What I Did On My Holidays

or
A Cautionary Tale For Graduate Students
by

(nearly Dr) Nicholas Jackson

Sir Michael Atiyah: Algebra is a kind of Faus-
tian pact — we sell our souls, giving up our
geometric intuition for the promise of pow-
erful algebraic machinery.

Algebraic topology: Turn a geometric or top-
ological question into an algebraic question.

Homological algebra: Basically algebraic top-
ology without the topology.



Homology theory

Chain complex: sequence of Abelian groups
(or modules)

dn

d, d, d,—
C:"'i>CTL+1 +1>Cn >Cn—1_l>---

where imd,, 41 < kerdy (& dnd,4+1 = 0).

Homology groups:

Elements of kerd,, are n—cycles, and ele-
ments of imd,, are n—boundaries.

Exact sequence: chain complex with trivial
homology. So H,(C) measures how much C
fails to be exact at the nth step.

Cochain complex: ‘dual’ of a chain com-
plex:

dn+1 dn
C:...—Chy1 <

Cohomology groups:
H™(C) :=kerd"/imd" !

Elements of kerd™ are n—cocycles, and ele-
ments of imd" are n—coboundaries.



CW homology (JH C Whitehead)

Topological space X. Let Cn(X) be the free
Abelian group generated by the n—cells of (a
CW complex homeomorphic to) X.

Define boundary map o,: C, — C,,_1 which
maps an n—cell in C), to the oriented formal
sum of (n — 1)—cells which bound it.

Elements of ker 0, are boundaryless ‘sums’ of
n—cells, and elements of img,, 41 are (‘sums’
of) n—cells which bound (‘sums’ of) (n+1)—
cells. We find that 9,0,,4+1 = 0.

So H,(C) ‘counts’ the n—dimensional ‘holes’
in X. Denote it H,(X).

Examples
Z, ifi=0.n
. n —_— 9
Hi(S7) = { O otherwise
7 if i =0,2
H(T?) =! 77 ifi=1

0] otherwise



Homology with coefficients

Don’t have to use integers to count the holes.
Pick any Abelian group A and use that in-
stead.

More precisely, form the chain complex CR A:

dn+2®Id dp+11d d,®I1d dn-1®1d
ST A TS CLRATS Crl1 AT L.

Denote H,(C® A) by H,(C; A).

Cohomology

Form the cochain complex Hom(C, A):
o Hom(Cryt, A) £ Hom(C, A) <2 Hom(Crr, A) £ ...
Elements of Hom(Cr, A) are homomorphisms

Cn — A.

The nth cohomology of this complex is de-
noted H"(X; A).

If A =7 we tend to omit the coefficients and
write Hp(X) or H*(X).

Theorem (Poincaré)
If X is an n—manifold, then

HY(X) = H,_;(X).




Categories

A category C consists of a class ObjC of
objects, and for each pair X,Y of objects,
a set Hom¢(X,Y) of morphisms (satisfying
some sort of associative composition law).

Examples

Set: objects are sets, morphisms are func-
tions.

Top: oObjects are topological spaces, morph-
ISMS are continuous mMmaps.

Ab: objects are Abelian groups, morphisms
are Abelian group homomorphisms.

Functors

A functor is a map F': C — D, assigning ob-
jects to objects and morphisms to morphisms
in @ way which respects the composition law.

F is covariant if FF(fog) = F(f) o F(g) and
contravariant if FF(fog) = F(g) o F(f)

Examples
H,,: Top — Ab is a covariant functor.
H™: Top — Ab is a contravariant functor.
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Homology of groups

Given a group G we can form a topological
space BG — the classifying space of GG. This
IS homotopy-equivalent to the Eilenberg—
MacLane space K(G,1), which has m1 = G
and m, trivial for n > 1.

Example
BZ ~ K(Z,1) ~ St.

Extensions of groups

An extension of G by a normal subgroup
A < G is an (exact) sequence
ArS ESG
of groups, so that A = ker p.
A»— FE{ - G and A — E> — G are equiv-

alent if there is an isomorphism E{ = E>
which commutes with the projection maps.

It turns out that H2(G; A) classifies exten-
sions of G by A, modulo equivalence.



As it happens, A needn't be just an ordi-
nary Abelian group — more generally it's a
G—module, an Abelian group equipped with
a G—action.

There is an equivalent, purely algebraic, way
of defining (co)homology of groups.

Resolutions

Given a group G, a G—free resolution (over
7)) is an exact sequence

oo > F3 —F> > F1 -7 —0

of G—modules, where each Fj is free, and Z is
considered to have a trivial G—module struc-
ture.

Choose such a resolution (it turns out not
to matter which one), and apply — ®c A or
Homg(—, A) to it to get a complex of Abelian
groups. Now take its (co)homology.

This gives the same results as the topological
method.



Racks and quandles

A quandle is a set X equipped with a binary
operation (written as exponentiation) such
that:

R1 a® =aq for all a € X

R2 For any a,b € X there is a unique c € X
with ¢ = a

R3 For all a,b,c € X,
(a®)° = (a®)®)

A rack is a quandle which only satisfies R2
and R3.

Examples

The trivial rack T, is the set {0,...,n} with
rack operation a® = a.

For a group G, the conjugation rack Conj G
is (the underlying set of) G with rack opera-
tion g" = h—1gh.




How did I get interested in this?

Take a knot diagram. Label each arc with an
element of some set, so that at any crossing:

a/\/bc =a’

Then the quandle axioms correspond to the
Reidemeister moves:

O~
l __/\
a a® a

b a b a
/
c < -
N\
acb abC
L
¢ \// - /



Given any link L we can construct the fun-
damental quandle I'o(L) of L.

a

(a,b,c:a®=b"=a; b’ =c®=b;c¢ =a = ¢

Analogous to the Wirtinger presentation of
the knot group 71(S3\ 31)

Related concept of the fundamental rack
(L), which preserves framing.
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The rack space (Fenn—Rourke—Sanderson)

For any rack X we can construct a topologi-
cal space (the rack space) BX. This is anal-
ogous to the classifying space for a group.

We thus have a homology theory for racks
and quandles — set H,(X;A) = Hp(BX;A)
and H"(X; A) = H"(BX; A).

State sum invariants (Carter—Saito—...)

It turns out that (a variation on) the sec-
ond cohomology of BX gives rise to an in-
teresting and powerful class of knot and link
invariants. More generally, we can define in-
variants of arbitrary codimension—2 embed-
dings.

Question
Is there a purely algebraic definition of rack
and quandle homology?

11



Extensions of racks and quandles

Start with defining and classifying extensions
of racks by some suitable object. First of all,
figure out what these extending objects are.

Abelian groups will do, but they're for wimps
— we want the most general possible such
object. This is tricky, but fortunately the
really difficult bit has already been done.

In the 1960s, Jon Beck devised a general def-
inition of a ‘module’ over a fixed object X in
an arbitrary category C.

They are the ‘Abelian group objects’ in the
‘slice category’ C/X.

Do this for Group and you end up with G-
modules. Similarly for LieAlg, AssocAlg and
CommRing.

In particular, these objects form an Abelian
category, which is essentially a category in
which you can form chain complexes and ex-
act sequences — and hence define homology.
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A rack module A turns out to be a slightly
more complex object than just an Abelian
group with some extra structure. It consists
of one Abelian group A, for each element
x € X and structure maps

for all x,y € X, such that each ¢—map is an
iIsomorphism, and

¢xl’/,z¢w,y — ¢xz,yz¢x,z
¢xy,z¢y,$ — %Z,x@y,z
"nbz,a:y — ¢zcz,yzwz,$ + prz’leﬂz,y
for all x,y,z € X.

The ¢—maps are the analogue of the group
action for a G—module.

Not all of the A—groups need be isomorphic,
but in general if x and y are in the same
orbit of X, then A, = A,. If all the A-
groups are isomorphic, the module is homo-
geneous, otherwise it's heterogeneous.
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A homomorphism f: A — B of X—modules
is a collection of Abelian group homomor-
phisms f.: Az — Bz which are natural with
respect to the structure maps.

There is an elegant description of rack mod-
ules in terms of ‘functors’ defined on ‘trunks’
(constructs analogous to categories).

So we now have a category RMod x of objects
suitable for extending X with.

If X is a quandle, then there is a related con-
cept of a quandle module, which has the
additional requirement

be,a: + ¢m,a: — IdAw
for all z € X. These form a category QMod x.
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Examples
Any Abelian group A can be regarded as a
rack module A — set Ay = A, ¢y =1d4 and

¢y,a¢ = 04g.

Dihedral modules:
Set Az = Zn, ¢zy: t— —1, and Py z: 7 — 20.

Alexander modules:
Pick a Laurent polynomial h(t).

Set Ag = Zn[t,t L]/h(t), dzy: f(t) — tf(t),
and Yy f(t) = (1 —1)f(2).

There are heterogeneous generalisations of
these examples.
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Equivalence classes of extensions of a group
G by a G—module A correspond to equiva-
lence classes of factor sets o: G X G — A.

These form a group Ext(G, A), which is iso-
morphic to H2(G; A).

There's a nice (vaguely) sensible notion of an
extension of a rack X by an X—module A,
and it turns out that these are also classified
by factor sets, which are (a bit like) maps
o. X xX — A.

These also form a group Ext(X,.A), which is
isomorphic to H2(X:; A) in the case where A
is just an Abelian group A.

So define H2(X; A) = Ext(X,.A). By anal-
ogy, we can define H"(X; A) and H,(X; A)
— generalising the rack space homology and
cohomology groups for coefficients in an X—
module rather than just an Abelian group.

Even more generally, we can classify non-
Abelian extensions of racks and quandles, but
they're a bit too heroic.
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Alternatively, construct an X—free resolution
of Z:

cio. > F3—=>Fo—>F1 >4 —0

and apply Homx(—, A) or — ®x A to it.

Weirdly, it turns out that this construction
gives a different (but equally valid) homology
theory to the rack space method.

BTy, has the homotopy type of (and hence
the same homology groups as)

Q(VmS?),

the loop space on a wedge of m copies of S2.
In particular, H,(BTy,) is nontrivial for n > 2.
On the other hand,

O ->72ZTy, — 21Ty, — 7 — 0

is a Ty,—free resolution of Z with trivial higher
homology.
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It gets even better. ..

Cotriple homology

There's another construction of homology
theories due to Barr and Beck.

A cotriple or standard construction in a
category C is a functor L: C — C equipped
with some extra structure. Pick an object X
of C and iteratively apply L to it. This gives
a sequence

o 13X 512X 51X 5 X

of objects in C. Now take a functor T': C — A
where A is an Abelian category. Apply T to
this sequence to get a chain complex

o T(L3X) - T(L%X) = T(LX) — T(X)

in A, and take its homology (or cohomology
if T" is contravariant).

Doing this gives H«(X;T); (or H*(X;T) ),
the cotriple (co)homology of X with coef-
ficient functor T.
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Example

Let U: Group — Set be the ‘forgetful’ functor,
and let F': Set — Group be the ‘free group’
functor.

The composition FU: Group — Group turns
out to be a cotriple.

Then H«(G,; Diffg(—) ® g A) py coincides with
ordinary group homology H,11(G; A).
And H*(G; Derg(—,A))py coincides with or-
dinary group cohomology H*t1(G; A).

There are similar results for Lie algebras, as-
sociative algebras and commutative rings.

But the analogous cotriple construction for
racks and quandles doesn’'t seem to give the
same results as either of the other two the-
ories.
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Applications

As mentioned earlier, H"(X; A) yields an in-
teresting and powerful family of invariants of
embeddings S7~1 <y gn+1,

The basic idea is that an element of H2(X; A)
is a function f: X x X — A. Take a dia-
gram of the link L, colour each arc consis-
tently with an element of the rack X — this
IS the same as choosing a homomorphism
c.: N(L) - X.

Now apply f to each crossing. This gives a
collection of elements of A. Multiply them
together. Do this for all X—colourings ¢ and
sum the results. This gives a polynomial in-
variant ®,(L) of L.

Can generalise this to embedded n—manifolds
in Rnt2,

With a bit of extra work, we can extend this
construction to use the more generalised rack
space cohomology theory.
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