
THE BITS BETWEEN THE BITS

1. Error-correcting codes

2. Sphere packings and lattices

3. Sporadic simple groups
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1947: Richard W Hamming (Bell Labs). . .

Two weekends in a row I came in and found
that all my stuff had been dumped and noth-
ing was done. I was really aroused and
annoyed because I wanted those answers
and two weekends had been lost. And so I
said ‘Damn it, if the machine can detect an
error, why can’t it locate the position of the
error and correct it?’

The problem:
Reliable transmission of data over a noisy channel�

Reliable storage of data on fallible media
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SHANNON’S THEOREM

As long as the information transfer rate over the chan-
nel is within the channel capacity (or bandwidth),
then it is possible to construct a code such that the
error probability can be made arbitrarily small.

Costs of increased reliability:

� transfer rate decreased

� code becomes more complex
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ERROR-DETECTING CODES

We want to be able to tell, upon receiving a mes-
sage, whether the message has been corrupted in
transit.

REPETITION CODES

SSeenndd eeaacchh ccooddeewwoorrdd ttwwiiccee.

For example, encode ‘1100’ (12) as ‘11001100’

The first four bits are the message, and the next four
are the check bits or check digits.

This code detects any one error in transmission and
is the (8,4) block repetition code.

Generalise to:

� ���������
	 block repetition code

� �������
	 block code
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Define the information rate of an �������
	 binary code
with � codewords to be:

� � ������� ��
If � � ���

, for example, then
� � �� .

So, the higher the number of check bits (and hence
the more reliable the code), the lower the informa-
tion rate.

The problem is now to devise a code which max-
imises reliability and information rate, while still al-
lowing detection of transmission errors.
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PARITY CHECK CODES

Append to each 4-bit block (‘nybble’) another bit (the
parity bit) making the sum of the bits even ( � �� ��� �

).

Information rate:
� �  !

– much better than the
(8,4) block repetition code.

In general, the ��� " #$���
	 parity check code has
information rate

� � �%'& � .
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ERROR-CORRECTING CODES

Error-detection is all well and good, but not enough
in certain circumstances (like a compact disc, or
remote-piloting unmanned space probes). We need
to be able to figure out what the message should
have been.

[Hamming 1950]: Geometric approach.

Consider the unit cube in ( � whose vertices are the� � � -tuples of 0s and 1s; the binary expansions of� �*)*)+)*� � � , # .

THE (3,2) PARITY CHECK CODE

The codewords of this (single-error-detecting) code
are the four 3-bit binary numbers with an even num-
ber of 1s:

000 100

010

001
111

101

110

011
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HAMMING DISTANCE

The Hamming distance - �/.0��1$	 is the number of
bits which differ between the codewords . and 1 .

This is the number of edges in a shortest path be-
tween the two vertices of the unit � -cube correspond-
ing to the codewords.

The minimum distance 2 of a code is the minimal
distance between any two non-identical codewords.
For the (3,2) parity check code 2 � �

.

The (4,1) repetition code (consisting of codewords
0000 and 1111) has minimum distance 4 – any two
errors can be detected. In addition, any single error
can be corrected.

In general, a code with minimum distance 2 will de-
tect up to 354�76 errors and will correct up to 384:9 %� 6
errors.
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HAMMING SPHERE

The Hamming sphere of radius ; centred on a ver-
tex of the unit cube in ( � is the set of all vertices
at a Hamming distance of at most ; from the given
vertex.

A code of length � is said to be perfect (or close-
packed or lossless) if there is an ; < � such that:

� The ; -spheres centred on the codeword ver-
tices are pairwise disjoint.

� Each vertex of the � -cube is contained in some; -sphere
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The ���=��� , #>	 repetition codes with � odd are all
perfect

(take ; � � 9 %� ).

The Hamming spheres of radius 1 for the (3,1) rep-
etition code are:

000 100

010

001
111

101

110

011
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THE (7,4) HAMMING CODE ? @
The requirements of this code are that the checking
number (three bits) should locate any single error in
a codeword. Rather than placing the check bits at
the end, Hamming put the A th check bit at the

�CB 9 % th
position. This has the result that no two check bits
check each other.

The essential idea is that the A th parity bit should
check the parity of the positions with a 1 in their A th
position.

So, the first check bit checks the parity of bits 1,3,5,7,
the second checks bits 2,3,6,7, and the third checks
bits 4,5,6,7, with the check bits themselves in posi-
tions 1,2 and 4.

The idea is that if no error occurs then the check
number should be 000.

This (7,4) code is perfect.

In fact, all the � �ED , #�� �CD , # , F 	 Hamming codes
are perfect.
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Suppose we wish to encode the number 0101:

Position 7 6 5 4 3 2 1
Message data 0 1 0 1
Check data 1 0 1
Codeword 0 1 0 1 1 0 1

If, during transmission, this particular codeword is
corrupted:

� # � #E# � # GH �E�E� #E# � #
The parity checks are then:

Bits 4,5,6,7: # " � " � " � � # (mod 2)
Bits 2,3,6,7: � " # " � " � � # (mod 2)
Bits 1,3,5,7: # " # " � " � � � (mod 2)

The checking number is thus 110, so the error is in
the 6th position.
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LINEAR CODES

We can regard the ���=���
	 Hamming codes as vector
subspaces of I � � , since the sum of any two code-
words is itself a codeword.

Any code which may be thought of in this way is said
to be linear.

In fact, since only words with check digits 000 are
valid codewords, we can regard the (7,4) Hamming
code as the kernel of some linear map I @� H IEJ� .

A suitable matrix for this map is:

KLM � � � # # # #� # # � � # ## � # � # � #
NPOQ

In general, if a code can be regarded as the kernel
of some linear transformation with matrix R , then R
is the generating matrix or parity check matrix for
the code.
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GOLAY CODES

1950s: Marcel Golay extended Hamming’s ideas to
construct perfect single-error-correcting codes on S
symbols for any prime S .

A necessary condition for the existence of a perfect
binary code which can correct more than one error,
is the existence of three or more first numbers of a
line of Pascal’s triangle which add up to an exact
power of two.

A possible candidate is:

T �� " T �# " T �� � � % �
This suggests the existence of a perfect, double-
error-correcting (90,78) code, but it was proved by
Golay and Zaremba that no such code exists.
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The second candidate that Golay found is:

�EU� " �EU# " �EU� " �EUU � � %V%
This suggests the existence of a perfect 3-error-correcting
(23,12) binary code.

This code ( W � J ) does exist, and Golay constructed
a generating matrix for it.

Golay also constructed an (11,6), double-error-correcting
ternary code, W %V% , whose check matrix may be re-
garded as a map from I %V%J H I !J .
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No other perfect codes are known. In fact, the per-
fect error-correcting codes have been classified, and
are:

1. Trivial codes (such as a code with one code-
word, the universe code, or the binary repetition
codes of odd length)

2. Hamming/Golay X:Y[Z 9 %Y 9 % � Y\Z 9 %Y 9 % , F7]
codes overI Y with minimum distance 3.

3. Nonlinear codes with the same parameters as
the Hamming/Golay codes
(these haven’t been completely enumerated).

4. The binary and ternary Golay codes W � J andW %V%
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SPHERE PACKINGS AND LATTICES IN ( �
How may we pack disjoint, identical, open � -balls in( � so as to maximise the space covered?

Dates back to Gauss (1831): Notes that a prob-
lem of Lagrange (1773), concerning the minimum
nonzero value assumed by a positive definite quadratic
form in � variables, can be restated as a sphere-
packing problem.

LATTICE PACKINGS

If a packing ^ _ ( � contains spheres centred at `
and a , then there is also a sphere centred at ` " a
and ` , a .

– The set of sphere centres forms an additive group.
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A lattice is the b -span of some basis for ( � .

(Or, a finitely-generated free b -module with an integer-
valued symmetric bilinear form.)

Density – the proportion c of ( � which is covered
by the spheres.

(Let d � � egfih+jlknmo �qp �
rts be the volume of the � -ball u � .)

Packing radius – half the minimal distance between
lattice points.

Kissing number – The number of � -balls which can
be arranged so that they all touch another of the
same size.

Voronoi cell – Around each point v in a discrete
collection of points ^ in ( � , this is the subset of ( �
composed of points which are closer to v than any
other point of ^ .
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THE CUBIC LATTICES b �
Density d � � 9 �
Packing radius

%�
Kissing number

� �
Voronoi cells are � -cubes.

THE w � ROOT LATTICES

Density d � � 9 � ��� " #x	 9 %
Packing radius

%y �
Kissing number �z��� " #>	
w � is the hexagonal lattice in ( � .
Voronoi cells are hexagons.

w J is the face-centred-cubic lattice in ( J .
Voronoi cells are rhombic dodecahedra.
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THE { | ROOT LATTICE

Density
e7} 
~ y J � � ) UE�EU

Packing radius
%y �

Kissing number 72

THE { @ ROOT LATTICE

Density
e }%+� ! � � ) � TC�

Packing radius
%y �

Kissing number 126

THE { ~ ROOT LATTICE

Density
e
�J ~� � � ) � ���

Packing radius
%y �

Kissing number 240
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THE - � ROOT LATTICES

The ‘chessboard’ lattices in ( � .

Density d � � 9 o � & ��r
Packing radius

%y �
Kissing number

� ����� , #>	
Voronoi cell of -  is a regular self-dual 4-polytope
called the 24-cell, composed of 24 regular octahe-
dra glued together along their faces.

Take - � and fit another copy in the gaps, centred at� %� �*)+)�)*� %� 	 , to get - &� .

This is a lattice iff � is even.

- &J is the molecular structure of diamond.

- & is congruent to b  .

- &~ is { ~ .
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WHAT THIS HAS TO DO WITH CODES

It turns out that (as suggested by Hamming’s geo-
metric approach) we can construct sphere packings
from codes in a variety of ways.

First, define the coordinate array of a point � � ( � :
Write the binary expansions of the coordinates of . B
in columns beginning with the least-significant digit.

So � � � � �:#�#�� T ����	 is:KLLLLLLM
� # # # �# # # � �� # � � �� � # # #
... ... ... ... ...

N OOOOOOQ
1s row
2s row
4s row
8s row
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CONSTRUCTION A

Given a binary �������
	 code W , we can construct a
sphere packing in ( � where � � �/. % �*)+)*)+��. � 	 is a
centre iff � is congruent (mod 2) to a codeword of W .

Or. . . a point of ( � with integer coordinates is a cen-
tre iff the 1s row of its coordinate array is a codeword
of W .

A lattice packing is obtained iff W is linear.

Applying this construction to the ������� , #>	 parity
check code we get the - � lattice.

Applying this construction to the (3,2) parity check
code gives the face-centred cubic lattice.

Applying this construction to the (7,4) Hamming code? @ we obtain the { @ lattice.

Extend ? @ by appending a parity check bit to each
codeword, to get the extended Hamming code ? ~ .
Then apply construction A to get the { ~ lattice.
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CONSTRUCTION B

Let W be a binary code whose codewords have even
parity.

Then � is a sphere centre iff � is congruent (mod 2)
to a codeword of W and � �B5� % . B is divisible by 4.

Or. . . � is a centre iff its 1s row is a codeword � � W
and its 2s row has even parity if � has weight divis-
ible by 4, or odd parity if � has weight divisible by 2
but not 4.

Again, this gives a lattice packing iff W is linear.

Apply this construction to the (8,1) repetition code
to get the { ~ lattice.

Apply to the extended Golay code W �  ( W � J with
an extra parity bit) to get a lattice in ( �  .

We can mesh two copies of this lattice together to
get an unexpectedly good (dense) lattice packing in( �  . . .
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THE LEECH LATTICE � �  
Consists of vectors of the form%y ~ ��� " ��� " � � 	 and

%y ~ �+� " ��� " ��� 	
Where � � W �  , � � � � �*)*)+)*� � 	��*� � ��#$��)*)+)*�:#>	 ,
and � � � � b �  such that� �  B5� % . B � � � �0� �

and � �  B5� % 1 B � # � ��� �
.

This is one of many different descriptions of � �  .

Density
e$��k% �xs � � ) ��� # T U

Packing radius 1
Kissing number 196560

Voronoi cell is a 24-polytope with #q� T � T ��� � faces.

Discovered by John Leech in 1964.
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SIMPLE GROUPS

A simple group is one with no proper nontrivial nor-
mal subgroups.

Finite simple groups classified between 1950 and
1980 by hundreds of mathematicians, in thousands
of pages of journal articles. Classification finished
in 1980 by Griess and Aschbacher.

Any finite simple group is one of:

1. A cyclic group of prime order

2. An alternating group of degree < 5

3. A finite group of Lie type

4. 26 others (the ‘sporadic simple groups’)
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Leech suspected that the automorphism group of� �  might contain some interesting simple groups,
but wasn’t able to solve the problem.

Told McKay – then (1968) at work proving the exis-
tence of a sporadic group � J of order

� � ��UE� T � �
predicted by Z. Janko.

Told Coxeter – who had no students capable of solv-
ing the problem.

Meanwhile, McKay told Conway, who was intrigued,
and tried to interest John Thompson, who challenged
him to calculate the order of the group.

Conway sets aside twelve hours every saturday af-
ternoon and evening and six hours every wednes-
day evening, for as long as it takes to solve the prob-
lem.

By just after midnight on the first saturday, the prob-
lem was solved.
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This group � � � isn’t simple, but it contained three
new sporadic groups, � � % � � � � and � � J .

Group Discovered Order� � � 1968 � U # � �E� U � # U � ��� ��� � ���E�� � % 1968
� # � � �E� #¡� � � ��� U U � � ���E�� � � 1968

� � U � � � � # U # � ���E�� � J 1968
��TC� � ��� � � � ���E�

It also contains the oldest known sporadic groups
(the Mathieu groups ¢ %V% , ¢ % � , ¢ �V� , ¢ � J and¢ �  , discovered between 1861 and 1873).

Group Discovered Order¢ %V% 1861
� T � �¢ % � 1861

TC� � � �¢ �V� 1873
��� U � � �¢ � J 1873 # � � �E� T � �¢ �  1873

� ��� � �EU � � �
In addition, it contains four other previously known
sporadic groups, bringing the total to twelve.

So, nearly half of the 26 sporadic simple groups are
contained in the automorphism group of the Leech
lattice � �  .
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