Rule: The contr from a pure curve Ga of 1/r(1,r-1) is 1/Denom([1,1,r,r]) * ( -b*t^(r+1) + N*t^3*((1-t^(r-2)) div (1-t)) * ((1-t^r) div (1-t)) ); where b = deg Ga (in units of 1/r^2) and deg_Ga(E1-E{r-1}) = 2*r*N - 2*b. Or -b*t^(r+1)/11rr +N*t^3*(1-t^(r-2))/1111r where b = deg Ga (in units of 1/r^2) and N = 1/r(deg_Ga(E1-E{r-1})/2 + b). The first term is exactly b*Qorb. The second term does not depend on b. Check: 2g(Ga)-2 = deg_Ga(-E1-E{r-1}) Notes: This is valid for r = 2, but then it doesn't involve N, and simplifies to b* -t^3 / &*[1-t^i : i in [1,1,2,2]]; If E1-E{r-1} = Oh_Ga(al) then the term deg_Ga(E1-E{r-1}) is al * b and N = (al+2)*b / 2*r; this is a problem in specifying N, b as integers: we have to take al and b so that (al + 2)*B is divisible by 2*r. The genus of Ga is present here: by adjunction K_Ga = K_Y + E1 + E{r-1}, so (for CY) 2g-2 = deg_Ga(E1+E{r-1}) = 2g-2. Magma: /* Contr of a 1/r(1,r-1) curve Ga is N * t^3 * ((1-t^(r-2)) div (1-t)) * ((1-t^r) div (1-t)) - b * t^{r+1} all over Denom([1,1,r,r]). Note the funny way of putting in the parameters: b = deg Ga and deg_Ga(E1-E{r-1}) = 2*r*N - 2*b. */ function Ppc(r,N,b) X := t^3*((1-t^(r-2)) div (1-t)) * ((1-t^r) div (1-t)); Y := -t^(r+1); return (N*X+b*Y)/Denom([1,1,r,r]); end function; =============== There are 5 pure curves 1/6(1,5) among the hypersurfaces: [1,5,6,6,13,31], [1,5,6,6,17,35], [1,5,6,6,18,36], [5,6,6,7,17,41], [5,6,7,12,12,42] [ 1, 5, 6, 6, 13, 31 ], so b = 1, (2*t^5 + 2*t^3) deg E1,E5 = 17,-5, so N = 1/6(11+1) = 2 2g-2 = -(17-5)/6 [ 1, 5, 6, 6, 17, 35 ], so b = 1, (-t^5 - t^3) deg E1,E5 = -1,13, so N = 1/6(-7+1) = -1 [ 1, 5, 6, 6, 18, 36 ], so b = 2, (t^3+t^5) deg E1,E5 = -1,-5, so N = 1/6(2*2+2) = 1 2g-2 = 2(1+5)/6 = 2 [ 5, 6, 6, 7, 17, 41 ], so b = 1 -2(t^3+t^5) deg E1,E5 = -7,19, so N = 1/6((-7-19)/2+1) = -2 =============== Rule: curve of 1/5(2,3) contr (N*x + b*y)/[1,1,5,5] with x := -t^3*((1-t^5) div (1-t))*(3-2*t+3*t^2); y := t^3*(1+t^2)*(1+t^2+t^4); where deg Ga = b and deg_Ga (E2-E3) = 10*N - 4*b; Note: Qorb(5,[2,3],5)/(1-t^5) is (t^7 - t^6 + t^5)/[1,1,5,5] Alternative Rule: curve of 1/5(2,3) contr b*Qorb(5,[2,3],5)/(1-t^5) +(N*(-3+2*t-3*t^2) + b*(1-t+t^2))*t^3/[1,1,1,5] where b = deg Ga and N = 1/5*(deg_Ga(E2-E3)/2+2*b) NB. 2g-2(C) = deg(E2+E3)/5 so E2-E3 is even Pure curve of 1/5(2,3) (there are 19 of them among the h'surfaces) [2,2,3,5,5,17], [2,3,3,5,5,18], [2,3,5,5,5,20], [2,3,5,5,12,27], [2,3,5,5,13,28], [2,3,5,5,15,30], [2,5,5,8,12,32], [3,5,5,7,13,33], [3,5,7,10,10,35], [3,5,5,7,20,40], [2,5,5,8,20,40], [3,7,10,10,15,45], [5,5,8,12,18,48], [2,5,8,10,25,50], [5,8,12,15,20,60], [5,5,8,12,30,60], [5,7,10,13,35,70], [5,10,12,18,45,90], [5,5,17,18,45,90] PC - b*Q5 has denom [1,1,1,5] [ 2, 3, 3, 5, 5, 18 ] -> b = 1, (4*t^5 - 3*t^4 + 4*t^3)/[1,1,1,5] deg E2-E3 is -2,+12, so N = 1/5*(deg(E2-E3)/2+2*b) = -1 [ 2, 3, 5, 5, 5, 20 ] -> b = 4, (-2*t^5 - 2*t^3)/[1,1,1,5] deg E2-E3 is -2,-3, so N = 1/5*(4*(-2+3)/2+8) = 2 [ 2, 3, 5, 5, 15, 30 ] -> b = 2, (-t^5 - t^3)/[1,1,1,5] deg E2-E3 is -2,-3 [ 2, 5, 5, 8, 20, 40 ] -> b = 2 (-4*t^5 + 2*t^4 - 4*t^3)/[1,1,1,5] deg E2-E3 is -2,-8, N = 2 [ 2, 5, 8, 10, 25, 50 ] -> b = 1 (-2*t^5 + t^4 - 2*t^3)/[1,1,1,5] deg E2,E3 is -2,-8 [ 3, 5, 5, 7, 13, 33 ] -> b = 1 (7*t^5 - 5*t^4 + 7*t^3)/[1,1,1,5] deg E2,E3 is -7,+17 [ 5, 5, 8, 12, 18, 48 ] => b=1 (10*t^5 - 7*t^4 + 10*t^3)/[1,1,1,5] deg E2,E3 is -12,22 [ 5, 5, 17, 18, 45, 90 ] => b=1 (-t^5 - t^3)/[1,1,1,5] deg E2,E3 is -17,-18 [ 5, 7, 10, 13, 35, 70 ] => b=1 (-2*t^5 + t^4 - 2*t^3)/[1,1,1,5] deg E2,E3 is -7,-13 [ 5, 10, 12, 18, 45, 90 ] => b=1 (-2*t^5 + t^4 - 2*t^3)/[1,1,1,5] deg E2,E3 is -12,-18 [ 2, 3, 5, 5, 12, 27 ] => b=1 (-5*t^5 + 3*t^4 - 5*t^3)/[1,1,1,5] deg E2,E3 is 13,-3 [ 2, 5, 5, 8, 12, 32 ] (-8*t^5 + 5*t^4 - 8*t^3)/[1,1,1,5] deg E2,E3 is 18,-8 [ 3, 5, 5, 7, 20, 40 ] => b=2 (2*t^5 - 2*t^4 + 2*t^3)/[1,1,1,5] deg E2,E3 is -7,-3 [ 5, 5, 8, 12, 30, 60 ] => b=2 (2*t^5 - 2*t^4 + 2*t^3)/[1,1,1,5] deg E2,E3 is -12,-8 [ 5, 8, 12, 15, 20, 60 ] => b=1 (t^5 - t^4 + t^3)/[1,1,1,5] deg E2,E3 is -12,-8 ============ Rule: curve of 1/7(2,5) contr (N*x+b*y)/[1,1,7,7] with x := -t^3*((1-t^7) div (1-t))*(5-4*t+7*t^2-4*t^3+5*t^4); y := t^3*(1+t^2+t^4)*(1+t^2+t^4+t^6); where deg Ga = b and deg_Ga(E2-E5) = 14*N - 4*b? Alternative rule: pure curve of 1/7(2,5) contr b*Qorb(7,[2,5],7)/(1-t^7) +N*t^3*(-5 + 4*t - 7*t^2 + 4*t^3 - 5*t^4) +b*t^3*(1 - t + 2*t^2 - t^3 + t^4)/1,1,1,7 where b = deg Ga (in units of 1/7^2) and N = 1/7(deg(E2-E5)/2+2b) There are 4 pure 1/7(2,5) curves among the hypersurfaces [2,5,7,7,16,37], [2,5,7,7,19,40], [2,5,7,7,21,42], [5,7,9,14,35,70] [ 2, 5, 7, 7, 19, 40 ] => b=1 (6*t^7 - 5*t^6 + 9*t^5 - 5*t^4 + 6*t^3)/1117 deg E2,E5 is -2,16, N = -1, b = 1. genus Ga = 0, -2 = (-16+2)/14 [ 2, 5, 7, 7, 21, 42 ] => b = 2; (-3*t^7 + 2*t^6 - 3*t^5 + 2*t^4 - 3*t^3) deg E2,E5 is -2,-5, N = 1/7(2*(-2+5)/2+2*2) = 1 genus Ga = 2, 2 = 2(2+5)/7 [ 5, 7, 9, 14, 35, 70 ] => b = 1; (t^7 - t^6 + 2*t^5 - t^4 + t^3) deg E2,E5 is -9,-5, so N = 1/7(-9+5)/2+2) = 0 genus Ga = 2 = 1(9+5)/2 ============ There are 4 pure 1/7(3,4) curves among the qsm hypersurfaces [3,3,4,7,7,24], [3,4,7,7,7,28], [3,4,7,7,18,39], [4,7,10,14,35,70] [ 3, 3, 4, 7, 7, 24 ], b=1, (-6*t^7 - 5*t^6 + 3*t^5 - 5*t^4 - 6*t^3) // after taking of the Qorb deg E3,E4 is 18,-4. So N = 2 [ 3, 4, 7, 7, 7, 28 ], b=4, (-2*t^6 - 2*t^4) deg E3,E4 is -3,-4. So N = 2 [ 3, 4, 7, 7, 18, 39 ], b=1 (6*t^7 + 4*t^6 - 3*t^5 + 4*t^4 + 6*t^3) deg E3,E4 is -3,17. So N = -1 [ 4, 7, 10, 14, 35, 70 ], b=1 (2*t^7 + t^6 - t^5 + t^4 + 2*t^3) deg E3,E4 is -10,-4. So N = 0 Guess: N is (deg_Ga(E3-E4)/2+3b)/7 and the rule is b*(2*t^7 + t^6 - t^5 + t^4 + 2*t^3) +N*(-4*t^7 - 3*t^6 + 2*t^5 - 3*t^4 - 4*t^3) ============ For 1/8(3,5) the guess is N is deg_Ga(E3-E5)/2+3b)/8 and rule b*(-3*t^8 + t^7 - t^6 - t^5 + t^4 - 3*t^3) +N*(8*t^7 - 12*t^6 + 17*t^5 - 12*t^4 + 8*t^3)*(1+t) There are 3 of them [3,5,8,8,19,43], b=1, E3,E5 = 21,-5, N = 2 [3,5,8,8,21,45], b=1, E3,E5 = -3,19, N = -1 [3,5,8,8,24,48], b=2, E3,E5 = -3,-5 (x b), N = 1 (13*t^7 - 20*t^6 + 29*t^5 - 20*t^4 + 13*t^3)*(1+t) (-11*t^7 + 16*t^6 - 22*t^5 + 16*t^4 - 11*t^3)*(1+t) (2*t^7 - 4*t^6 + 7*t^5 - 4*t^4 + 2*t^3)*(1+t) confirms the guess. ============ There are 5 pure 1/7(1,6) curves among the hypersurfaces [ 1, 6, 7, 7, 15, 36 ], b=1 (2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3) deg E1,E6 is 20,-6 [ 1, 6, 7, 7, 21, 42 ], b=2 (t^7 + t^6 + t^5 + t^4 + t^3) deg E1,E6 = -1,-6 [ 6, 7, 7, 8, 20, 48 ], b=1 (-2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3) deg E1,E6 = -8,22 [ 6, 7, 7, 8, 28, 56 ], b=2 0 deg E1,E6 = -8,-6 [ 7, 7, 9, 13, 36, 72 ], b=1 (-6*t^7 + 3*t^6 - 6*t^5 + 3*t^4 - 6*t^3) deg E1,E6 = -36,-13, [2,5,7,7,19,40], d:=40; A:=[2,5,7,7,19]; B:=[[19,5,7,7]]; N:=-1; b:=1; D := P(d,A) - PA(A) - Pb(B) - (N*X+b*Y)/denom; // 6*t^13+t^12+10*t^11+4*t^10+12*t^9+9*t^8+12*t^7+4*t^6+10*t^5+t^4+6*t^3 // -X+Y; deg Ga = 1; E2 = Oh(-2); E5 = Oh(40-5-19) = Oh(16), E2-E5 = Oh(-18) [2,5,7,7,19,40], d:=40; A:=[2,5,7,7,19]; B:=[[19,5,7,7]]; D := P(d,A) - PA(A) - Pb(B); // 6*t^13+t^12+10*t^11+4*t^10+12*t^9+9*t^8+12*t^7+4*t^6+10*t^5+t^4+6*t^3 // -X+Y; deg Ga = 1; E2 = Oh(-2); E5 = Oh(40-5-19) = Oh(16), E2-E5 = Oh(-18) [2,5,7,7,21,42], d:=42; A:=[2,5,7,7,21]; B:=[[5,1,2,2]]; D := P(d,A) - PA(A) - Pb(B); // -3*t^13-t^12-4*t^11-4*t^10-3*t^9-9*t^8-3*t^7-4*t^6-4*t^5-t^4-3*t^3 // deg Ga = 2; E2 = Oh(-2), E5 = Oh(-5) [2,5,7,7,21,42], d:=42; A:=[2,5,7,7,21]; B:=[[5,1,2,2]]; N:=1; b:=2; D := P(d,A) - PA(A) - Pb(B) - (N*X+b*Y)/denom; // -3*t^13-t^12-4*t^11-4*t^10-3*t^9-9*t^8-3*t^7-4*t^6-4*t^5-t^4-3*t^3 // deg Ga = 2; E2 = Oh(-2), E5 = Oh(-5) [3,4,7,7,7,28], d:=28; A:=[3,4,7,7,7]; B := [[3,1,1,1]]; D := P(d,A) - PA(A) - Pb(B); // -2*t^12-2*t^11-8*t^8-2*t^5-2*t^4 [4,7,10,14,35,70], d:=70; A:=[4,7,10,14,35]; B:=[[5,2,4,4]]; D := P(d,A) - PA(A) - Pb(B) - 70/(4*10*14)*Phalfc() + Pemb2(2); [3,4,7,7,21,42], d:=42; A:=[3,4,7,7,21]; B:=[[4, D := P(d,A) - PA(A) - Pb(B); // does not have a tangent monomial at y [3,4,7,7,18,39], // curve of 1/2 with emb 1/4(3,3,2) and 1/18(4,7,7) [1,4,7,7,9,28], // doesn't actually have a curve of 1/7 d:=28; A:=[1,4,7,7,9]; B := [[9,4,7,7]]; D := P(d,A) - PA(A) - Pb(B); // if we pretend the denom is [1,1,7,7] then // 4*t^12 + 4*t^10 + 4*t^9 + 4*t^8 + 4*t^7 + 4*t^6 + 4*t^4 [1,10,11,33,55,110], d := 110; A:=[1,10,11,33,55]; // emb 1/33(1,10,22) [2,9,11,33,44,99], // emb 1/44 [2,9,11,33,53,108], // emb 1/33 [2,9,11,33,55,110], // emb 1/33(2,9,22) [2,5,7,14,14,42], // curve of 1/7 with emb 3 x 1/14(2,5,7) [2,5,7,14,26,54], // curve of 1/7 with emb 1 x 1/14(2,5,7) but also 1/26(5,7,14) [2,5,14,14,35,70], // curve of 1/7 with emb 5 x 14/(2,5,7) [5,5,8,12,18,48], [5,5,17,18,45,90], // curve of 1/5(2,3) pure d:=90; A:=[5,5,17,18,45]; B:=[[17,1,5,11],[9,5,5,8]]; D := P(d,A) - PA(A) - Pb(B); // -t^9 - t^8 - 4*t^6 - t^4 - t^3 = -X + Y // deg Ga = 2, E2 = Oh(-17), E3 = Oh(-18), E2-E3 = Oh(1), its deg = 2 // N = 1; b := 2; [2,3,3,5,5,18], d := 18; A :=[2,3,3,5,5]; B:= [[3,2,2,2] : i in [1..6]]; D := P(d,A) - PA(A) - Pb(B); // 4*t^9 + t^8 + 6*t^7 + 4*t^6 + 6*t^5 + t^4 + 4*t^3 = 4X - Y // deg Ga = 1, E2 = Oh(-2), E3 = Oh(12), E2-E3 = Oh(-14), its deg = -14 // b := 1, N := -1; [3,5,5,7,13,33], d := 33; A:=[3,5,5,7,13]; B:=[[7,3,5,6],[13,3,5,5]]; D := P(d,A) - PA(A) - Pb(B); // 7*t^9 + 2*t^8 + 10*t^7 + 8*t^6 + 10*t^5 + 2*t^4 + 7*t^3 // deg Ga = 1, E2 = Oh(-7), E3 = Oh(33-3-13) = Oh(17), E2-E3 = Oh(24), deg 24 [7,7,9,13,36,72], d:=72; A:= [7,7,9,13,36]; B:=[[9,7,7,4],[9,7,7,4],[13,7,9,10]]; D := P(d,A) - PA(A) - Pb(B); // -6*t^13 - 3*t^12 - 9*t^11 - 6*t^10 - 12*t^9 - 13*t^8 // - 12*t^7 - 6*t^6 - 9*t^5 - 3*t^4 - 6*t^3 These check out Ppc [1,6,7,7,15,36], d:=36; A:=[1,6,7,7,15]; B:=[[15,1,7,7],[3,1,1,1]]; D := P(d,A) - PA(A) - Pb(B) - Ppc(7,2,1); // 2*t^13+4*t^12+6*t^11+8*t^10+10*t^9+9*t^8+10*t^7+8*t^6+6*t^5+4*t^4+2*t^3 [1,6,7,7,21,42], d := 42; A:=[1,6,7,7,21]; B := []; B:=[[3,1,1,1]]; D := P(d,A) - PA(A) - Pb(B) - Ppc(7,1,2); // t^13+2*t^12+3*t^11+4*t^10+5*t^9+3*t^8+5*t^7+4*t^6+3*t^5+2*t^4+t^3 [4,5,9,9,22,49], b = 1; E4,E5 = 23,-5, so N = ((23+5)/2+4*1)/r = 2; ======================== Ex. Compose an ice-cream story to prove that > t^4*Qorb(13,[8],-8); (t^12 + t^10 + t^7 + t^4 + t^2)/(t^14 - t^13 - t + 1) is equal to minus > 1/t^4*Qorb(13,[5],8); (-t^12 - t^10 - t^7 - t^4 - t^2)/(t^14 - t^13 - t + 1) ======================== The terms in BSz's formula function First(r,k) return &+[ ikbar*(r-ikbar)*(-i-(r-i)*t^r)*t^i where ikbar is (i*k mod r) : i in [1..r-1]] / (2*r*(1-t^r)^2); end function; function Second(r,k) return &+[ ikbar*(r-ikbar)*(r-2*ikbar)*t^i where ikbar is (i*k mod r) : i in [1..r-1]] / (6*r*(1-t^r)); end function; Each of these needs to be modified by rational multiples of (t+t^2+t^3)/(1-t)^4 and t/(1-t)^2 to get rid of terms in t and t^2; after which they are Gor symmetric of degree 0 with the right denom and support. modified Second becomes if k < r/2 Second(r,k)-(r-2*k)*((r-k)*k*(t+t^3)-2*k*(r+2*k)*t^2)/6/r/(1-t)^4; Second(r,k)-(r-2*k)*((r-k)*k*t-2*(r-k)*(3*r-2*k)*t^2+k*t^3)/6/r/(1-t)^4; for k in [1..8] do Second(r,k)-(r-2*k)*((r-k)*k*(t+t^3)-2*k*(r+2*k)*t^2)/6/r/(1-t)^4 eq t^2/Denom([1,1,1,r]) * (t^(r-2)*(1+t^kinv)*InvMod(Denom([kinv,kinv,r-kinv]) div (1-t)^3,Phi(r)) mod Phi(r)) where kinv is InverseMod(k,r); end for; for k in [9..16] do Second(r,k)-(r-2*k)*((r-k)*k*(t+t^3)-2*(r-k)*(3*r-2*k)*t^2)/6/r/(1-t)^4 eq t^2/Denom([1,1,1,r]) * (t^(r-2)*(1+t^kinv)*InvMod(Denom([kinv,kinv,r-kinv]) div (1-t)^3,Phi(r)) mod Phi(r)) where kinv is InverseMod(k,r); end for; Second is "composite": namely it is the sum S1 + S2, where and S1(r,a) = - S2(r,(r-a)). function S1(r,k) return &+[ ikbar*(r-ikbar)^2*t^i where ikbar is (i*k mod r) : i in [1..r-1]] / r; end function; function S2(r,k) return &+[ -ikbar^2*(r-ikbar)*t^i where ikbar is (i*k mod r) : i in [1..r-1]] / r; end function; These may be something to do with Qorb(1/r(k,k,r-k)). Note that S2(r,k) == -S1(r,r-k), so we don't need to program the second. > (S1(17,4)-S1(17,13))/(1-t^17)-(468*t-1800*t^2+468*t^3)/17/(1-t)^4; (96*t^17+96*t^16+42*t^15-36*t^14+90*t^13+96*t^12+72*t^11 -48*t^10+72*t^9+96*t^8+90*t^7-36*t^6+42*t^5+96*t^4+96*t^3) / (t^20-3*t^19+3*t^18-t^17-t^3+3*t^2-3*t+1) This makes him integral Gor symmetric of right deg., but doesn't say how to express as sum of reciprocals. Probably have to do that separately with S1 and S2 S1(17,4)*(1-t^13)*(1-t^4)^2 mod CyclotomicPolynomial(17); 14*t^4 - 20 so S1(17,4)/(1-t^17) - (14*t^4-20)*Qorb(17,[4,4,13],-4); (-1636/17*t^3 - 696/17*t^2 + 2716/17*t)/(t^4 - 4*t^3 + 6*t^2 - 4*t + 1) denom is now (1-t)^4 > -S1(17,13)*(1-t^4)*(1-t^13)^2 mod CyclotomicPolynomial(17); -14*t^13 + 20 so > -S1(17,13)/(1-t^17) - (-14/t^4+20)*Qorb(17,[4,13,13],4); (2716/17*t^3 - 696/17*t^2 - 1636/17*t)/(t^4 - 4*t^3 + 6*t^2 - 4*t + 1) S1(17,4)/(1-t^17) -S1(17,13)/(1-t^17)-(24/17)*(45*t^3 - 58*t^2 + 45*t)/(1-t)^4 eq -6*(1/t^2+t^2)*t^2*Qorb(17,[4,4,13],-4); 1/6*Second(17,4)/(1-t^17) - 4/17*(45*t^3 - 58*t^2 + 45*t)/(1-t)^4 eq -(1+t^4)*Qorb(17,[4,4,13],-4); An alternative expression giving denom 1/(1-t)^4 is > 1/6*Second(17,4)/(1-t^17) - (1+t^13)*Qorb(17,[4,13,13],-13); (6*t^12+66*t^11-54*t^10-18*t^9+1488/17*t^7-2208/17*t^6 +1488/17*t^5-18*t^3-54*t^2+66*t+6)/(t^8-4*t^7+6*t^6-4*t^5+t^4) (t^12 + 11*t^11 - 9*t^10 - 3*t^9 + 248/17*t^7 - 368/17*t^6 + 248/17*t^5 - 3*t^3 - 9*t^2 + 11*t + 1)/(t^8 - 4*t^7 + 6*t^6 - 4*t^5 + t^4) The N term should be (Num = sym poly in [3..r]) / Denom([1,1,1,r]). It should change to - on exchanging k and r-k. e.g. 1/6*Second(17,4)/(1-t^17) -(78*t-300*t^2+78*t^3)/17/(1-t)^4; (16*t^17+16*t^16+7*t^15-6*t^14+15*t^13+16*t^12+12*t^11-8*t^10 +12*t^9+16*t^8+15*t^7-6*t^6+7*t^5+16*t^4+16*t^3) / (t^20 - 3*t^19 + 3*t^18 - t^17 - t^3 + 3*t^2 - 3*t + 1) For example, the k = 1 case 1/6*Second(17,1)/(1-t^17) - (40*t-95*t^2+40*t^3)/17/(1-t)^4 ; (t^17 + t^16 + t^15 + t^14 + t^13 + t^12 + t^11 + t^10 + t^9 + t^8 + t^7 + t^6 + t^5 + t^4 + t^3)/(t^20 - 3*t^19 + 3*t^18 - t^17 - t^3 + 3*t^2 - 3*t + 1) > 1/6*Second(17,16)/(1-t^17) - (40*t-95*t^2+40*t^3)/17/(1-t)^4 ; The k = r-1 case 1/6*Second(17,16)/(1-t^17) - (-40*t+95*t^2-40*t^3)/17/(1-t)^4; (-t^17-t^16-t^15-t^14-t^13-t^12-t^11-t^10-t^9-t^8-t^7 -t^6-t^5-t^4-t^3)/(t^20-3*t^19+3*t^18-t^17-t^3+3*t^2-3*t+1) The r = 5, k = 2 or 3 cases: > 1/6*Second(5,2)/(1-t^5) - (t-6*t^2+t^3)/5/(1-t)^4; (3*t^5-2*t^4+3*t^3)/(t^8-3*t^7+3*t^6-t^5-t^3+3*t^2-3*t+1) 1/6*Second(5,3)/(1-t^5)+(t-6*t^2+t^3)/5/(1-t)^4; (-3*t^5+2*t^4-3*t^3)/(t^8-3*t^7+3*t^6-t^5-t^3+3*t^2-3*t+1) Acting in the same way with (17,5) and 7 = 5^-1 seems to work less well: > Second(17,5)/(1-t^17) - 6*(1+t^7)*Qorb(17,[7,7,10],-7) - (1950*t-2400*t^2+1950\ *t^3)/17/(1-t)^4; (-96*t^6 - 18*t^5 - 18*t - 96)/(t^5 - 4*t^4 + 6*t^3 - 4*t^2 + t) in this residue, what are the coefficients? for k in [1..r-1] do 1/6*Second(17,k)*Denom([kinv,kinv,r-kinv]) mod Phi(r) eq 1+t^kinv mod Phi(r) where kinv is InverseMod(k,r); end for; Nterm should be Num/denom(1,1,1,r) with Numerator a sym poly in [3..r] that is (1+t^k)/((1-t^k)^2(1-t^r-k)) Inr InvMod(Denom([k,2*k,r-k]), Phi(r)) (1+t^k) * InvMod((1-t^k)^2*(1-t^(r-k)),Phi(r)) want XX so that X*(1-t^k)*(1-t^(2*k)*(1-t^(r-k)) eq 1 > k:=1;t^2*InvMod(t*15*(1-t^k)*(1-t^(2*k))*(1-t^(r-k)),Phi(r)); function Qorb(r,LL,k) L := [ Integers() | i : i in LL ]; // this allows empty list if (k + &+L) mod r ne 0 then error "Error: Canonical weight not compatible"; end if; n := #LL; Pi := &*[ R | 1-t^i : i in LL]; h := Degree(GCD(1-t^r, Pi)); // degree of GCD(A,B) // -- simpler calc? l := Floor((k+n+1)/2+h); // If l < 0 we need a kludge to avoid programming // Laurent polynomials properly de := Maximum(0,Ceiling(-l/r)); m := l + de*r; A := (1-t^r) div (1-t); B := Pi div (1-t)^n; H,al_throwaway,be:=XGCD(A,t^m*B); return t^m*be/(H*(1-t)^n*(1-t^r)*t^(de*r)); end function; // This function is Nterm, the second term // sum ikbar * (r-ikbar) * (r-2*ikbar) // in [Buckley and Szendroi] Cor. 3.3 function Second(r,k) return &+[ ikbar*(r-ikbar)*(r-2*ikbar)*t^i where ikbar is (i*k mod r) : i in [1..r-1]] / (6*r*(1-t^r)); end function; // After subtracting off initial term to kill coeff of t and t^2, // it is Num/Denom([1,1,1,r]), where the numerator is symmetric // integral supported in [3..r]) that is // (1+t^kinv)(1-t)^3/(1-t^kinv)^2(1-t^(r-kinv) mod (1-t^r)/(1-t) for k in [1..r-1] do Second(r,k)-(r-2*k)*(r-k)*k*(t+t^3)/6/r/(1-t)^4 +((r-2*k)*2*ka*(r+2*ka)*t^2/6/r/(1-t)^4 where ka is Min(k,r-k)) eq t^2/Denom([1,1,1,r]) * (t^(r-2)*(1+t^kinv)*InvMod(Denom([kinv,kinv,r-kinv]) div (1-t)^3,Phi(r)) mod Phi(r)) where kinv is InverseMod(k,r); end for; function Nterm(r,b) return t^2* (t^(r-2)*(1+t^b)*InverseMod(Denom([b,b,r-b]) div (1-t)^3,((1-t^r) div (1-t))) mod ((1-t^r) div (1-t)))/Denom([1,1,1,r]); end function; for i in [1..20] do r := Random(500); k := Random(r); if GCD(r,k) eq 1 then b := InverseMod(k,r); r,k,Second(r,k)-(r-2*k)*(r-k)*k*(t+t^3)/6/r/(1-t)^4 +((r-2*k)*2*ka*(r+2*ka)*t^2/6/r/(1-t)^4 where ka is Min(k,r-k)) eq Nterm(r,b); end if; end for; Plan of action: Use the functions defined at the end of CY, applied to the list AASK2. PC(A) is a list of the curve contributions, obtained as partial frac decomposition. Each should be b*Qorb - N*Nterm - b*First function First(r,k) return &+[ ikbar*(r-ikbar)*(-i-(r-i)*t^r)*t^i where ikbar is (i*k mod r) : i in [1..r-1]] / (2*r*(1-t^r)^2); end function; if k < r-k, need to do First(r,k) - (-k*(r-k)*(t+t^3)+4*k^2*t^2)/(2*r)/(1-t)^4; or if k > r-k, need do do First(r,k) - (-k*(r-k)*(t+t^3)+4*(r-k)^2*t^2)/(2*r)/(1-t)^4; so in either case First(r,k) - (-k*(r-k)*(t+t^3)+4*ka^2*t^2)/(2*r)/(1-t)^4 where ka is Min(k,r-k); Next, take out the leading term in 1/(1-t^r)^2 : k:=8; First(r,k)-(-k*(r-k)*(t+t^3)+4*ka^2*t^2)/(2*r)/(1-t)^4 -r*Qorb(r,[b,r-b],r)/(1-t^r) where ka is Min(k,r-k) where b is InverseMod(k,r); function BFirst(r,k) return &+[ -i*ikbar*(r-ikbar)*t^i where ikbar is (i*k mod r) : i in [1..r-1]] / (2*r*(1-t^r)); end function;