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Abstract

This is an expository dissertation on some aspects of the study of braid groups. It is an
expanded (and tidier) form of the notes for a graduate seminar I gave at the University of
Warwick Mathematics Institute during the Spring Term of the 1997/98 academic year. This
document is the ‘director’s cut’, in the sense that it explores the topics in more detail than the
original talk, during which there wasn’t enough time to describe the representation theory of
the braid groups.

It is based heavily on the books of Birman [2] and Hansen [5].

In the first chapter, we consider the geometric properties of braids, and some of their connec-
tions to knots and links. The second chapter is concerned with various descriptions of the braid
group and some of its generalisations. The third chapter investigates the representation theory
of the braid groups.



Chapter 1

Braids and Links

In this chapter we investigate some of the geometric properties of braids, looking, in particular,
at the connections between braids and links.

1.1 Geometric braids

Consider Euclidean 3-space, denoted E3, and let E2
0 and E2

1 be the two parallel planes with
z-coordinates 0 and 1 respectively. Let Pi and Qi (where 1 6 i 6 n) be the points with
coordinates (i, 0, 1) and (i, 0, 0) respectively, so that P1, . . . , Pn lie on the line y = 0 in the
upper plane, and Q1, . . . , Qn lie on the lint y = 0 in the lower plane.

A braid on n strings (often called an n-braid) consists of a system of n arcs a1, . . . , an (the
strings of the braid), such that ai connects the point Pi in the upper plane to the point Qπ(i)

in the lower plane, for some permutation π ∈ Symn. Furthermore:

(i) Each arc ai intersects the plane z = t once and once only, for any t ∈ [0, 1].

(ii) The arcs a1, . . . , an intersect the plane z = t in n distinct points for all t ∈ [0, 1].

In other words, an n-braid β consists of n strands which cross each other a finite number
of times, do not intersect with themselves or any of the other strands, and travel strictly
downwards, as depicted in figure 1.1.

q q q q q
Q1 Q2 Q3 Qn−1Qn

q q q q qP1 P2 P3 Pn−1 Pn· · ·

· · ·

· · ·

Figure 1.1: A geometric n-braid

The permutation π is called the permutation of the braid. If this permutation is trivial then
β is said to be a pure (or coloured) braid.
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Two braids β0 and β1 with the same permutation π are said to be equivalent or homotopic
if there is a homotopy through braids βt each with permutation π, where t ∈ [0, 1], from β0 to
β1.

Alternatively, β0 and β1 are equivalent if there exists an ambient isotopy of E3 from β0 to β1

which fixes E2
0 and E2

1 .

1.2 Closed braids, links and Markov’s theorem

It transpires that there is a fundamental connection between braids and links. Define the
closure β̂ of a braid β by identifying each of the points Pi in the plane E2

1 with the corresponding
point Qi in E2

0 — this is equivalent to joining the points Pi and Qi by a series of concentric
arcs as shown in figure 1.2. The closed braid β̂ is then said to be closed with respect to the
axis `.

q `β

Figure 1.2: The closure β̂ of the braid β, with respect to the axis `

Theorem 1.1 (Alexander 1923)
Every link is isotopic to a closed braid.

A stronger version of this result is due to Markov, and shows how two closed braid representa-
tives of a given link are related to one another.

Let moves of type R and W be, as indicated in figures 1.2 and 1.2, the replacement of a segment
of a closed braid β̂ by (respectively) two or three edges.

q̀
�
�
�
�
��

-�

q̀
-

6

Figure 1.3: A Markov R-move

q`
�

��� -�
q` 6�

�	- -

Figure 1.4: A Markov W-move

Theorem 1.2 (Markov 1935)
If α̂ and γ̂ are two isotopic closed braids, then there exists a finite sequence of closed braids

α̂ = β̂0, . . . , β̂s = γ̂
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such that each β̂i differs from β̂i−1 by a single move of type R or type W or their inverses.

A proof of this is due to Birman [2].

A refinement of this result — a one-move version of Markov’s theorem — was proved in 1997
by Rourke and Lambropoulou [7]. This theorem makes use of an operation called an L-move,
depicted in figure 1.2, where a string is cut and two more vertical strands are attached to
the ends, passing either over or under all the other strands of the braid. There are thus two
different types of L-move, LO and LU , but these are essentially the same operation.

��

@
@

�

@ -�
@

@

�

@ -� @
@

@

Figure 1.5: An LU -move on a braid
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Chapter 2

Braid groups

2.1 Geometric braid groups

Given two n-braids, α and β, there is an obvious way of combining them to form a third n-braid
αβ: attach β to the end of α as depicted in figure 2.1. This operation is called composition,
and defines a group structure on the set of n-braids. The identity element is the braid formed
from n parallel strands with no crossings, and the inverse β−1 of a braid β is formed by reflecting
β in a horizontal plane.

β

α
- αβ

Figure 2.1: Composition of braids

This group, the n-string braid group is denoted by Bn. The subgroup PBn of Bn formed
from braids with trivial permutation is the pure (or coloured) braid group.

2.2 Artin’s presentation

Notice that any n-braid can be formed by a finite number of elementary braids σ1, . . . , σn−1,
where σi corresponds to the geometric n-braid formed by crossing the ith string over the (i+1)th
string, as depicted in figure 2.2.

· · · · · ·

i i+1

Figure 2.2: The elementary braid σi

We then notice that if i and j differ by more than one, then the elementary braids σi and σj
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commute.

Furthermore, there is an analogue for braids of the third Reidemeister move for knots and links
which, written in terms of the elementary braids, becomes σiσi+1σi = σi+1σiσi+1.

i i+1 j j+1

σi

σj

-�

i i+1 j j+1

σj

σi

i i+1 i+2

σi+1

σi

σi+1

-�

i i+1 i+2

σi

σi+1

σi

σiσj = σjσi σi+1σiσi+1 = σiσi+1σi

Figure 2.3: Relations in the elementary braids

The following theorem, due to Emil Artin, says that these two relations are sufficient to describe
the n-string braid group:

Theorem 2.1 (Artin)
Bn ∼= 〈σ1, . . . , σn−1|σiσj = σjσi if |i− j| > 1, σiσi+1σi = σi+1σiσi+1〉

In other words, the n-string braid group is generated by generators σ1, . . . , σn−1 subject to
relations

(i) σiσj = σjσi if |i− j| > 1.

(ii) σiσi+1σi = σi+1σiσi+1 for 1 6 i 6 n− 2.

The pure braid group, PBn, can be considered as the subgroup of Bn consisting of braids which
induce the identity permutation:

Theorem 2.2
The pure braid group PBn has a presentation with generators:

Aij = σj−1σj−2 . . . σi+1σ
2
i σ

−1
i+1 . . . σ

−1
j−2σ

−1
j−1

where 1 6 i < j 6 n, and relations:

ArsAijA
−1
rs =


Aij s < i or j < r
A−1
is AijAis i < j = r < s

A−1
ij A

−1
ir AijAirAij i < r < j = s

A−1
is A

−1
ir AisAirAijA

−1
ir A

−1
is AirAis i < r < j < s

The generators Aij may be depicted geometrically as (pure) braids where the jth string passes
behind the strings (j − 1), . . . , (i + 1), in front of the ith string and then behind the strings
i, . . . , (j − 1) back to the jth position.
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2.3 Configuration spaces

We now look at another definition of these groups which leads to the study of a whole family
of related groups.

Let M be a connected manifold of dimension two or greater, and let n be a positive integer.
Now define Fn(M) := {(x1, . . . , xn) ∈M × . . .×M |xi 6= xj for i 6= j}.

We can regard Fn(M) as a topological space by giving it the topology induced by the product
topology on M× . . .×M , and since dimM > 2 it is connected, and hence the homotopy groups
πi(Fn(M)) are independent of the choice of basepoint.

This space Fn(M) is the configuration space of a set of n ordered points in M .

Now let Qm = {q1, . . . , qm} be a set of m fixed, pairwise different points in M (define Q0 to be
the empty set ∅), and define Fm,n(M) := Fn(M \Qm).

With a moment’s thought we see that F0,n(M) = Fn(M) and Fm,1(M) = M \Qm.

The following theorem is due to Fadell and Neuwirth [3]:

Theorem 2.3 (Fadell/Neuwirth 1962)
Let n and r be integers such that n > 2 and 1 6 r < n. Then the canonical projection
p : Fm,n(M) → Fm,r(M) mapping (x1, . . . , xn) 7→ (x1, . . . , xr) is a locally trivial fibration with
fibre Fm+r,n−r(M).

There is an obvious right-action of the symmetric group Symn on the configuration space
Fn(M), defined by permuting the coordinates of a point in Fn(M):

µ : Fn(M)× Symn → Fn(M) with ((x1, . . . , xn), σ) 7→ (xσ(1), . . . , xσ(n)).

We can think of the quotient space Cn(M) := Fn(M)/Symn defined by this action as being
formed from Fn(M) by identifying all points whose coordinates differ by a permutation. This
is the configuration space of a set of n unordered points in M .

2.4 Braid groups of manifolds

To see what all this has to do with braid groups, think about the fundamental groups of the
configuration spaces Fn and Cn.

The following result (due to Joan Birman[1]) suggests that the only really interesting cases of
this question arise when M is a 2-manifold:

Theorem 2.4
Let M be a closed, smooth m-manifold. Then, for each k ∈ Z, the inclusion map

i : Fn(M) ↪→
∏
n

M

induces a homomorphism
i∗ : πk(Fn(M)) →

∏
n

πk(M)

which is surjective if dimM > k and an isomorphism if dimM > k + 1.
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This means that, unless M is a 2-manifold, the fundamental group of Fn(M) is just a direct
product of n copies of the fundamental group of the manifold M itself.

2.4.1 The braid group of the Euclidean plane E2

First of all, we consider the case where M is the Euclidean plane.

A corollary to theorem 2.3 states that:

Corollary 2.5 (Fadell/Neuwirth 1962)
πi(Fm,n(E2)) = 0 and, in particular, πi(Fn(E2)) = 0 for i > 2.

Which leads us to wonder what π1(Fn(E2)) is like, and whether it has any interesting or familiar
structure.

The fundamental group π1(Fn(E2)) is generated by homotopy classes of loops in the (unordered)
configuration space of the plane.

What does a closed loop in Fn(E2) look like? Well, a point in Fn(E2) is a set of n different,
non-coincident points in the plane, so a closed loop in the ordered configuration space can be
regarded as a kind of ‘dance’, in which the chosen n points move, smoothly, around each other,
ending up back where they started.

If we look at a dance of this kind in the xy plane, with the z-axis depicting time, then we see that
it is exactly a pure braid (since the points are ordered and distinct, and must therefore return to
their starting positions). A homotopy class of this loop in the configuration space corresponds
to an isotopy class of the related pure braid, and so the fundamental group π1(Fn(E2)) is
isomorphic to the pure braid group PBn.

If, now, we replace Fn(E2) by Cn(E2), then without too much additional thought it should
be clear that a closed loop in the unordered configuration space corresponds to a colourless
(non-pure) braid, and so the fundamental group π1(Cn(E2)) is isomorphic to the usual braid
group Bn.

Now, let a2 = σ2
1 , a3 = σ−1

1 σ2
2σ1, a4 = σ−1

1 σ−1
2 σ2

3σ2σ1, . . .

Geometrically, ai is the pure braid formed by allowing the first strand to pass behind the second
through to the (i− 1)th strings, round the ith strand, and back again.

So, An(E2), the subgroup of PBn(E2) generated by the braids a2, . . . , an, is isomorphic to the
fundamental group of Fn−1,1(E2), and can be regarded as the group of pure braids in which
only the first string does anything.

The group Dn(E2), generated by a2, . . . , an and σ2, . . . , σn−1, is the group of all braids which
don’t permute the first strand, that is, all braids with permutation π such that π(1) = 1.

We may now construct an exact sequence:

0 −→ An(E2) i−→ Dn(E2)
j−→ Bn−1(E2) −→ 0

In this sequence, i is the obvious inclusion homomorphism, and j, the Chow homomor-
phism, annihilates An(E2). Geometrically, j can be regarded as the operation of removing
and unthreading the first strand from the braid, thus leaving a braid on n− 1 strings.
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Now consider the homomorphism α : Bn(E2) → Symn, where each braid is mapped to its
permutation, the elementary braid σi being mapped to the transposition (i, i + 1). Clearly
kerα = PBn(E2). Identify Symn−1 with the subgroup of Symn leaving the first symbol fixed
(that is, all permutations π such that π(1) = 1). Then Dn(E2) is the preimage α−1(Symn−1),
and the diagram:

Dn(E2) Bn−1(E2)

Symn−1

-
j

?
α

H
HHH

Hj
α

commutes, and. . .

Proposition 2.6
The sequence

0 −→ An(E2) i−→ PBn(E2)
j−→ PBn−1(E2) −→ 0

is exact. This is the fundamental exact sequence for Bn(E2).

In fact, more generally, if M is a closed, orientable 2-manifold, and either n > 4, or n > 2 and
M is neither P2 nor S2, then

0 −→ π1(Fn−1,1(M)) −→ π1(Fn(M)) −→ π1(Fn−1(M)) −→ 0
‖ ‖ ‖

An(M) PBn(M) PBn−1(M)

2.4.2 The braid group of the 2-sphere S2

The braid group of the 2-sphere is similar to the braid group of the Euclidean plane, except
that the points move on S2 instead. An S2-braid may be depicted geometrically as a braid
between two concentric spheres.

The group Bn(S2) is generated by the same generators σi and relations as Bn(E2), but with
one additional relation:

(iii) σ1σ2 . . . σn−1σn−1 . . . σ2σ1 = 1

This requirement says, geometrically, that the braid formed by taking the first string round
behind all of the other strings and back in front of them, back to its starting position, is
equivalent to the trivial braid.

By considering the geometric depiction of an S2-braid described above, we see that this is
true, since the loop may be pushed off the inner sphere without tangling with any of the other
strings.

As before, we can construct a fundamental exact sequence for Bn(S2):

0 −→ An(S2) i−→ PBn(S2)
j−→ PBn−1(S2) −→ 0

8



The remark at the end of the previous subsection suggests that the braid groups of the 2-sphere
and the projective plane might have some strange properties not shared by the braid groups of
arbitrary 2-manifolds. This is further suggested by the following:

Theorem 2.7 (Newwirth)
If M is either E2 or any compact 2-manifold except P2 or S2 then neither Bn(M) nor PBn(M)
have any nontrivial elements of finite order.

So, is Bn(Sn) torsion-free? Or can we find a nontrivial element of finite order?

Theorem 2.8 (Fadell/Newwirth 1962)
The word σ1σ2 . . . σn−1 has order 2n in Bn(S2).

This can be seen geometrically, with a little imagination. The word σ1σ2 . . . σn−1 corresponds
to taking the first string over all the others to the nth position. If we do this n times, then
each of the strings ends up back where it started, making a pure braid. If we then do the same
thing a further n times (making 2n in total), each string winds round the remaining n − 1
strings twice. We may then utilise a move known as the ‘Dirac string trick’ (qv [5] for a series
of diagrams depicting this operation) to untangle all n strings, resulting in a trivial braid.

What are some of these groups Bn(S2) like? Notice that Bn(E2) is infinite for n > 1, but the
previous theorem suggests that this might not necessarily be the case for the braid groups of
the 2-sphere.

In fact:
PB2(S2) = 0
B2(S2) = Z2

PB3(S2) = Z2

B3(S2) is a ZS-metacyclic group of order 12

2.4.3 The braid group of the projective plane P2

We now consider the braid group of the projective plane. Recall that P2 is the 2-disc D2 with
antipodal boundary points identified. It is not embeddable in R3 and is hence not particularly
easy to visualise.

The group Bn(P2) is generated by σ1, . . . , σn−1 (as for the braid groups of the plane and
the 2-sphere), and ρ1, . . . , ρn, subject to the same relations as for Bn(E2), with the following
additional relations:

(iii) σiρj = ρjσi if |i− j| > 1

(iv) ρi = σiρi+1σi

(v) ρ−1
i+1ρ

−1
i ρi+1ρi = σ2

i

(vi) ρ2
1 = σ1σ2 . . . σn−1σn−1 . . . σ2σ1

These generators each have a geometric interpretation — the σi may be regarded as the ith
string passing in front of the (i+ 1)th string, and ρi may be depicted as the ith string moving
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forwards towards the boundary of D2 and then reappearing at the corresponding antipodal
point before returning to its starting position.

As before, we get a fundamental exact sequence:

0 −→ An(P2) i−→ PBn(P2)
j−→ PBn−1(P2) −→ 0

It transpires, also, that Bn(P2) has a torsion element:

Theorem 2.9 (van Buskirk 1966)
The word σ1 . . . σn−1 has order 2n in Bn(P2)

In addition, there are nontrivial braid groups of finite order, as with the S2 case:

B1(P2) = Z2

B2(P2) is dicyclic of order 16
PB2(P2) is the quaternion group
A2(P2) = Z4

Bn(P2) is infinite for n > 3

2.5 Automorphisms of free groups

There is an alternative definition of the braid groups in terms of subgroups of AutFn, the
group of (right) automorphisms of the free group of rank n.

Theorem 2.10 (Artin Representation Theorem)
Let Fn be the free group on n generators: 〈x1, . . . , xn|〉. Then Bn is isomorphic to the subgroup
of AutFn consisting of all right automorphisms β on Fn such that

xiβ = Aixτ(i)A
−1
i

(x1 . . . xn)β = x1 . . . xn

where 1 6 i 6 n, τ ∈ Symn, and Ai is some word in Fn.

Under this isomorphism, σi corresponds to an automorphism σi of Fn, where

xiσi = xixi+1x
−1
i

xi+1σi = xi

xjσi = xj

for all j 6= i, i+ 1.

The permutation τ for the automorphism β is the permutation of the braid β.

Justification

Identify Fn with the fundamental group of the n-punctured plane:

Fn ∼= π1(E2
1 \ {P1, . . . , Pn}, P0) ∼= π1(E2

0 \ {Q1, . . . , Qn}, Q0)
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where P0 = (0, 0, 1) and Q0 = (0, 0, 0).

Thus, each generator xi ∈ Fn corresponds to a loop, based at P0, passing anticlockwise round
Pi. Now consider a geometric braid β ∈ Bn in terms of the slab of E3 between E2

0 and E2
1 with

the strings of the braid removed.

Then a braid β lifts to a map

β : Fn = π1(E2
1 \ {P1, . . . , Pn}, P0) → Fn = π1(E2

0 \ {Q1, . . . , Qn}, Q0).

Geometrically, we visualise this by constructing the loop ` round the Pi corresponding to the
word in Fn, and then push ` down the braid.

Note that this is a single-valued mapping on homotopy classes and a homomorphism. Further-
more, it is a right automorphism — the inverse may be constructed by pushing the loop back
up the braid again. The homotopy of braids says that if β1 and β2 are homotopic then β1 = β2.
The mapping Bn → AutFn given by β 7→ β is a homomorphism, since β1β2 = β1β2.

Given that the word x1 . . . xn corresponds to an anticlockwise loop round all the Pi, it will be
unchanged by the automorphism given by any n-braid β: (x1 . . . xn)β = x1 . . . xn.

Considering the action of the automorphisms σi (where σi is the ith elementary braid), we see
that:

xi+1σi = xi

xiσi = xixi+1x
−1
i

xjσi = xj

if j 6= i, i+ 1. 2
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Chapter 3

Representations of braid groups

In this chapter we provide a brief overview of Fox’ free differential calculus, show how it may
be used to construct matrix representations of automorphism groups of Fn, and then look at
two examples, namely Burau and Gassner’s representations of, respectively, Bn and PBn.

3.1 Free differential calculus

Let Fn be a free group of rank n, with basis {x1, . . . , xn}, and let φ be a homomorphism acting
on Fn, with Fφn denoting the image of Fn under φ.

Now let ZFφn denote the integral group ring of Fφn : an element of ZFφn is a sum
∑
agg, where

ag ∈ Z and g ∈ Fφn , with addition and multiplication defined by

∑
agg +

∑
Bgg =

∑
(ag + Bg)g(∑

agg
)(∑

Bgg
)

=
∑
g

(∑
h

agh−1Bh

)
g

A homomorphism ψ : Fφn → Fψφn induces a ring homomorphism ψ : ZFφn → ZFψφn . Later we
will consider the cases where ψ is the abelianiser a or the trivialiser t.

There is a well-defined mapping
∂

∂xj
: ZFn → ZFn

given by
∂

∂xj

(
xε1µ1

. . . xεr
µr

)
=

r∑
i=1

εiδµi,jx
ε1
µ1
. . . x

1
2 (εi−1)
µi

∂

∂xj

(∑
agg
)

=
∑

ag
∂g

∂xj

where g ∈ Fn, ag ∈ Z, εi = ±1, and δµi,j is the Kronecker δ.

The following properties follow from the definition:

12



Proposition 3.1
(i) ∂xi

∂xj
= δi,j .

(ii) ∂x−1
i

∂xj
= −δi,jx−1

i .

(iii) ∂(wv)
∂xj

=
(
∂w
∂xj

)
vτ + w

(
∂v
∂xj

)
.

3.2 Magnus representations

Let Sn be a free abelian semigroup with basis {s1, . . . , sn}, let R be a ring, and let A0(R,Sn)
be the semigroup ring of Sn with respect to R: elements in A0(R,Sn) are polynomials in
non-negative powers of the si (which all commute), with coefficients in R.

Now define τ : Fn →M2A0(ZFn, Sn) as:

w 7→ [w] =
[
w

∑n
j=1

∂w
∂xj

sj
0 1

]
In particular:

xj 7→ [xi] =
[
xi si
0 1

]
(Since

∑n
j=1

∂xi

∂xj
sj =

∑n
j=1 δijsj = si.)

If w, v ∈ Fn then [wv] = [w][v]. The mapping w 7→ [w] is a representation, the Magnus rep-
resentation, of Fn, and is not particularly interesting. If, though, we have a homomorphism
φ acting on Fn, and let

w 7→ [w]φ =

[
wφ

∑n
j=1

(
∂w
∂xj

)φ
sj

0 1

]

then this is also a representation, the Magnus φ-representation of Fn: [Fn]φ is the image
of Fn under this homomorphism Φ : Fn → [Fn]φ;w 7→ [w]φ.

We can generalise this representation Φ to representations of Fn by k × k upper-triangular
matrices:

Define higher-order derivatives inductively (writing Dj for ∂
∂xj

).

Di1i2...iq (w) = Diq (Di1i2...iq−1(w))

D(w) =
n∑
i=1

Di(w)si

Dq+1(w) = D(Dq(w))

Then:
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Dq+1(w) =
∑

16ij6n

Di1...iq (w)si1 . . . siq

Dq(uv) =
q−1∑
p=1

(Dp(u)(Dq−p(v))t + uDq(v)

where t is the trivialiser.

Theorem 3.2 (Enright 1968)
Let φ be a homomorphism of Fn and let (Dq(w))φ be the image of Dq(w) under the ring
homomorphism induced by φ.

Then, for w ∈ Fn, let

{w}φ =


wφ (D(w))φ (D2(w))φ (D3(w))φ · · · (Dk−1(w))φ

0 1 (D(w))t (D2(w))t · · · (Dk−2(w))t

0 0 1 (D(w))t · · · (Dk−3(w))t

...
...

...
...

...
0 0 0 0 · · · 1


Then Φ : w 7→ {w}φ defines a representation of Fn in the ring Mk(A0(ZFn, Sn)) of k × k
matrices over A0(ZFn, Sn) for k > 2 and φ a homomorphism acting on Fn.

Corollary 3.3
Let xi be a basis element of Fn. Then:

xi 7→ {xi}t =



1 si 0 · · · 0

0 1 si
. . .

...
...

. . . 1
. . . 0

...
. . . . . . si

0 · · · · · · 0 1


is a faithful matrix representation of Fn modulo the kth group of the lower central series of Fn
over A0(ZFn, Sn) for k > 2.

The point of all this is that we can now use this machinery of Magnus representations to study
subgroups of AutFn, such as Bn or PBn.

Let φ be a homomorphism acting on Fn and let Aφ be any group of (right) automorphisms of
Fn which satisfy

xφ = xαφ

for all x ∈ Fn and α ∈ Aφ.

So, if φ is the abelianiser a, then Aφ might be the subgroup of AutFn mapping each element
into a conjugate of itself.

Any subgroup of AutFn inducing the identity automorphism on Fn/F ′
n could do.
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Now, if α ∈ Aφ, define τ : α 7→ ‖α‖φ =
[(

∂(xiα)
∂xj

)φ]
. Thus, τ defines a representation

Aφ →Mn(ZFφn ).

For example:

Example 3.1
Let φ be t, the trivialiser t : Fn → 1, and AtbeAutFn. Then t maps each element of AutFn
to an n × n matrix over Z where the (i, j)th element is the exponent sum of xj in wi. These
matrices are invertible, and so have determinant ±1, hence F t

n is a subgroup of the unimodular
group.

3.3 Burau’s representation of Bn

As noted before, Bn has a faithful representation as a group of automorphisms of Fn, and hence
we can regard Bn as a subgroup of AutFn.

Let Z = 〈t〉 be the infinite cyclic group, and let ψ : Fn → Z;xi 7→ t.

Then the corresponding representation, the Burau representation of Bn is given by:

σi 7→ ‖σi‖ψ =


Ii−1 0 0 0
0 1− t t 0
0 1 0 0
0 0 0 In−i−1



3.4 Gassner’s representation of PBn

To represent the pure braid groups PBn, we can simply restrict the Burau representation of
Bn. But a more interesting representation exists, discovered by B.J. Gassner in 1961[4]:

Let φ be the abelianiser a. Then PBn has a representation as a subgroup of AutFn by the
restriction of ξ : Bn → AutFn to PBn.

Let AFn be the free abelian group of rank n, with basis {t1, . . . , tn} and let a : Fn → AFn be
defined by xia = ti.

The pure braid generators map a generator xi of Fn into a conjugate of itself, so the requirement
xiArsa = xia is satisfied for 1 6 i 6 n and 1 6 r < s 6 n if φ = a.

So, we derive the Gassner representation of PBn:

((Ars))a
ij =


δij if s < i or i < r
(1− ti)δir + trδij if s = i
(1− ti)(δij + tiδsj) + titsδij if r = i
(1− ti)(1− ts)δrj − (1− tr)δsj + δij if r < i < s

15



3.5 Fidelity

An, as yet, not completely answered question concerning the Burau and Gassner representations
is whether they are faithful or not. In this section we state a number of partial answers to this
question.

Theorem 3.4 (Magnus/Peluso 1969)
The Burau representation of B3 and the Gassner representation of PB3 are faithful.

Theorem 3.5
The Burau representation of B4 is faithful if and only if the matrix group generated by

‖σ3σ
−1
1 ‖ψ =

 −t 1 0
0 1 0
0 1 −t−1


and

‖σ2σ3σ
−1
1 σ−1

2 ‖ψ =

 1− t−1 −t−1 t−1

1− t2 −t−1 0
1 −t−1 0


is free and has rank 2.

Theorem 3.6 (Moody 1991[6])
The Burau representation of Bn is not faithful for n > 10.

Subsequent work showed that:

Theorem 3.7
The Burau representation of Bn is not faithful for n > 6.

The question regarding the Burau representation of B4 and B5 has not as yet been settled.
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