

Skein relation

∇K+ −∇K− = z∇K0

where ∇© = 1, (=⇒ ∇©© = 0), and

K− K+ K0

Nicholas Jackson The Mathematics of Knots



The Conway polynomial

John Conway (1937–)

Cambridge, Princeton

Number theory, group
theory, knot theory,
cellular automata (‘Life’),
game theory, . . .

Monstrous Moonshine

Skein relation

∇K+ −∇K− = z∇K0

where ∇© = 1, (=⇒ ∇©© = 0), and

K− K+ K0

Nicholas Jackson The Mathematics of Knots



The Conway polynomial

Example

∇ = ∇ + z∇

= 1 + z

∇ + z∇


= 1 + z(0 + z)

= 1 + z2

Theorem

∆K (t2) = ∇K (t − t−1)
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The Jones polynomial

Vaughan F R Jones (1952–)

New Zealand

PhD, Geneva 1979

Fields Medal, Kyoto 1990

DCNZM 2002

Skein relation

(t1/2 − t−1/2)VK0 = t−1VK+ − tVK−

where V© = 1 and

K− K+ K0
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The Jones polynomial

Theorem

VK (t)=VK (t−1), VK#L=VK VL

The Jones polynomial, unlike the Alexander polynomial (and hence
the determinant) can distinguish the left- and right-handed trefoils:

Example

V31
= V = t−1 + t−3 − t−4

V31
= V = t1 + t3 − t4
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The HOMFLY(PT) polynomial

A two-variable polynomial invariant devised, independently, by Jim
Hoste, Adrian Ocneanu, Kenneth Millett, Peter Freyd, Raymond
Lickorish, David Yetter, Jozef Przytycki and Pawel Traczyk.

Skein relation

a−1PK+(a, z)− aPK−(a, z) = zPK0(a, z)

where P© = 1 and

K− K+ K0

This encapsulates both the Alexander and Jones polynomials:

Theorem

VK (t) = PK (t, t1/2 − t−1/2), ∆K (t) = PK (1, t1/2 − t−1/2)
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Quantum invariants

The Jones polynomial can be interpreted as a function VK : C→ C:

• Colour (label) the knot (or link) diagram with the fundamental
representation W of the quantised enveloping algebra Uq(sl2) of the
Lie algebra sl2.
• Read up the page, interpreting

⋃
as a map C→W ⊗W ∗, a

crossing as an isomorphism W ⊗W → W ⊗W , and
⋂

as a map
W ∗ ⊗W → C.
• If you define these maps appropriately, the composite function
C→ C is the Jones polynomial.

Replacing W with a representation of a different quantum group
(quasitriangular Hopf algebra) yields a different knot invariant.
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Khovanov homology

• A homology theory KH∗ for knots and links, whose graded Euler
characteristic is the Jones polynomial.
• KH∗(K ) contains more information than VK – there are
non-equivalent links which have the same Jones polynomials, but
whose Khovanov homology is different.
• Similar theories developed for the Alexander polynomial ∆K

(Ozsváth–Szabó’s knot Floer homology), the HOMFLYPT
polynomial, and the sl3 quantum invariant (Khovanov–Rozansky
homology).
• General technique called categorification.
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Other topics

Finite-type (Vassiliev) invariants

The Kontsevich integral

Witten’s QFT interpretation of the Jones polynomial

Higher-dimensional knots (knotted spheres in 4–space)

Racks and quandles, cocycle state-sum invariants
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Knotting in DNA

Two enzymes, Topoisomerase I and II, act on strands of DNA,
performing crossing changes and smoothing:

−→ −→

This causes the DNA to become knotted, linked and/or supercoiled:
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Credits

http://www.knotplot.com/

http://katlas.math.toronto.edu/

http://www-groups.dcs.st-and.ac.uk/˜history/
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