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1. Racks and quandles

A rack is a set X, equipped with a binary
operation (written as exponentiation), such
that:

R1 For any a,b € X there is a unique c € X

such that a = ¢b.

R2 a’ = a%° for any a,b,c e X.

A quandle is a rack which satisfies:
Q a® = a for all a € X.

Originally studied by Conway and Wraith,
later by Joyce, and more recently by Fenn,
Rourke, and Sanderson, and by Carter and
Saito.

In particular, this means that the map f; :
X — X:x — z° is a bijection, and right-
distributive.

Can think of X as a set with an action by
a quotient of F(X): This is the operator
group Op X.

Denote by [x] the orbit of £ under this action.
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Examples

(i) The trivial rack T, = {0,...,n— 1}
with structure a® ;= a.

(ii) The cyclic rack C,, = {0,...,n— 1}
with ab :=a + 1( mod n).

(iii) The core rack Core G of a group G-
Define g := hg~1h.

(iv) The conjugation rack ConjG of a group
G-
Define g" := hgh~1.

(v) The dihedral rack D, = {0,...,n — 1},
with p9 := 2q — p.

(vi) Alexander quandles are modules over
A = Z[t, t—1] with rack structure given by
ab :=ta + (1 — t)b.

All of these (except for the cyclic racks) are
quandles.



Why do we care?

Let 'p(L) consist of the arcs of a link dia-
gram D(L). Then define a rack structure on
[ p(L) thus:

e

a

Then the rack (and quandle) axioms corre-
spond to the Reidemeister moves:

=g

>\c > R1: a b
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Cohomology of racks

For any rack X there is a well-defined topo-
logical space BBX, the rack space, analo-
gous to the classifying space for a group.

Define the cohomology of X to be the coho-

mology of the rack space of X.
Concretely:

LS onix A) D ot x A) B
where
C"(X;A) = Hom(FA(X"),A)
and

(6" f)(zo, ..., xn) =
Z(_l)zf('mg) SRR x;'vila Lit1,--- 73371)
1=0

n
— Z(—l)if(xo, ey L1, it 1y e -y L)
1=0

So a 2-cocycle satisfies:

(&%, 2) + f(z,y) = f(%,9°) + (=, 2)

and a 2-coboundary satisfies:

g(z,y) = h(z) — h(zY)
for some 1-cochain h € C1(X; A).



Quandle cohomology and state-sum invariants

Carter, Jelsofsky, Kamada, Langford, and Saito (1999):

Let C™(X; A) consist of all homomorphisms
FA(X™) — A which are zero on all expres-
sions of the form (...,z,xz,...).

This gives a variant cohomology theory HE?'

The CJKLS state-sum invariants are defined
as follows:

(i)

(ii)

(i)

(iv)

(v)
(vi)

Take a diagram D of a link L and colour it with
a given quandle X — this is the same as choosing
a homomorphism C : IN'(L) — X.

Pick a cocycle ¢ € Hf?(X; A), and write the coef-
ficient group A multiplicatively.

Apply ¢ to each crossing = of D by taking the
labels of the incoming arcs as the arguments of

o.
The weight of the crossing 7 is then ¢(x,y)(™)
where (1) is the sign of 7.

Take the product (in A) of the weight of every
crossing.

Sum over all colourings of D.

The state sum of L corresponding to the
cocycle ¢ is

®y(L) = Y [] ¢z, y)°"
Cc T



Trunks and trunk maps

A trunk T is a construct analogous to a cat-
egory, having a class of objects and, for any
two objects A, B, a set Hom(A, B) of mor-
phisms.

We don't necessarily require the existence of
identity morphisms.

There may be preferred squares of objects
and morphisms:

A - B

C 2 - D

This is the analogue of composition in a cat-
egory.

We may consider any category C as a trunk
with the same objects and morphisms.

A trunk map from one trunk to another is
the obvious analogue of a functor between
categories.



2. Extensions of racks and quandles

Given a rack X, define the extended rack
trunk S(X) with one object for each element
x € X, one morphism agy : * — Y for each
ordered pair (x,y) of elements of X, and pre-
ferred squares

gz
A trunk map G : S(X) — Group determines a
group G5 for each element of X, and homo-

morphisms ¢z 4 : Gz — Gy for each ordered
pair (x,y) of elements of X, such that:

¢wy,z¢$,y — ¢xz,yz¢w,z
That is, the diagram

Gu
Ga'; 7y Gmy
Cba:,z Qba:y,z
ze Gwyz — szyz
af:Z’yZ

commutes.



An extension of a rack X by a trunk map
G = (G, ) : S(X) — Group consists of a rack
E together with a surjective homomorphism
f £ — X inducing a partition £ = U,ex Ex
(where E, is the preimage f~1(z)) and, for
each x € X, a right group action of G, on Ej
such that:

(i) G4 acts simply transitively on E; — that
is, for any a,b € E,, there is a unique
g € Gz such that a-g =0b.

(i) (a-g)® = (a¥) - ¢zy(g) for any a € Gu,
g € Gz, and b € Ey.

Two projections E4q A X and E» £> X

are equivalent if there exists an isomorphism
(equivalence) 0 : E1 — E> which commutes
with the projection maps and the group ac-
tions:

(i) f20(a) = f1(a) for all a € F1.
(ii) 8(a-g) =6(a)-g for all a € E; and g € Gy.



Factor systems

Let F i> X be an extension of X by G =

(G,¢) and let s : X — E be a function (not
necessarily a rack homomorphism) such that
fs=Idx.

Since the G5 act simply transitively on the
E;, there is a unique x € X and a unique
g € GG such that a given element a can be
written as

a=s(x)-g.

Since f is a rack homomorphism, it follows
that s(z)5(%) € E_y, and that there is a unique

s(x)s(y) = s(a?) - ozy.

The family ¢ = {ozy : x,y € X} is the factor
set of E relative to s. It is the obstruction
to s being a rack homomorphism.
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Similarly, there is a unique w(h) € G,y such
that

s(z)5Wh = 5(2)5W) . y(n)

for any h € Gy.

This determines a map wy,x : Gy — Gy such
that wy (1) = 1, but which is not in general
a group homomorphism. From the second
condition on the Gg-actions, it follows that:

(s(z) - )W = s(a¥) - oy, (h) b,y (9)
Hence, the rack structure on E is determined
completely by the factor set ¢ and the maps
Wy’x.

We define a new collection of maps

_ —1
VYy,x = Oz,yWy,z04 y

and rewrite this last condition in a slightly
more elegant form:

s(@)* WP = 5(a¥) - by 2 (R) s,y (9)

The ¥ maps share the same drawback as the
w maps, in that while ¢, (1) = 1, they are
not in general group homomorphisms.

11



As before, the rack structure on FE is deter-
mined completely by the factor set ¢ and the
v maps. We call the pair (o,1) the factor

system of E relative to s.

An example: Consider the dihedral rack Dg
as an extension of the trivial rack T3 = {0}

by the dihedral group D3 (of order 6) with
action given by

e p1 P2 M1 M2 M3
Oo/jo 1 2 3 4 5
1/1 2 0 5 3 4
2|12 0 1 4 5 3
3|13 4 5 0 1 2
414 5 3 2 0 1
5|6 3 4 1 2 O

and section s : 0+~ O.
Then ¢go: D3 — D3 is given by:

g le p1 p2 p1 po p3
¢(9) |e ps p2 w1 p2 p1

and wqg o : D3 — D3 by:

h |e p1 po p1 po ps3
w(h) |e p2 p2 e pa2 po

The latter is not a homomorphism, since for
example

w(p?) = w(p2) = p2 # p1 = p5 = w(p1)?
Finally, the factor set o is trivial.
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Theorem 1 (the horrid condition)

Let G = (G, ¢) : S(X) — Group with ¢4y an
isomorphism for all z,y € X.

Let 0 = {oxy € Gy i x,y € X} be a family of
group elements.

Let v = {¢Yyz : Gy — G : z,y € X} be a
collection of functions such that ¢y (1) = 1.
Furthermore, let E|[G,o,v9] be the set of or-

dered pairs (x,g) with £ € X and g € G, with
rack operation

(2, 9) WM = (a¥, by, (R)ozydzy(9))

Then E[G,o0,v] is an extension of X by G
with factor system (o,v) if

lﬁz,wy(k)awy,z¢wy,z¢y,x(h)¢xy,z(0x,y) —
Yy: o (¢Z,y(k)0y,Z¢y,Z(h)) sz,yz¢xz,yz¢z,x(k)bez,yz(Ux,z)

for all z,y,z € X, h € Gy, and k € G».

Conversely, if E is an extension of X by G
with factor system (o, 1) then this condition
holds, and E is equivalent to E[G, o, v].
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Theorem 2 (equivalence of extensions)

Let G = (G, ¢) : S(X) — Group with ¢z 4 an
isomorphism for all z,y € X.

Let (o,v) and (7,w) be two factor systems
for G.

Then the following are equivalent:

(i) E[G,0,v] and E[G,T,w] are equivalent as exten-
sions of X.

(ii) There exists a u = {u, € Gz : * € X} such that:

Tey — u;ylwy,x(uy)ax,yﬁbw,y(uw)
wy,x(h) — u;y1¢y,x(uyh)¢y,w(uy)_1U:cy

(iii) (o,v) and (7,w) are factor systems of the same
extension of X by G relative to different cross-
sections.

Corollary 3 (split extensions)
The following are equivalent:

(i) There exists a rack homomorphism X — E such

that fs = Idy,
(ii) relative to some section the factor set of FE is
trivial,

(iii) relative to any section there exists a family
u={uz :x € X,uy € Gy} such that

Ozy — ¢yw(uy) _1ny¢:c,y (uz) -1
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Abelian extensions

The abelian case is much nicer:

Theorem 1A

Let A= (A,¢) :S(X) — Ab and let (o,9) be a factor
set such that the ¢ maps are rack homomorphisms.

Then E[A,o0,] is an extension of X with factor system

(o,) iff
wz,xy(k) — ¢yz,wz¢z,y(k)+¢x",yz¢zw(k)

¢xy,z¢y,w(h) — ¢yz,:c“¢y,z(h)
Ogv 2 + bey,z(o'x,y) — wyz,xz (Uy,z) + Oz y* + bez,yz(o'x,z)
Theorem 2A

Two factor systems (r,w) and (o,%) for A are equiv-
alent iff there exists a family u = {ug : z € X, u; € Az}
such that:

Te,y — ¢y,x(uy) + ¢:c,y(ux) — Ugy + Ozy
and if

Wyz = Py

Corollary 3A

A factor system (o,v) splits iff there exists a family
u={uy:x € X,u; € Az} such that:

Ory = Yya(ty) + dry(uz) — Uas
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Now amalgamate the trunk map A = (A, ¢)
with the ¥y homomorphisms:

Define T(X) similarly to S(X) but with addi-
tional morphisms 8y . : y — z¥ and preferred
squares

By,a

xY

Qy,z XzY,z

z

z Yz — n2Y
Y xd* =
Byz,x'z

We can now classify extensions of a rack X
by a trunk map
A= (Ao,¢v): T(X) — Ab.

Let Ext(X,A) consist of the factor sets o
such that

Oxv,z + way,z(o'x,y) — 'lpyz,xz(ay,z) + Oz y> + stz,yz (Uw,z)

modulo the split factor sets:
Tey = Yyz(Uy) — Uz + ¢z y(us)
This has an obvious abelian group structure.

If A is the trivial trunk map with A, = A,

wy’m —_ O, and ¢$,y — Id,
then Ext(X,A) = H?(X; A).
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Quandle extensions

Given a quandle X, require that F is also a
quandle.

Then the trunk map A : T(X) — Ab must
satisfy
Qbac,ac + 7#:1;,:13 — IdAw
and the factor set ¢ must satisfy the condi-
tion
O'aj,;(; pm— O
in addition to the conditions in theorem 2A.

For the trivial trunk map A = (A,Id,0), this
recovers the second quandle cohomology
Hg?(X;A) of Carter, Saito, et alii.

As before, we may define groups Extg(X, A)
classifying such extensions.
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Involutory extensions

An involutory rack is a rack X for which
ab® = ¢ for all a,b € X. Dihedral racks, in
particular, are involutory.

Considering extensions in this subcategory
provides the following additional conditions
on the trunk maps:

¢my,y¢$,y
Yy 2y T+ Py 4y Vyx

and the condition

OxY.y + Qb:cy,y(o'w,y) =0

on the factor sets.

Idg4,
O

Again, there are groups Extj(X, A) classify-
ing such extensions, and groups ExtIQ(X, A)
classifying the hybrid ‘involutory quandle ex-
tensions’.

It doesn’'t appear unreasonable to expect that
state-sums derived from these groups will be
unoriented invariants under regular (or ambi-
ent) isotopy.
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3. Modules

We must characterise the suitable coefficient
objects for rack (co)homology and the re-
lated theories.

Jon Beck devised a general approach for do-
ing this for a given object X in a category
C:

Let A = Ab(C/X) denote the category of
abelian group objects in the slice category
C/X. Then this category is equivalent to the
desired category.

For example: If C = Group, then the objects
of Ab(Group/G) are of the form

AxXG — G

where A is a G-module.

The idea is that the Beck modules are the
kernels of split extensions of the chosen ob-
ject.
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Rack modules

It transpires that the Beck modules over X
in Rack are exactly the previously-discussed
trunk maps T(X) — Ab, and that they form
an abelian category RMod x.

An interesting quirk is that in general, the
group Az need only be isomorphic to Ay if x
and y are in the same orbit of X.

So an X-module consists not just of one
abelian group (equipped with some sort of
rack action structure) but one for each orbit
of X.

Modules where all of the groups are isomor-
phic are homogeneous; otherwise they are
heterogeneous.

This also follows for the other specialisations
mentioned.

20



Carter, Saito and Kamada's notion of abelian
quandle extensions corresponds in this frame-
work to an extension of a quandle by a trivial
homogeneous quandle module.

Carter, Saito and Elhamdadi’s ‘twisted quan-
dle extensions’ correspond to extensions by
homogeneous Alexander modules:

Az = Z[t,t71]/h(t)
dry(a) = ta
¢y,:c(b) = (1-1)b

where h(t) is a Laurent polynomial in ¢.
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4. Further work

(i)

(i)

(iii)

(iv)

Derived functors.

Homology and higher cohomology groups.

Ext" and Tor, groups.

Projective and injective resolutions.

Cotriple (co)homology.

The free cotriple.

The conjugation cotriple.

Spectral sequences.

Is there a Lyndon/Hochschild/Serre spectral se-
quence’?

Applications.

State-sum invariants in knot theory and the topol-
ogy of 3-manifolds.

Computations, via algebraic and geometric meth-
ods.

Augmented racks.

Is there a corresponding theory for augmented

racks and quandles?
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