Fine interior of a lattice polytope: MMP and MS

Victor Batyrev

Eberhard Karls Universität Tübingen

Warwick Algebraic Geometry Seminar 30 June 2020

(日) (四) (문) (문) (문)

What is Fine interior?

 $M \cong \mathbb{Z}^d$, $N := \operatorname{Hom}(M, \mathbb{Z})$, $\langle *, * \rangle : M \times N \to \mathbb{Z}$ pairing $M_{\mathbb{R}} := M \otimes \mathbb{R}$, $N_{\mathbb{R}} := N \otimes \mathbb{R}$ are vector spaces over \mathbb{R} . $A \subset M$ a finite subset, $P := \operatorname{conv}(A) \subset M_{\mathbb{R}}$ a full-dimensional lattice polytope.

e Consider the piecewise linear function ord_P : $N_{\mathbb{R}} \to \mathbb{R}$:

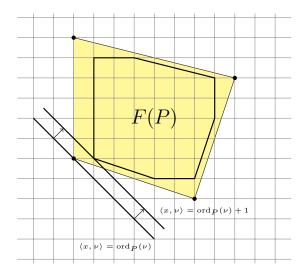
$$\operatorname{ord}_{P}(y) = \min_{x \in P} \langle x, y \rangle, \ y \in N_{\mathbb{R}}.$$

Then $P = \{ x \in M_{\mathbb{R}} : \langle x, \nu \rangle \ge \operatorname{ord}_{P}(\nu) \quad \forall \nu \in N \setminus \{0\} \}.$

Definition

 $F(P) := \{ x \in M_{\mathbb{R}} : \langle x, \nu \rangle \ge \operatorname{ord}_{P}(\nu) + 1 \quad \forall \nu \in N \setminus \{0\} \}$ is called Fine interior of *P*.

$F(P) = \operatorname{Conv}(P^{\circ} \cap M)$ for a 2-dimensional lattice polytope



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Jonathan Fine, Resolution and completion of algebraic varieties, Ph.D.-Thesis, University of Warwick, June 1983. (in [Ph.D.-Thesis, §4] F(P) is called heart of P.)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

- Jonathan Fine, Resolution and completion of algebraic varieties, Ph.D.-Thesis, University of Warwick, June 1983. (in [Ph.D.-Thesis, §4] F(P) is called heart of P.)
- Miles Reid, Young person's guide to canonical singularities, Algebraic geometry, Bowdoin, 1985.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

 V.V. Danilov, The geometry of toric varieties, Russian Math. Surveys 33 :2 (1978), 97-154.

 A.G.Khovanskii, Newton polyhedra and the genus of complete intersections, Func. Anal. Appl. 12 (1978), 51-61.

Lattice polytopes P are considered as Newton polytopes of non-degenerate hypersurfaces in the algebraic torus

 $\mathbb{T} = \operatorname{Hom}(M, \mathbb{C}^*).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Valuations in birational geometry of algebraic varieties: M is the lattice of monomials, or characters of \mathbb{T} N is the lattice of valuations of the function field $\mathbb{C}(\mathbb{T})$ Attempts to find a "good" geometric representatives X in a given birational class of d-dimensional varieties $(d \ge 3)$.

Our payment: We have to accept existence mild singularities of "good representatives" X.

Criterion: "Good behavour" with respect to differential forms of top degree (wrt. canonical class K_X), non-negativity of K_X (if possible).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

X a normal irreducible quasi-projective $\mathbb Q\text{-}\mathsf{Gorenstein}$ algebraic variety. Take a resolution of singularities of X

$$\rho : Y \to X$$

with the exceptional locus $\bigcup_{i=1}^{r} D_i$ union of smooth irreducible divisors with only normal crossings.

$$I := \{1, \dots, r\}$$
$$K_Y = \rho^* K_X + \sum_{i \in I} a_i D_i,$$

The rational numbers $a_i \in \mathbb{Q}$ $(i \in I)$ are called *discrepancies* of divisors D_i .

Singularities of X are called at worst

- *terminal* if $a_i > 0$, $\forall i \in I$;
- canonical if $a_i \ge 0$, $\forall i \in I$;
- ▶ log-terminal if $a_i > -1$, $\forall i \in I$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A normal projective variety X with at worst \mathbb{Q} -factorial terminal singularities is called *minimal model* if the canonical class K_X is a semi-ample \mathbb{Q} -Cartier divisor.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A Laurent polynomial

$$f(\mathbf{t}) = \sum_{m \in A} a_m \mathbf{t}^m \in \mathbb{C}[M] \cong \mathbb{C}[t_1^{\pm 1}, \dots, t_d^{\pm 1}]$$

with Newton polytope $P = \operatorname{conv}(A) \subset M_{\mathbb{R}} := M \otimes \mathbb{R}$ is called *non-degenerate* if for any face $P' \preceq P$ the affine hypersurface

$$Z_{f,P'} := \{\sum_{m \in A \cap P'} a_m \mathbf{t}^m = \mathbf{0}\} \subset \mathbb{T}.$$

is smooth. The non-degeneracy of $f(\mathbf{t})$ is a Zariski open condition on its coefficients $\{a_m\} \in \mathbb{C}^{|A \cap M|}$.

Shihoko Ishii, The minimal model theorem for divisors of toric varieties, Tohoku Math. J. (1999), 213-226.

Theorem of Ishii

A non-degenerate hypersurface $Z \subset \mathbb{T}$ defined by a Laurent polynomial $f \in \mathbb{C}[M]$ with Newton polytope P has a minimal model if and only if Fine interior of P is not empty, i.e.,

$$\kappa(Z) \ge 0 \Leftrightarrow F(P) \neq \emptyset.$$

Moreover, a minimal model \widehat{Z} (if exists) can be obtained as Zariski closure of Z in some toric embedding $\mathbb{T} \hookrightarrow \widehat{V}$, i.e. in some projective toric variety \widehat{V} .

The first algorithm is standard:

- Take a projective closure of Z in the toric variety defined by the normal fan Σ_P;
- Take a regular refinement Σ of the normal Σ_P and obtain a smooth projective model Z of Z as Zariski closure in toric variety V = V(Σ). The condition F(P) ≠ Ø imply that the adjoint linear system K_V + Z is not empty (due to Khovanskii);
- ► Apply toric MMP to pair (V, Z) (due to Miles Reid). After finitely many steps we get a toric pair (V, Z) with nef adjoint divisor. Then Z is a minimal model.

The second algorithm is shorter. It is important to use the fact that a minimal model X is always uniquely determined in codimension 1.

Definition

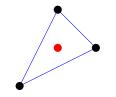
The support of Fine interior F(P) is the finite set

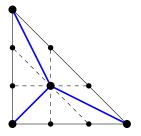
$$\mathcal{S}_{\mathcal{F}}(\mathcal{P}) := \{ \nu \in \mathcal{N} \ : \ \mathrm{ord}_{\mathcal{F}(\mathcal{P})}(\nu) = \mathrm{ord}_{\mathcal{P}}(\nu) + 1 \}.$$

This is the set of *essential valuations* $\nu \in N$ that contribute to F(P)

- Find the set S_F(P) as the set of lattice generators of 1-dimensional cones in the fan Σ.
- Construct the simplicial fan Σ̂ with Σ̂[1] = S_F(P) as a normal fan to some full-dimensional simple polytope □(ε) with given facet normals S_F(P) obtained by "puffing up" the polytope F(P).

Example in dimension 2





 $F(P) \subset P$

 $P^*, S_F(P)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの

A *d*-dimensional lattice polytope $P \subset M_{\mathbb{R}}$ containing $0 \in M$ in its interior is called *reflexive* if the *polar dual* polytope

$$P^* := \{y \in N_{\mathbb{R}} : \langle x, y \rangle \ge -1, \ \forall x \in P\}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

is a lattice polytope.

Remark

Let P be a reflexive polytope. Then

•
$$F(P) = \{0\};$$

$$\triangleright S_F(P) = P^* \cap (N \setminus \{0\}).$$

2-dimensional reflexive polytopes

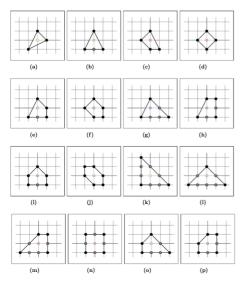


Figure: 2-dimensional reflexive polytopes

Source: Karin Schaller, Stringy Invariants of Algebraic Varieties and Lattice Polytopes, Ph.D. thesis, Eberhart Karls Univ. Tübingen, 2019.

SAR

- 31

・ロト ・四ト ・ヨト ・ヨト

Some Reflexive 3-polytopes

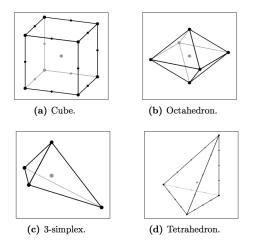


Figure: Some Reflexive 3-polytopes.

Source: Karin Schaller, Stringy Invariants of Algebraic Varieties and Lattice Polytopes, Ph.D. thesis, Eberhart Karls Univ. Tübingen, 2019.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … 釣�?

The combinatorial duality

If P is reflexive, then P^* is also reflexive and

$$(P^*)^* = P.$$

There exists a natural 1-to-1 correspondence between k-dimensional faces $Q \prec P$ and (d - k - 1)-dimensional faces $Q^* \prec P^*$:

$$Q^* := \{y \in P^* : \langle x, y \rangle = -1 \ \forall x \in Q\}.$$

The combinatorial duality $P \leftrightarrow P^*$ perfectly agrees with the prediction of MS for Calabi-Yau hypersurfaces in toric varieties $X \subset V_P$ and $X^* \subset V_{P^*}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

- Take the Zariski closure Z̃ of Z in the Gorenstein toric Fano variety Ṽ defined by the normal fan of P. We call Z̃ canonical model of Z;
- Take a maximal projective simplicial subdivision $\hat{\Sigma}$ of Σ_P with $\hat{\Sigma}[1] = S_F(P)$. The Zariski closure of Z in the toric variety \hat{V} is a (Calabi-Yau) *minimal model of Z*.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let P be a lattice polytope with $F(P) \neq \emptyset$. We define *canonical* hull C(P) of P as

 $C(P) := \{ x \in M_{\mathbb{R}} : \langle x, \nu \rangle \ge \operatorname{ord}_{P}(\nu) \ \forall \nu \in S_{F}(P) \}.$

Remark

C(P) is a rational polytope containing P. One has P = C(P) if dim P = 2, or if P is reflexive, but in general C(P) is larger as P.

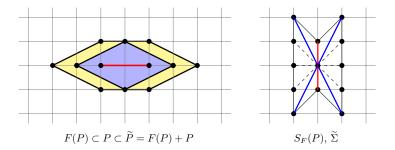
・ロト・(四ト・(川下・(日下・))

$$\widetilde{P} := C(P) + F(P).$$

Theorem

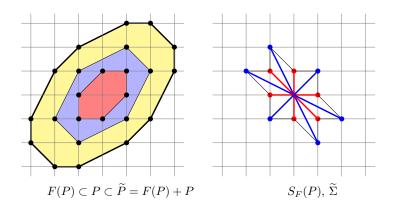
The normal fan $\widetilde{\Sigma}$ of \widetilde{P} is a Q-Gorenstein toric variety with at worst canonical singularities. One $\widetilde{\Sigma}[1] \subset S_F(P)$. Any simplicial subdivision $\widehat{\Sigma}$ of $\widetilde{\Sigma}$ with $\widehat{\Sigma}[1] = S_F(P)$ defines a crepant morphism $\widehat{V} \to \widetilde{V}$ of the corresponding toric varieties. The simplicial toric variety \widehat{V} has at worst terminal singularities. The Zariski closure \widehat{Z} of Z in \widehat{V} is a *minimal model* of Z.

Example dim F(P) = 1

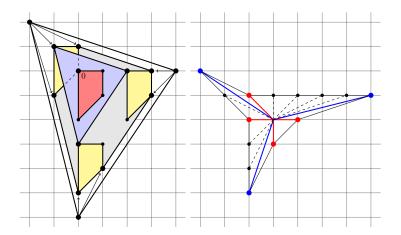


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example dim F(P) = 2



Idea of proof



◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

- There exist a unique canonical model Z of any non-degenerate toric hypersurface Z with the Newton polytope P if F(P) ≠ Ø.
- Kodaira dimension of \widehat{Z} equals $\kappa = \min\{d 1, \dim F(P)\}$.
- ▶ The *litaka fibration* of $\widetilde{Z} \to V_{F(P)}$ is induced by the natural toric morphism $\widetilde{V} \to V_{F(P)}$ (canonical toric Fano fibration).

 Generic fibers of the litaka fibrations are (d - 1 - κ)-dimensional canonical non-degenerate toric hypersurfaces of Kodaira dimension 0.

see arXiv:2006.15825 (Today)

Thank you !

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで